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Chapter 2 

Least Squares Estimation


2.1 Introduction 

If the criterion used to measure the error e � y ; Ax in the case of inconsistent system of 

equations is the sum of squared magnitudes of the error components, i.e. e0e, or equivalently 

the square root of this, which is the usual Euclidean norm or 2-norm kek2 

, then the problem 

is called a least squares problem. Formally it can be written as 

min ky ; Axk2: (2.1) 

x 

The x that minimizes this criterion is called the least square error estimate, or more simply, 

the least squares estimate. The choice of this criterion and the solution of the problem go 

back to Legendre (1805) and Gauss (around the same time). 

Example 2.1 Suppose we make some measurements yi 

of an unknown function 

f (t) at discrete points ti� i � 1 � : : : � N : 

yi 

� f (ti) � i � 1 � : : : � N : 

We w ant to �nd the function g(t) in the space � of polynomials of order m ; 1 � 

N ; 1 that best approximates f (t) at the measured points ti, where ( )
m;1X 

� � g(t) � �it
i� �i 

real
i�0 

For any g(t) 2 �, we will have yi 

� g(ti) + ei 

for i � 1� : : : � N . Writing this in 

 



matrix form for the available data, we h a ve 323
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2The problem is to �nd �0� : : : � � m;1 

such that e 

0 e � ei 

is minimized.


i;1


2.2 Computing the Estimate 

The solution, x̂, of Equation 2.1 is characterized by: 

(y ; Ax̂) � R (A): 

All elements in a basis of R(A) m ust be orthogonal to (y ; Ax̂). Equivalently this is true for 

the set of columns of A, [ a1� : : : � a n]. Thus 

(y ; Ax̂) � R (A) , ai 

0 (y ; Ax̂) � 0 for i � 1 � : : : � n 

, A0(y ; Ax̂) � 0 

, A0Ax̂ � A0y 

This system of m equations in the m unknowns of interest is referred to as the normal 

equations. We can solve for the unique x̂ i� A0A is invertible. Conditions for this will b e 

derived shortly. In the sequel, we will present the generalization of the above ideas for in�nite 

dimensional vector spaces. 

2.3 Preliminary: The Gram Product 

Given the array o f nA 

vectors A � [ a1 

j � � � j anA 

] and the array o f nB 

vectors B � [ b1 

j � � � j bnB 

] 

from a given inner product space, let � A� B � denote the nA 

� nB 

matrix whose (i� j)-th 

element is � a i� b j 

�. We shall refer to this object as the Gram product (but note that this 

terminology is not standard!). 

If the vector space under consideration is Rm or Cm, then b o th A and B are matrices 

with m rows, but our de�nition of � A� B � can actually handle more general A, B. In 

fact, the vector space can b e in�nite dimensional, as long as we are only examining �nite 

collections of vectors from this space. For instance, we could use the same notation to treat 

�nite collections of vectors chosen from the in�nite-dimensional vector space L2 of square 



R 1integrable functions, i.e. functions a(t) for which ;1 

a2(t) dt � 1. The inner product in L2 R 1is � a(t)� b (t) �� ;1 

a�(t)b(t) dt. (The space L2 is an example of an in�nite dimensional 

Hilbert space, and most of what we k n o w for �nite dimensional spaces | which are also Hilbert 

spaces! | has natural generalizations to in�nite dimensional Hilbert spaces. Many of these 

generalizations involve introducing notions of topology and measure, so we shall not venture 

too far there. It is worth also mentioning here another important in�nite dimensional Hilbert 

space that is central to the probabilistic treatment of least squares estimation: the space 

of zero-mean random variables, with the expected value E(ab) serving as the inner product 

� a� b � .) 

For the usual Euclidean inner product in an m-dimensional space, where � ai� b j 

�� 

0ai 

bj 

, we simply have � A� B � � A0B. For the inner product de�ned by � a i� b j 

� � ai 

0 S b j 

for a positive de�nite, Hermitian matrix S, w e have � A� B � � A0SB . 

�	 Verify that the symmetry and linearity of the inner product imply the same for the 

Gram product, so � AF� BG + CH � � F 

0 � A� B � G + F 

0 � A� C � H, for any 

constant matrices F , G, H (a constant matrix is a matrix of scalars), with A, B, C 

denoting arrays whose columns are vectors. 

2.4 The Least Squares Estimation Problem 

The problem of interest is to �nd the least square error (LSE) estimate of the parameter vector 

x that arises in the linear model y � Ax, where A is an array o f n vectors, A � [ a1 

� � � � � a n]. 

De�ning the error e by 

e � y ; Ax 

what we w ant to determine is 

xb � arg min kek � arg min ky ; Axk � y� A given 

x x 

(where \arg minx" should be read as \the value of the argument x that minimizes"). To state 

this yet another way, note that as x is varied, Ax ranges over the subspace R(A), so we are 

looking for the point 

yb � Axb
in R(A) that comes closest to y, as measured by whatever norm we are using. 

Rather than restricting the norm in the above expression to b e the Euclidean 2-norm 

used in Lecture 1, we shall now actually permit it to be any norm induced by an inner product, 

so kek � 

p
� e� e � . This will allow us to solve the so-called weighted least squares problem 

in a �nite dimensional space with no additional work, because error criteria of the form 

e0Se for positive de�nite Hermitian S are thereby included. Also, our problem formulation 

then applies to in�nite dimensional spaces that have an inner product de�ned on them, with 

the restriction that our model Ax be con�ned to a �nite dimensional subspace. This actually 

covers the cases of most interest to us� treatment of the more general case involves introducing 

further topological notions (closed subspaces, etc.), and we a void doing this. 



We shall also assume that the vectors ai 

� i � 1� : : : � n in A are independent. This 

assumption is satis�ed by a n y reasonably parametrized model, for otherwise there would b e 

an in�nite numb e r o f c hoices of x that attained any achievable value of the error y ; Ax. If 

the vectors in A are discovered to b e dependent, then a re-parametrization of the model is 

needed to yield a well-parametrized model with independent v ectors in the new A. (A subtler 

problem | and one that we shall say something more about in the context of ill-conditioning 

and the singular value decomposition | is that the vectors in A can b e nearly dependent, 

causing practical di�culties in numerical estimation of the parameters.) 

Gram Matrix Lemma 

An important route to verifying the independence of the vectors that make up the columns of 

A is a lemma that we shall refer to as the Gram Matrix Lemma. This states that the vectors 

in A are independent i� the associated Gram matrix (or Gramian) � A� A �� [� ai� a j 

�] 

is invertible� all norms are equivalent, as far as this result is concerned | one can pick any 

norm. As noted above, for the case of the usual Euclidean inner product, � A� A � � A0A. For 

an inner product of the form � a i� a j 

� � a0 Sa j 

, where S is Hermitian and positive de�nite, i

we have � A� A �� A0SA . The lemma applies to the in�nite dimensional setting as well (e.g. 

L2), provided we are only considering the independence of a �nite subset of vectors. 

Proof: If the vectors in A are dependent, there is some nonzero vector � such that A� � P P 

j 

aj 

�j 

� 0 . But then j 

� a i� a j 

� � j 

� 0, by the linearity of the inner product� in 

matrix form, we can write � A� A � � � 0 | so � A� A � is not invertible. 

Conversely, if � A� A � is not invertible, then � A� A � � � 0 for some nonzero �. But P P 

then �0 � A� A � � � 0 , so by t h e linearity of inner products � �iai 

� aj 

�j 

� � 0,P 

i.e. the norm of the vector aj 

�j 

� A� is zero, so the vectors in A are dependent. 

2.5 The Projection Theorem and the Least Squares Estimate 

The solution to our least squares problem is now given by the Projection Theorem, also referred 

to as the Orthogonality Principle, which states that 

eb� ( y ; Axb) � R(A) 

from which - | as we shall see | xb can b e determined. In words, the theorem/\principle" 

states that the point yb � Axb in the subspace R(A) that comes closest to y is characterized 

by the fact that the associated error eb� y ; yb is orthogonal to R(A), i.e., orthogonal to the 

space spanned by t h e vectors in A. This principle was presented and proved in the previous 

chapter. We repeat the proof here in the context of the above problem. 

Proof: We �rst show that y has a unique decomposition of the form y � y1+y2, w here y1 

2 R (A) 

and y2 

2 R 

�(A). We can write any y1 

2 R (A) in the form y1 

� A� for some vector �. 



If we want ( y ; y1) 2 R 

�(A), we m ust see if there is an � that satis�es 

� a i� (y ; A�) � � 0 � i � 1 � : : : � n 

or, using our Gram product notation, 

� A� (y ; A�) � � 0 

Rearranging this equation and using the linearity of the Gram product, we get 

� A� A � � � � A� y � 

which is in the form of the normal equations that we encountered in Lecture 1. Under 

our assumption that the vectors making up the columns of A are independent, the Gram 

matrix lemma shows that � A� A � is invertible, so the unique solution of the preceding 

equation is 

� � � A� A �;1� A� y � 

We n o w h a ve the decomposition that we sought. 

To show that the preceding decomposition is unique, let y � y1a 

+ y2a 

be another such 

decomposition, with y1a 

2 R (A) and y2a 

2 R 

�(A). Then 

y1 

; y1a 

� y2 

; y2a 

and the left side is in R(A) while the right side is in its orthogonal complement. It is 

easy to show that the only vector common to a subspace and its orthogonal complement 

0 and 

e

is the zero vector, so y1 

; y1a 

� y2 

; y2a 

� 0, i.e., the decomposition of y is unique. 

To proceed, decompose the error e � y ; Ax similarly (and uniquely) into the sum of 

1 

2 R (A) and e2 

2 R 

�(A). Note that 

kek2 � ke1k2 + ke2k2 

Now w e can rewrite e � y ; Ax as 

e1 

+ e2 

� y1 

+ y2 

; Ax 

or 

e2 

; y2 

� y1 

; e1 

; Ax 

Since the right side of the above equation lies in R(A) and the left side lies in R�(A), 

each side separately must equal 0 | again because this is the only vector common to 

a subspace and its orthogonal complement. We thus have e2 

� y2, and the choice of x 

can do nothing to a�ect e2. On the other hand, e1 

� y1 

; Ax � A(� ; x), and the best 

we can do as far as minimizing kek2 is to make e1 

� 0 b y c hoosing x � �, so xb � �, i.e., 



xb � � A� A �;1 � A� y � 

This solves the least squares estimation problem that we h a ve posed. 

The above result, though rather abstractly developed, is immediately applicable to many 

concrete cases of interest. 

�	 Specializing to the case of Rm or Cm, and choosing x to minimize the usual Euclidean 

norm, 

mX 0kek2 � e e � jeij2 

i�1 

we have


xb � (A0A);1A0 y


Note that if the columns of A form a mutually orthogonal set (i.e. an orthogonal basis 

for R(A)), then A0A is diagonal, and its inversion is trivial. 

�	 If instead we choose to minimize e0Se for some positive de�nite Hermitian S (6� I), we 

have a weighted least squares problem, with solution given by 

xb � (A0SA );1A0Sy 

For instance, with a diagonal S, the criterion that we are trying to minimize becomes 

mX 

siijeij2 

i�1 

where the sii 

are all p o s i t i v e. We can thereby preferentially weight those equations in 

our linear system for which w e w ant a smaller error in the �nal solution� a larger value 

of sii 

will encourage a smaller ei. 

Such w eighting is important i n a n y practical situation, where di�erent measurements yi 

may have been subjected to di�erent levels of noise or uncertainty. One might expect 

that sii 

should be inversely proportional to the noise intensity on the ith equation. In 

fact, a probabilistic derivation, assuming zero-mean noise on each equation in the system 

but noise that is uncorrelated across equations, shows that sii 

should vary inversely with 

the variance of ei. 

A full matrix S rather than a diagonal one would make sense if the errors were correlated 

across measurements. A probabilistic treatment shows that the proper weighting matrix 

is S � ( E[ee0 ]);1, the inverse of the covariance matrix of e. In the deterministic setting, 

one has far less guidance on picking a good S. 



� The boxed result also allows us to immediately write down the choice of coe�cients xi 

that minimizes the integral Z


[ y(t) ; a1(t)x1 

; a2(t)x2 

; � � � ; an(t)xn 

]2 dt 

for speci�ed functions y(t) and ai(t). If, for instance, y(t) is of �nite extent (or �nite 

\support") T , and the ai(t) are sinusoids whose frequencies are integral multiples of 

2� �T , then the formulas that we obtain for the xi 

are just the familiar Fourier series 

expressions. A simpli�cation in this example is that the vectors in A are orthogonal, so 

� A� A � is diagonal. 

2.6 Recursive Least Squares (optional) 

What if the data is coming in sequentially� Do we have to recompute everything each time 

a new data point comes in, or can we write our new, updated estimate in terms of our old 

estimate� 

Consider the model 

yi 

� Aix + ei 

� i � 0 � 1� : : : � (2.2) 

where yi 

2 Cm�1 , Ai 

2 Cm�n , x 2 Cn�1, and ei 

2 Cm�1 . The vector ek 

represents the 

mismatch b e t ween the measurement yk 

and the model for it, Akx, w here Ak 

is known and x 

is the vector of parameters to be estimated. At e a c h time k, we wish to �nd �
 �! !
kXkX bxk 

� arg min 

i�1 i�1 

where Si 

2 Cm�m is a positive de�nite Hermitian matrix of weights, so that we can vary the 

importance of the ei's and components of the ei's in determining xbk. 

To compute xbk+1, let: 

0(yi 

; Aix)
0 

iSi(yi 

; Aix) � argm in eiSiei 

x 

� (2.3) 

x 

323232 

y0 

A0 

e0 666664


y1 

:


:


777775


666664


A1 

:


:


777775


�
 ek+1 

� 

666664


e1 

:


:


777775


yk+1 

� � Ak+1 

� � 

yk+1 

Ak+1 

ek+1 

and 

Sk+1 

S0� diag ( � S 1 

� : : : � S k+1) 

where Si 

is the weighting matrix for ei. 

Our problem is then equivalent t o 



emin( 0 

k+1Sk+1ek+1) 

subject to: 

The solution can thus be written as 

yk+1 

� Ak+1xk+1 

+ ek+1 

(A
0 

k+1Sk+1Ak+1)bxk+1 

� A
0 

k+1Sk+1yk+1 

or in summation form as � !
k+1 k+1X X 

A0 

iSiyiA0 

iSiAi 

xbk+1 

� 

i�0 i�0 

De�ning 

k+1X 

Qk+1 

� Ai
0 SiAi: 

i�0 

we can write a recursion for Qk+1 

as follows: 

Qk+1 

� Qk 

+ A0 

k+1Sk+1Ak+1: 

Rearranging the summation form equation for xbk+1, we get � i 

k+1Sk+1yk+1xbk+1 

� Q;1 

h�P
i
k 

�0 

Ai
0 SiAi 

xbk 

+ A0 

k+1 h i 

� Q;1 Qkxbk 

+ A0 

k+1Sk+1yk+1k+1 

This clearly displays the new estimate as a weighted combination of the old estimate and the 

new data, so we h a ve the desired recursion. Another useful form of this result is obtained by 

substituting from the recursion for Qk+1 

above to get ; � 

A0 

k+1Sk+1yk+1 

�xbk+1 

� xbk 

; Q;1 

k+1Sk+1Ak+1xbk 

; A0 

k+1 

which �nally reduces to 

xbk+1 

� xbk 

+ Q;1 A0 

k+1Sk+1 

(yk+1 

; Ak+1xbk)k+1| {z } | {z }
Kalman Filter Gain 

innovations 

The quantity Q;1 A0 

k+1Sk+1 

is called the Kalman gain, and yk+1 

; Ak+1xbk 

is called the k+1

innovations, since it compares the di�erence between a data update and the prediction given 

the last estimate. 

Unfortunately, as one acquires more and more data, i.e. as k grows large, the Kalman gain 

goes to zero. One data point cannot make m uch h e a d w ay against the mass of previous data 

which has `hardened' the estimate. If we l e a ve this estimator as is|without modi�cation|the 

estimator `goes to sleep' after a while, and thus doesn't adapt well to parameter changes. The 

homework investigates the concept of a `fading memory' so that the estimator doesn't go to 

sleep. 

 



An Implementation Issue 

Another concept which is important in the implementation of the RLS algorithm is the com-
putation of Q;1 

k+1. If the dimension of Qk 

is very large, computation of its inverse can b e 

computationally expensive, so one would like t o h a ve a recursion for Q;1 

k+1.


This recursion is easy to obtain. Applying the handy matrix identity
� � ;1(A + BCD );1 � A;1 ; A;1B D A 

;1B + C;1 

;1 

DA 

to the recursion for Qk+1 

yields � �
Q;1 � Q;1 ; Q;1A0 A0 :k+1 k k k+1 

Ak+1Q
;1 

k+1 

+ S;1 

;1 

Ak+1Q
;1 

k k+1 k 

Upon de�ning 

Pk+1 

� Q;1 �k+1 

this becomes � �
S;1 

k+1 k+1 

+ Ak+1PkA
0 ;1 

Ak+1Pk 

:Pk+1 

� Pk 

; PkA
0 

k+1 

which is called the (discrete-time) Riccati equation. 

Interpretation 

We have xbk 

and yk+1 

available for computing our updated estimate. Interpreting xbk 

as a 

measurement, we see our model becomes " # " # " # 

xbk 

I ek� x + : 

yk+1 

Ak+1 

ek+1 

The criterion, then, by which w e c hoose xbk+1 

is thus ; �0 xbk+1 

� argmin ek
0 Qkek 

+ ek+1Sk+1ek+1 

: 

In this context, one interprets Qk 

as the weighting factor for the previous estimate. 



Exercises 

Exercise 2.1 Least Squares Fit of an Ellipse 

x

Suppose a particular object is modeled as moving in an elliptical orbit centered at the origin. 

Its nominal trajectory is described in rectangular coordinates (r� s ) b y the constraint equation x1 

r2 + 

2 

s2 + x3 

rs � 1, where x1 

, x2 

, and x3 

are unknown parameters that specify the orbit. We have 

available the following noisy measurements of the object's coordinates (r� s ) at ten di�erent points on 

its orbit: 

(0.6728, 0.0589) (0.3380, 0.4093) (0.2510, 0.3559) (-0.0684, 0.5449) 

(-0.4329, 0.3657) (-0.6921, 0.0252) (-0.3681, -0.2020) (0.0019, -0.3769) 

(0.0825, -0.3508) (0.5294, -0.2918) 

The ten measurements are b e l i e v ed to b e equally reliable. For your convenience, these ten pairs of 

measured (r� s ) v alues have been stored in column vectors named r and s that you can access through 

the 6.241 locker on Athena. After add 6.241, and once in the directory in which you are running 

Matlab, you can copy the data using cp /mit/6.241/Public/fall95/hw1rs.mat hw1rs.mat. Then, 

in Matlab, type load hw1rs to load the desired data� type who to con�rm that the vectors r and s are 

indeed available. 

Using the assumed constraint equation, we can arrange the given information in the form of the 

linear system of (approximate) equations Ax � b, where A is a known 10� 3 matrix, b is a known 10� 1 

Tvector, and x � ( x1� x 2 

� x 3 

) . This system of 10 equations in 3 unknowns is inconsistent. We wish to 

�nd the solution x that minimizes the Euclidean norm (or length) of the error Ax ; b. Compare the 

solutions obtained by using the following four Matlab invocations, each of which in principle gives the 

desired least-square-error solution: 

(a) x � Anb 

(b) x � pinv(  A) � b 

(c) x � inv(  A0 � A) � A0 � b 

(d) [q� r ] � qr (A), followed by implementation of the approach described in Exercise 3.1. 

For more information on these commands, try help slash, help qr, help pinv, help inv, etc. 

[Incidentally, the prime, 

0, in Matlab takes the transpose of the complex conjugate of a matrix� if you 

want the ordinary transpose of a complex matrix C, you have to w rite C:  

0 or transp(C).] 

You should include in your solutions a plot the ellipse that corresponds to your estimate of x. 

If you create the following function �le in your Matlab directory, with the name ellipse.m, y ou can 

obtain the polar coordinates theta, rho of n p o i n ts on the ellipse speci�ed by the parameter vector x. 

To do this, enter [theta,rho]�ellipse(x,n)� at the Matlab prompt. You can then plot the ellipse 

by using the polar(theta,rho) command. 

function [theta,rho]�ellipse(x,n) 

% [theta,rho]�ellipse(x,n) 

% 

% T h e v ector x � [x(1),x(2),x(3)]', de�nes an ellipse centered at the origin 

% via the equation x(1)*r^ 2 + x(2)*s^ 2 +x(3)*r*s � 1. 

% This routine generates the polar coordinates of points on the ellipse, 

% to send to a plot command. It does this by solving for the radial 

% distance in n equally spaced angular directions. 

% Use polar(theta,rho) to actually plot the ellipse. 



theta � 0:(2*pi/n):(2*pi)�


a � x(1)*cos(theta).^ 2 + x(2)*sin(theta).^ 2 + x(3)*(cos(theta).*sin(theta))�


rho � ones(size(a))./sqrt(a)�


Exercise 2.2 Approximation by a P olynomial 

Let f (t) � 0 :5e0:8t , t 2 [0� 2]. 

(a)	 Suppose 16 exact measurements of f (t) are available to you, taken at the times ti 

listed in the 

array T below: 

T � [2 � 10;3� 0:136� 0:268� 0:402� 0:536� 0:668� 0:802� 0:936� 

1:068� 1:202� 1:336� 1:468� 1:602� 1:736� 1:868� 2:000] 

Use Matlab to generate these measurements: 

yi 

� f (ti) i � 1 � : : : � 16 ti 

2 T 

Now determine the coe�cients of the least square error polynomial approximation of the mea-
surements, for 

1. a polynomial of degree 15, p15(t)� 

2. a polynomial of degree 2, p2(t). 

p

Compare the quality of the two approximations by plotting y(ti), p15(ti) and p2(ti) for all ti 

in T . To s e e h o w w ell we are approximating the function on the whole interval, also plot f (t), 

15(t) and p2(t) on the interval [0� 2]. (Pick a v ery �ne grid for the interval, e.g. t�[0:1000]'/500.) 

Report your observations and comments. 

(b) Now suppose that your measurements are a�ected by some noise. Generate the measurements 

using


yi 

� f (ti) + e(ti) i � 1 � : : : � 16 ti 

2 T


where the vector of noise values can be generated in the following way: 

randn(0 seed0� 0)� 

e � randn(size(T ))� 

Again determine the coe�cients of the least square error polynomial approximation of the mea-
surements for 

1. a polynomial of degree 15, p15(t)� 

2. a polynomial of degree 2, p2(t). 

Compare the two approximations as in part (a). Report your observations and comments. 

Explain any surprising results. 



(c)	 So far we have obtained polynomial approximations of f(t) � t 2 [0� 2] � by approximating the 

measurements at ti 

2 T . We a r e n o w i n terested in minimizing the square error of the polynomial 

approximation over the whole interval [0� 2]: Z 2 

min kf(t) ; pn(t)k2 � min jf(t) ; pn(t)j2 dt2 

0 

where pn(t) is some polynomial of degree n. Find the polynomial p2(t) of degree 2 that solves 

the above problem. Are the optimal p2(t) in this case and the optimal p2(t) of parts ( a) and (b) 

very di�erent from each other� Elaborate. 

Exercise 2.3 Combining Estimates 

Suppose y1 

� C1 

x+ e1 

and y2 

� C2x + e2, where x is an n-vector, and C1 

, C2 

have full column 

Trank.	 Let x̂1 

denote the value of x that minimizes e1 

S1e1, and x̂2 

denote the value that minimizes 

Te ^2 

S2e2, where S1 

and S2 

are positive de�nite matrices. Show that the value x of x that minimizes 

T T 

Q
e x1 

S1e1 

+ e2 

S2e2 

can be written entirely in terms of ^1, x̂2 

, and the n� n matrices Q1 

� C1 

T S1C1 

and 

2 

� C2 

T S2C2 

. What is the signi�cance of this result� 

Exercise 2.4 Exponentially Windowed Estimates 

Suppose we observe t h e scalar measurements 

yi 

� cix+ ei 

� i � 1 � 2� : : : 

where ci 

and x are possibly vectors (row- and column-vectors respectively). 

(a)	 Show (by reducing this to a problem that we already know how to solve | don't start from 

scratch!) that the value ^k 

of x that minimizes the criterion x

kX 

fk;i ei 

2� some	 �xed f� 0 � f � 1 

i�1 

is given by � 

kX �;1� 

kX � 

^k 

� fk;i ci
T ci 

fk;i T x ci 

yi 

i�1 i�1 

The so-called fade or forgetting factor f allows us to preferentially weight the more recent m e a -
surements by picking 0 � f � 1, so that old data is discounted at an exponential rate. We 

then say that the data has been subjected to exponential fading or forgetting or weighting or 

windowing or tapering or ... . This is usually desirable, in order to keep the �lter adaptive t o 

changes that may o ccu r in x. Otherwise the �lter becomes progressively less attentive t o n e w 

data and falls asleep, with its gain approaching 0. 



(b) Now show th a t 

T^ ^xk 

� xk;1 

+ Q;1 ck 

(yk 

; ckx̂k;1 

)k 

where 

TQk 

� fQ k;1 

+ ck 

ck 

� Q0 

� 0 

The vector gk 

� Q;1 cT is termed the gain of the estimator. k k 

(c)	 If x and ci 

are scalars, and ci 

is a constant c, determine gk 

as a function of k. What is the 

steady-state gain g1� Does g1 

increase or decrease as f increases | and why d o y ou expect 

this� 

Exercise 2.5 Suppose our model for some waveform y(t) is y(t) � � sin (!t ), where � is a scalar, 

and suppose we h a ve measurements y(t1)� : : : � y (tp). Because of modeling errors and the presence of 

measurement noise, we will generally not �nd any c hoice of model parameters that allows us to pre-
cisely account fo r a ll p measurements. 

(a) If ! is known, �nd the value of � that minimizes 

pX 

[y(ti) ; � sin(!t i)]
2 

i�1 

(b) Determine this value of � if ! � 2 and if the measured values of y(t) are: 

y(1) � +2:31 y(2) � ;2:01 y(3) � ;1:33 y(4) � +3:23 

y(5) � ;1:28 y(6) � ;1:66 y(7) � +3 :28 y(8) � ;0:88 

(I generated this data using the equation y(t) � 3 sin(2t) + e(t) e v aluated at the integer values 

t � 1 � : : : � 8, and with e(t) for each t being a random number uniformly distributed in the interval 

- 0.5 to +0.5.) 

(c)	 Suppose that � and ! are unknown, and that we wish to determine the values of these two v ariables 

that minimize the above criterion. Assume you are given initial estimates �0 

and !0 

for the 

minimizing values of these variables. Using the Gauss-Newton algorithm for this nonlinear least 

squares problem, i.e. applying LLSE to the problem obtained by linearizing about the initial 

estimates, determine explicitly the estimates �1 

and !1 

obtained after one iteration of this 

algorithm. Use the following notation to help you write out the solution in a condensed form: X X	 X 

2 2 a � sin2(!0 

ti) � b � ti 

cos (!0ti) � c � ti[sin(w0 

ti)][cos(w0 

ti)] 

(d)	 What values do you get for �1 

and !1 

with the data given in (b) above if the initial guesses 

are �0 

� 3 :2 and !0 

� 1 :8 � Continue the iterative estimation a few more steps. Repeat the 

procedure when the initial guesses are �0 

� 3 :5 and !0 

� 2 :5, verifying that the algorithm does 

not converge. 



(e)	 Since only ! enters the model nonlinearly, w e might think of a decomposed algorithm, in which � 

is estimated using linear least squares and ! is estimated via nonlinear least squares. Suppose, 

for example, that our initial estimate of ! is !0 

� 1 :8. Now obtain an estimate �1 

of � using the 

linear least squares method that you used in (b). Then obtain an (improved�) estimate !1 

of !, 

using one iteration of a Gauss-Newton algorithm (similar to what is needed in (c), except that 

now y ou are only trying to estimate !). Next obtain the estimate �2 

via linear least squares, 

and so on. Compare your results with what you obtain via this decomposed procedure when 

your initial estimate is !0 

� 2 :5 instead of 1.8. 

Exercise 2.6 Comparing Di�erent Estimators 

This problem asks you to compare the behavior of di�erent parameter estimation algorithms by 

�tting a model of the type y(t) � a sin(2�t ) + b cos(4�t ) to noisy data taken at values of t that are .02 

apart in the interval (0,2]. 

First synthesize the data on which you will test the algorithms. Even though your estimation 

algorithms will assume that a and b are constant, we are interested in seeing how t h e y t r a c k parameter 

changes as well. Accordingly, l e t a � 2, b � 2 for the �rst 50 points, and a � 1, b � 3 for the next 50 

p o i n ts. To get (approximately) normally distributed random variables, we use the function randn to 

produce variables with mean 0 and variance 1. 

An elegant w ay to generate the data in Matlab, exploiting Matlab's facility with vectors, is to 

de�ne the vectors t1 � 0 :02 : 0:02 : 1:0 and t2 � 1 :02 : 0:02 : 2:0, then set 

y1 � 2 � sin(2 � pi � t1) + 2 � cos(4 � pi � t1) + s � randn(size(t1)) 

and 

y2 � sin(2 � pi � t2) + 3 � cos(4 � pi � t2) + s � randn(size(t2)) 

where s determines the standard deviation of the noise. Pick s � 1 for this problem. Finally, set 

y � [ y1� y 2]. No loops, no counters, no fuss!! 

Now estimate a and b from y using the following algorithms. Assume prior estimates â0 

� 3 

^and b0 

� 1 , w eighted equally with the measurements (so all weights can be taken as 1 without loss of 

generality). Plot your results to aid comparison. 

(i) Recursive least squares. 

(ii) Recursive least squares with exponentially fading memory, as in Problem 3. Use f � :96. 

(iii) The algorithm in (ii), but with Qk 

of Problem 3 replaced by qk 

� (1 �n)�trace(Qk), where 

n is the number of parameters, so n � 2 in this case. (Recall that the trace of a matrix is the sum of 

its diagonal elements. Note that qk 

itself satis�es a recursion, which y ou should write down.) 

(iv) An algorithm of the form 

:04 T^ xk;1 

+ 

T 

ck 

(yk 

; ck 

^xk 

� ^ xk;1 

) 

ckck 

where ck 

� [sin(2�t )� cos(4�t )] evaluated at the kth sampling instant, so t � :02k. 

Exercise 2.7 Recursive Estimation of a State Vector 

This course will soon begin to consider state-space m o dels of the form 

x` 

� Ax`;1	

(2.4) 



where x` 

is an n-vector denoting the state at time ` of our model of some system, and A is a known 

n � n matrix. For example, suppose the system of interest is a rotating machine, with angular position 

d` 

and angular velocity !` 

at time t � `T , where T is some �xed sampling interval. If we believed the 

machine to be rotating at constant speed, we w ould be led to the model � � � � � � 

d` 

!` 

� 

1 

0 

T 

1 

d`;1 

!`;1 

Assume A to be nonsingular throughout this problem. 

For the rotating machine example above, it is often of interest to obtain least-square-error esti-
mates of the position and (constant) velocity, using noisy measurements of the angular position dj 

at 

the sampling instants. More generally, i t is of interest to obtain a least-square-error estimate of the 

state vector xi 

in the model (2.4) from noisy p-component measurements yj 

that are related to xj 

by 

a linear equation of the form 

yj 

� Cx j 

+ ej 

� j � 1 � : : : � i 

where C is a p � n matrix. We shall also assume that a prior estimate x̂0 

of x0 

is available: 

x̂0 

� x0 

+ e0 

Let x̂iji 

denote the value of xi 

that minimizes 

iX 

kej 

k2 

j�0 

This is the estimate of xi 

given the prior estimate and measurements up to time i, or the \�ltered 

estimate" of xi. Similarly, let x̂iji;1 

denote the value of xi 

that minimizes 

i;1X 

kej 

k2 

j�0 

This is the least-square-error estimate of xi 

given the prior estimate and measurements up to time


i ; 1, and is termed the \one-step prediction" of xi.


a) Set up the linear system of equations whose least square error solution would be ^
xiji. Similarly, 

set up the linear system of equations whose least square error solution would be x̂iji;1 

. 

b) Show that ^ xi;1ji;1 

.xiji;1 

� A^


xiji 

in terms of ^
c) Determine a recursion that expresses ^ xi;1ji;1 

and yi. This is the prototype of what 

is known as the Kalman �lter. A more elaborate version of the Kalman �lter would include additive 

noise driving the state-space model, and other embellishments, all in a stochastic context (rather than 

the deterministic one given here). 

Exercise 2.8 Let x̂ denote the value of x that minimizes ky ; Axk2 , where A has full column rank. 

Let x denote the value of x that minimizes this same criterion, but now subject to the constraint that 

z � Dx , w here D has full row rank. Show that � �;1 

^x � x + ( AT A);1DT D(AT A);1 DT (z ; Dx̂) 

(Hint: One approach to solving this is to use our recursive least squares formulation, but modi�ed for 

the limiting case where one of the measurement sets | namely z � Dx in this case | is known to 

have no error. You may h a ve to use some of the matrix identities from the previous chapter). 




