Θ

$$
\begin{aligned}
& \text { LECTURE is } \\
& \text { Identification based on under damped second order system: } \\
& \text { Consider the second order differential equation } \\
& \qquad \begin{aligned}
\ddot{x}+\delta \dot{x}+\omega_{0}^{2} x=f(t)
\end{aligned} \\
& \begin{aligned}
& \text { with zero initial conditions and } \\
& f(t)=u(t)=1 \quad \text { if } t \geqslant 0 \\
&=0 \quad \text { if } t<0 .
\end{aligned}
\end{aligned}
$$

Then, the response $x(t)$ can be found using
either variation of parameters formula, or laplace
transforms methods [see your $E \in 475$ notes] as
$x(t)=\frac{1}{\omega_{0}^{2}}-\frac{e^{-\frac{\delta}{2} t}}{\omega_{0}^{2}}$ [$\cos \bar{\omega} t+\frac{\delta}{2 \bar{\omega}} \sin \bar{\omega} t$].
$=\frac{1}{\omega_{0}^{2}}-\frac{e^{-\frac{\delta}{2}}}{\omega_{0}{ }^{2}}$ [$\left.\cos \bar{\omega} t+\frac{\delta}{2 \bar{\omega}} \sin \bar{\omega} t\right]$
where
$\bar{\omega}^{2}=\omega_{0}^{2}-\frac{\delta^{2}}{4}$ is called the damped natural frequency.

(J)

若 $4{ }_{3}$
The
(a)

(0)

$\because:$
Θ

(2)

