EE 476

Homework 1

Exercise 1 (20 points). Explain which of the following form a vector space over real scalars (Hint: Apply definition of vector spaces over Real scalars).

1. Set of solutions $x(t)$ of the ODE

$$
\frac{d x(t)}{d t}+3 x(t)=0
$$

2. Set of points (x, y, z) satisfying $x+y+z=2$
3. Set of points (x, y, z) satisfying $x+y+z=0$
4. Space of all complex numbers $\mathbb{C}=\left\{a+i b \mid a, b \in \mathbb{R}, i^{2}=-1\right\}$

Exercise 2 (20 points). Let V be a vector space and S_{1} and S_{2} be subspaces of vector space V. Show the following

1. Intersection of S_{1} and S_{2} is a subspace.
2. Union of S_{1} and S_{2} is in general not a subspace.
3. Bonus 10 points: Space formed by sum of vectors from S_{1} and S_{2} is a subspace. This space is known as the direct sum of S_{1} and S_{2} and denoted by $S_{1} \oplus S_{2}$.
Exercise 3 (20 points). Let P_{n} be the set of polynomials of maximum degree n given by,

$$
P_{n}=\left\{p(t)=\sum_{i=0}^{n} \alpha_{i} t^{i} \mid \alpha_{i} \in \mathbb{R} \text { for all } i=\{0,1, \ldots, n\}, t \neq 0\right\}
$$

In class we have seen that P_{n} is a vector space. Show that the set $B=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ forms a basis for this space.
Bonus 10 points: Does the set $\hat{B}=\left\{1,(1+t),(1+t)^{2}, \ldots,(1+t)^{n}\right\}$ also form a basis? Why? Exercise 4 (20 points). Let P_{n} be the set of polynomials of maximum degree n given by,

$$
P_{n}=\left\{p(t)=\sum_{i=0}^{n} \alpha_{i} t^{i} \mid \alpha_{i} \in \mathbb{R} \text { for all } i=\{0,1, \ldots, n\}, t \neq 0\right\}
$$

Let $S=\{s(t)\}$ denote the space of polynomials obtained by differentiating polynomials in P_{n} with respect to t

$$
s(t)=\frac{d}{d t} p(t)=\sum_{i=i}^{n} i \alpha_{i} t^{i-1}=\alpha_{1}+2 \alpha_{2} t+3 \alpha_{3} t^{2}+\cdots+n \alpha_{n} t^{n-1}
$$

1. Show that $\frac{d}{d t}: P_{n} \rightarrow S$ is a linear transformation. (Hint: Apply summation and product rule for derivatives)
2. Find a matrix representation A for the linear transformation $\frac{d}{d t}$. What is the rank of A.
3. What is the null space $\mathcal{N}(A)$ of the transformation? What is the dimension of $\mathcal{N}(A)$?
4. What is the range space $\mathcal{R}(A)$ of the transformation? What is the dimension of $\mathcal{R}(A)$?

Exercise 5 (20 points). Consider the following matrices

$$
A_{1}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-6 & -11 & -6
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
0 & -1 \\
2 & 3
\end{array}\right]
$$

1. Find characteristic polynomial for matrices A_{1} and A_{2}.
2. Find eigenvalues of matrices A_{1} and A_{2}. Verify your answer using Matlab command eig. ("help eig" in Matlab will give you the syntax for the command)
3. Find eigenvectors corresponding to eigenvalues in part (b) for matrix A_{2} without the use of Matlab. Show all your steps. Verify your answer using Matlab command eig.
4. Find eigenvalues and eigenvectors of A_{2}^{2} and A_{2}^{-1}
5. Bonus 10 points: If matrix $A \in \mathbb{R}^{n \times n}$ is invertible with eigenvalues and eigenvectors given by λ_{i}, and v_{i}, respectively for all $i=\{1,2, \ldots, n\}$. Then for any integer k, positive or negative, show that eigenvalues of A^{k} are given by λ_{i}^{k} and corresponding eigenvectors are given by v_{i}.
