

Figure 1: Two pulley system

Exercise 1 (40 points). With respect to Figure 1 assume:

- the two pulleys have inertia J_1 and J_2 , and radius r_1 and r_2 respectively
- the line between pulley 1 and pulley 2 has some flex with spring constant k_1
- the line between pulley 2 and the mass m has some flex with spring constant k_1
- there is a torque τ acting on pulley 1 in a counterclockwise direction as shown
- the acceleration of gravity is g in the direction shown

We wish to derive the differential equations for the system in Figure 1. Do so using

- 1. the Newtonian approach
- 2. the Lagrangian approach

and verify that the differential equations you obtain using each approach are equivalent.

Exercise 2 (20 points). An inextensible string of length l is fixed at one end and a bob of mass m is attached at another. The bob swings in \mathbb{R}^3 (Cartesian coordinates) and the string remains taut. Find the Lagrangian for the system and the equations of motion using spherical coordinates (r, θ, ϕ) . *Hint: what does the string staying taut mean about the motion in spherical coordinates*?

Figure 2: Motor Circuit and Physical Setup

Exercise 3 (40 points). Assume that we attach a propeller to a DC motor. See Figure 2(a) and 2(b). The motor is fixed to a small platform, and this platform is then attached to a larger load mass via a semi-flexible link. See Figure 2c. Assume that the load mass only moves in the up/down (z) direction for simplicity (i.e. only the motor+propeller rotate). Also assume the following:

- The motor inductance is negligable, i.e. L = 0.
- The motor torque is $Q_m = k_v(i i_0 \operatorname{sgn}(\omega))$ where i_0 is what is often times called zero-load current.
- The motor back-emf voltage is given by $V_{emf} = k_v \omega$.
- The motor and propeller have combined moment of inertia J.
- The motor and propeller and small platform have mass m, while the load mass is M.
- The semi-flexible link can be represented as a typical spring and damping using k and c respectively.
- The thrust produced by the propeller is given by $T = k_t \omega^2$.
- The torque generated by the propeller drag is $Q_p = k_d \omega^2$.
- The acceleration of gravity is g and pointing 'down' in Figure 2c
- (a) Derive the nonlinear equations governing the system dynamics using the Lagrangian methodology.
- (b) Derive the nonlinear equations governing the system dynamics using the Newtonian methodology.
- (c) Find the input voltage \bar{V} to reach equilibrium with zero load velocity, essentially 'hovering'. Is it possible to reach an equilibrium with all states zero? Explain.