
EE476: Linear Algebra Review

1 Vector paces, subspaces

Definition 1.1 A Vector Space (or linear space) over a field K is a non empty set X of
elements x, y, . . . (called vectors) together with two algebraic operations. The first operation
is vector addition which associates with any two vectors x, y ∈ X a vector x + y ∈ X,
the sum of x and y. The second operation is scalar multiplication which associates to any
vector x ∈ X and any element α ∈ K a vector αx ∈ X; the scalar multiple of x by α.

The set X and these operations satisfy the following axioms:

1. x + y = y + x (commutative law)
2. x + (y + z) = (x + y) + z (associative law)
3. There exists a vector 0 ∈ X called the zero vector

such that x + 0 = x for all x ∈ X
4. α(βx) = (αβ)x (associative law)

5.
α(x + y) = αx + αy
(α + β)x = αx + βx

}
(distributive laws)

6. 0x = 0, 1x = x

If K = IR or K = C then the vector space is called respectively Real or Complex Vector
Space.

Definition 1.2 A Subspace S of a vector space X is a subset of X which is itself a vector
space

Note that a subspace must contain the 0 vector. To check for a subspace you need to
verify that

αx + βy ∈ S for any linear combination of any x, y ∈ S.

Example 1.1 If X = IR3, and S = {x | a1x(1) + a2x(2) = 0}, where x(1) and x(2) are the
first and second component of the vector x ∈ IR3, then S is a subspace of IR3.

1.1 Linear independence, basis, dimension

A set of vectors is linearly independent if there is no nontrivial combination of element
of the set that add to the zero vector.

A basis for a subspace is an independent set of vectors that can be combined linearly to
form any other vector in the subspace.

The dimension of a subspace is equal to the number of vectors in a basis.

There are many vector spaces, the most common are IRn, Cn. The set C[a,b], of all contin-
uous functions in the interval a, b, is a vector space. The set

S = {f(t) = α0 + α1t + αn−1t
n−1, αi ∈ IR}

is also a vector space. Note that this vector space is not different from Rn (isomorphic).
Every sequence α0, α1 · · ·αn−1 is uniquely identified with an element of the vector space.

Exercise 1.1 Show that {1, t, t2, . . . , tn−1} form a basis for S.
Does the set {1, (1 + t), (1 + t)2, . . . , (1 + t)n−1} form a basis for S?
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2 Matrices

A real matrix is denoted as:

A ∈ IRm×n,




a11 · · · a1m
...

...
am1 · · · amn


 , aij ∈ IRn

Complex matrices are defined analogously

A ∈ Cm×n,




a11 · · · a1m
...

...
am1 · · · amn


 , aij ∈ Cn

A matrix A ∈ IRm×n is also an element of the vector space of matrices m× n.
Matrices are linear operators on vector spaces.

A : Cn → Cm

x → Ax

Exercise 2.1 Consider the differentiation operator on the set S:

d

dt
: S → S

f → df

dt

.

Find a matrix representation for
(

d

dt

)
.

2.1 Range and Null Space of A

R(A), the Range of a matrix A ∈ Cm×n is the following subspace of Cm

R(A) = {Ax : x ∈ Cn}

The rank of A is defined as: rank(A) = dimR(A).

N (A), the null space of a matrix A ∈ Cm×n is the following subspace of Cn

N (A) = {x : Ax = 0}

Exercise 2.2 What is the range of
(

d

dt

)
? What is its rank? What is its null space?
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3 Eigenvalues and Eigenvectors

A ∈ Cn×n is a square n× n matrix.

Definition 3.1 λ ∈ C is an eigenvalue of A, if there exists a non zero vector v such that

Av = λv

v is called the right eigenvector of A relative to λ.

Interpretation: If we apply A to a vector x in the same direction as v, then A acts on x as
a multiplication by a scalar of value λ.

Eigenvectors are not unique; if v is an eigenvector then αv, with α ∈ C is also an eigenvector
of A relative to the same eigenvalue.

Definition 3.2 The eigenspace relative to an eigenvalue λ is the set of all eigenvectors
relative to λ, that is:

{v 6= 0 | Av = λv, λ eigenvalue of A} = N (A− λI)

Clearly, an eigenspace is a subspace.

3.1 Characterization of the eigenvalues of a matrix A

An eigenvalue must satisfy

Av = λv for some v 6= 0, ⇔ (A− λI)v = 0 for some v 6= 0.

⇔ (A− λI) is not invertible

⇔ det(A− λI) = 0

det(A− λI) is called the characteristic polynomial of A.

A =




a11 · · · a1n
...

...
an1 · · · ann


 A− λI =




a11 − λ · · · a1n
...

...
an1 · · · ann − λ




χ(λ) = det(A− λI) = λn + αn−1λ
n−1 + · · ·+ α1λ + α0

The eigenvalues of A are the roots of χ(λ).
Note that χ(λ) can have repeated roots. For example, χ(λ) = (λ − 3)3(λ − 2). In these
cases we say that λ = 3 is a multiple root of χ(λ).

Example 3.1 Let’s compute the eigenvalues of the following matrix:

A =

(
0 1

−2 −3

)

det(A− λI) = det

(
−λ 1
−2 −3− λ

)
= λ(3 + λ) + 2 = λ2 + 3λ + 2

The roots of χ(λ) = 0 are λ1 = −1, λ2 = −2.

3



Definition 3.3 The Algebraic Multiplicity AM(λ) of an eigenvalue λ is its multiplicity
as root of χ(λ) = 0
The Geometric Multiplicity GM(λ) of an eigenvalue λ is the dimension of its eigenspace.

Fact 3.1 For any eigenvalue,
AM(λ) ≥ GM(λ)

Example 3.2

A =




4 1 0 0
0 4 0 0
0 0 4 0
0 0 0 2


 ; χ(λ) = (4− λ)3(2− λ)

λ = 4 is an eigenvalue with AM equal 3.
λ = 2 is an eigenvalue with AM equal 1.
What about the GM ?

N (A− 4I) = N




0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 −2




The dimension of the eigenspace of λ = 4 is clearly 2, a possible basis for the eigenspace is:



1
0
0
0


 ;




0
0
1
0




thus
λ = 4 is an eigenvalue with GM equal 2.
One can easily check that λ = 2 is an eigenvalue with GM = 1.

Theorem 3.1 If an eigenvalue has AM equal 1 then its GM equals 1.

Proof. AM(λ) ≥ GM(λ). But, from the definition of eigenspace, the dimension of the
eigenspace is always greater than 1. Therefore, the result follows.

Next theorem shows a property of distinct eigenvalues of a matrix A.

Theorem 3.2 Eigenvectors of distinct eigenvalues are linearly independent.

Proof. The theorem is proved by contradiction. Let λ1 6= λ2 be two eigenvalues, and v1,
v2 two respective eigenvectors.
Suppose, to derive the contradiction, that v1, v2 are linearly dependent, i.e.,

α1v1 + α2v2 = 0 for some α1, α2 ∈ C, not both equal to 0 (1)

Then
0 = A(α1v1 + α2v2) = α1λ1v1 + α2λ2v2

Since α1v1 + α2v2 = 0 we can subtract λ2(α1v1 + α2v2) from the above equality, and get:

0 = α1(λ1 − λ2)v1
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but, v1 6= 0 by definition of eigenvector, and (λ1 − λ2) 6= 0 by hypothesis, thus α1 must be
zero.
In the same way, by subtracting λ1(α1v1 + α2v2) from Equation (1) we obtain:

0 = α2(λ1 − λ2)v2

which implies that, also α2, must be zero.
But α1 = α2 = 0 is a conclusion in contradiction with the hypothesis, therefore, v1 and v2

cannot be linearly dependent.

4 Similar Matrices and Similarity Transformations

Definition 4.1 Two matrices P and Q are similar if there exists an invertible matrix T
such that

P = TQT−1

TQT−1 is called a similarity transformation of Q.

Similarity transformations represent operations of change of basis or change of variable.

Example 4.1 Let y = Ax and suppose we want to express the relation between z and w,
knowing that z = Ty and w = Tx, then z = TAT−1w

Theorem 4.1 If P and Q are similar, then they have the same eigenvalues.

Proof.
det(P − λI) = det(TQT−1 − λTT−1) = det(T (Q− λI)T−1)

= det(T )det(Q− λI)det(T−1) = det(Q− λI)

5 Diagonalizable Matrices

Definition 5.1 A matrix A is said diagonalizable if it is similar to a diagonal matrix
Λ = diag(λ1, · · · , λn) where the λi’s are the eigenvalues of A.

When is a matrix diagonalizable?
Suppose we can find n linearly independent eigenvectors for A. then:

A [v1, · · · , vn]︸ ︷︷ ︸
V

= [v1, · · · , vn]︸ ︷︷ ︸
V




λ1

. . .
λn




and V is invertible, thus:
A = V ΛV −1 Λ = V −1AV

Clearly, from Theorem 3.2 if all the eigenvalues of A are distinct then the respective
eigenvectors are linearly independent, therefore the matrix V is invertible. This is a special
case of the following general condition.

Theorem 5.1 A Matrix A is diagonalizable if and only if AM(λi) = GM(λi) for all
i = 1, . . . , n.

Proof. Left as exercise.
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5.1 Diadic Formula

Definition 5.2 The left eigenvector wT 6= 0 of A relative to the eigenvalue λ is a vector
satisfying

wT A = λwT

When A is diagonalizable, we can let W = V −1, then

A = V ΛV −1 ⇒ WA = ΛW

W =




wT
1
...

wT
n




wT
i are the left eigenvectors of A. Note that VW=I.

Diadic formula

A = V ΛW =
[

v1 · · · vn

]



λ1

. . .
λn







wT
1
...

wT
n


 =

n∑

i=1

λi viw
T
i︸ ︷︷ ︸

n×n

The Diadic formula is also referred as modal decomposition of A.

y = Ax =
n∑

i=1

αiλivi

where αi = wT
i x. The output vector y is expressed as linear combination of the right eigen-

vectors of A. The coefficients of the linear combination are given by the eigenvalues of A
multiplied by the inner product of the input vector x with the left eigenvectors of A.
Note if x = vi then y = λivi, since WV = I.

5.2 Power of a Matrix

We want to compute AN . If A is diagonalizable then AN can be easily rewritten as

AN = (V ΛV −1)N = V ΛV −1 · · ·V ΛV −1
︸ ︷︷ ︸

N

= V ΛNV −1

From the above expression, it results that, AN and A have the same eigenvectors, and that
the eigenvalues of AN are the Nth power of the eigenvalues of A.

6 Jordan Form

When it is not possible to find n linearly independent eigenvectors of A, the matrix cannot
be diagonalized.
The Jordan form is the “closest” form to a diagonal form, to which it is still possible to
transform A by similarity transformation. A = MJM−1.
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The Jordan form relative to a matrix is unique (modulo blocks reordering). A matrix J is
in Jordan form if:

J =




J1

J2 0

0
. . .

Jr




J is block diagonal and Ji are square matrices with the following structure:

Ji =




λj 1 0 · · · 0

0 λj 1 0
...

...
. . . . . . . . . 0

0 · · · · · · 0 λj 1
0 · · · · · · 0 λj




Ji is called a Jordan block, in this case Ji is Jordan block associated with λj . The number
of Jordan blocks associated with an eigenvalue λj is equal to GM(λj).
The sum of the dimensions of all Jordan blocks associated with λj is equal to AM(λj)

Example 6.1 From the structure of the Jordan form of A one can obtain information about
the algebraic and geometric multiplicity of the eigenvalues of A. Consider

J =




λ1 1 0 | 0 0 | 0 0 | 0
λ1 1 | 0 0 | 0 0 | 0

λ1 | 0 0 | 0 0 | 0

| λ1 1 | 0 0 | 0
| λ1 | 0 0 | 0

0 | | λ2 1 | 0
| | λ2 | 0

| | | λ3




Then we can immediately say that: AM(λ1) = 5. GM(λ1) = 2 (two Jordan block for λ1).
AM(λ2) = 2 and GM(λ2) = 1
AM(λ3) = GM(λ3) = 1.

The fact that any matrix can be put in its Jordan form by an opportune similarity trans-
formation, makes the Jordan form very useful in linear system theory.
Unfortunately, the computation of the Jordan form is very sensitive to computational errors.

6.1 Generalized eigenvectors

Since there are not n linearly independet eigenvector to form a basis of IRn, one can add
linearly independent vectors to the eigenvectors in order to complete the basis. In what
follows it is explained what vectors to add so that the associated similarity transformation
of A gives J . These vectors are called generalized eigenvectors of A.
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Definition 6.1 A vector x 6= 0 is said to be a generalized eigenvector of order k of A
relative to λ if and only if

(A− λI)kx = 0
and
(A− λI)k−1x 6= 0

Note that if k = 1, the above Definition reduces to (A− λI)x = 0 and x 6= 0, which is the
definition of an eigenvector.
Starting from a generalized eigenvector of order k of A relative to λ, denoted by xk, one
can generate a the Jordan chain of generalized eigenvectors as follows:

xk

xk−1 = (A− λI)xk
...
xi = (A− λI)k−ixk
...
x1 = (A− λI)k−1xk

(2)

Note that x1 is an eigenvector of A, since (A− λI)x1 = (A− λI)(A− λI)k−1xk = 0. Note
also that any xi, i = 1, . . . , k, is a generalized eigenvector of order i of A. This is true since:

(A− λI)ixi = (A− λI)i(A− λI)k−ixk = 0
and

(A− λI)i−1xi = (A− λI)k−1xk 6= 0

Another immediate consequence of the definition is that all the generalized eigenvectors in
the Jordan chain of length k belong to N (A− λI)k.

Rearranging (2) immediately follows that the generalized eigenvectors in a Jordan chain
satisfy:

Ax1 = λx1

Ax2 = λx2 + x1
...
Axk = λxk + xk−1

Rewriting the above exression in matrix form reveals the structure of a Jordan block of
dimension k relative to an eigenvalue λ

A [x1, . . . , xk] = [x1, . . . , xk]




λ 1 0 · · · 0

0 λ 1 0
...

...
. . . . . . . . . 0

0 · · · · · · 0 λ 1
0 · · · · · · 0 λ




Theorem 6.1 Let xk be a generalized eigenvector of A of order k relative to λ, and let
x1, . . . xk be the chain of generalized eigenvector generated by xk. Then x1, . . . xk are linearly
independent vectors.

Proof. We will prove that if

α1x1 + α2x2 + · · ·+ αkxk = 0 (3)
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then α1, . . . , αk = 0.
First notice that (A − λI)k−1xi = 0 for 1 ≤ i ≤ k − 1. This follows immediately from the
fact that xk−1 is a generalized eigenvector of A of order k − 1. Form the definition of xk

it also follows that (A − λI)k−1xk 6= 0. Now, if y = α1x1 + α2x2 + · · · + αkxk = 0, then
(A−λI)k−1y = 0 but this can only be true if αk = 0. If we multiply y by (A−λI)k−2 then
it follows that αk−1 = 0. Continuing the procedure we obtain that α1, . . . , αk = 0.

6.2 Construction of the Jordan Chains

The following Facts allows to derive a procedure to construct the similarity transformation
to put a matrix in its Jordan form.

Fact 6.1 The generalized eigenvectors of A relative to different eigenvalues are linearly
independent.

To find the dimension of the largest Jordan block(s) relative to λ we use the following:

Fact 6.2 Let λ be an eigenvalue of A with AM(λ) = m. Let k be the smallest integer such
that

dimN (A− λI)k = m

Then k is the dimension of the largest Jordan block(s) relative to λ. k is called the index of
λ, denoted by L(λ).

To find the Jordan chains of maximal length k = L(λ) we use the following:

Fact 6.3 Suppose that dimN (A−λI)k−1 = m− s and let {w1, . . . , wm−s} be a basis for it.
Then there are s linearly independent generalized vectors of order k, x(k)k,1, . . . , x

(k)
k,s such

that the vectors
{x(k)

k,1, . . . , x
(k)
k,s, w1, . . . , wm−s}

form a basis for N (A− λI)k.

The s generalized eigenvectors obtained in this way generate s Jordan chains of length
k according to (2).

To find possible chains of length k − 1 one must apply the above fact to N (A− λI)k−2 as
follows.

If dimN (A− λI)k−2 = m− s− q then there are q Jordan chains of length k − 1.
If {w1, . . . , wm−s−q} is a basis for N (A−λI)k−2 The q generalized eigenvectors that gener-
ates these q Jordan chains are the vectors x

(k−1)
k−1,1, . . . , x

(k−1)
k−1,q and they are such that

{x(k−1)
k−1,1, . . . , x

(k−1)
k−1,q , x

(k)
k−1,1, . . . , x

(k)
k−1,s, w1, . . . , wm−s−q}

form a basis for N (A− λI)k−1.
Analogously, repeat the above procedure to find possible Jordan chains of length k − 2

and so forth.
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6.3 Procedure for Computing the Jordan Form of A

1. Compute the eigenvalues of A by solving det(A− λI) = 0. Let λ1, . . . , λm be the dis-
tinct eigenvalues of A with Algebraic Multiplicities n1, . . . , nm, and Geometric Multi-
plicities γ1, . . . , γm, respectively.

2. Use Fact 6.2 compute L1 the index of λ1 . The dimension of the largest Jordan block.

3. Use repeatedly Fact 6.3 to find the number of Jordan blocks sk of dimension k for

k = L1, . . . , 1. Note that the
L1∑

k=1

sk = γ1.

4. For each k for which a Jordan block is expected (sk > 0), find a generalized eigen-
vector x1,k of A of order k, and construct the chain {x1,k, . . . , x1,1} according 2. Find
the other sk − 1 linearly independent generalized eigenvectors of order k and their
relative Jordan chains. Collect all the vectors in the chains of order k as columns of
M1,k = [x1,1, . . . , x1,k, . . . , xsk,1, . . . , xsk,k]. At the end of the procedure n1 linearly in-
dependent generalized eigenvectors are generated. Let M1 = [M1,L1 , . . . , M1,1], where
some of the M1,i’s may not be present.

5. Repeat step 2 for the rest of the eigenvalues. Let M = [M1, . . . , Mm] then the Jordan
form J of the matrix A is given by the following similarity transformation:

J = M−1AM

Example 6.2 Let

A =




0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




χ(λ) = λ4, therefore A has 4 repeated eigenvalues λ = 0, i.e., AM(λ) = 4.
It easy to see that GM(λ) = 2. Therefore we expect a Jordan form for A with 2 Jordan
blocks. We still do not know their dimensions. By using Fact 6.2 to compute the index of
λ, we have that

(A− λI)2 = A2 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

The index of λ is 2, and therefore 2 is also the dimension of the largest blocks. It follows
that there 2 Jordan blocks both of dimension 2× 2.

A basis {w1, w2} for N (A− λI)k−1 = N (A) is given by:

w1 =




1
0
0
0


 ; w2 =




0
1
0
0
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We now look for two generalized eigenvectors to generate the two Jordan chains of length
2. By Fact 6.3 they cannot be any linear combination of w1 and w2. If we choose

x
(2)
2,1 =




1
0
1
0


 x

(2)
2,2 =




0
1
1
0




they are not O.K. since {x(2)
2,1, x

(2)
2,2, w1, w2} do not form a basis for N (A−λI)2. The vectors:

x
(2)
2,1 =




0
0
1
0


 x

(2)
2,2 =




0
0
0
1




satisfy the conditions in Fact 6.3, therefore are valid generalized eigenvectors. We then
compute the rest of the chains. In this case it happens that (A − λI)x(2)

2,1 = w1 and (A −
λI)x(2)

2,2 = w2. Therefore the matrix M = [w1, x
(2)
2,1, w2, x

(2)
2,2] of the similarity transformation

and the relative Jordan form are

M =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 J =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0




Exercise Find the Jordan form J and the similarity transformation matrix M for the
matrix

A =




4 2 −1
0 6 −1
0 −4 6




7 Functions of a Square Matrix

7.1 Polynomial of a Square Matrix

We consider a square matrix A ∈ Cn×n. Define the kth power of A as follows

Ak =





AA · · ·A︸ ︷︷ ︸
k

for k ≥ 1

I for k = 0

The notion of matrix power allow to naturally define matrix polynomials. If P (λ) =
amλm + am−1λ

m−1 + · · · + a1λ + a0 is an mth degree polynomial in the scalar variable λ
then the corresponding matrix polynomial is defined as

P (A) = amAm + am−1A
m−1 + · · ·+ a1A + a0I

Notice that, if P (λ) is written in factored form as

P (x) = c(λ− a1)(x− a2) · · · (λ− am)

then P (A) is given by

P (A) = c(A− a1I)(A− a2I) · · · (A− amI)
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A special polynomial is the characteristic polynomial of A:

χ(λ) = det(A− λI)

χ(λ) is a polynomial of order n, the dimension of A.
The matrix polynomial χ(A) has a very special property as stated by the important

Cayley-Hamilton theorem.

Theorem 7.1 Every square matrix A satisfies its own characteristic polynomial, i.e., χ(A) =
0.

Proof.
χ(λ) = cnλn + cn−1λ

n−1 + · · ·+ c1λ + c0 (4)

We use the known result

(A− λI)Adj[A− λI] = det(A− λI)I (5)

that assumes a more familiar form in the formula for the inverse of a matrix M

M−1 =
1

det(M)
Adj[M ]

where Adj[A − λI]i,j = (−1)i+j times the determinant of the n − 1 × n − 1 matrix
obtained by deleting the jth row and the ith column of A− λI

Therefore, the highest power of λ that can be in any element of Adj[A − λI] is λn−1.
This implies that it this possible to write

Adj[A− λI] = Bn−1λ
n−1 + Bn−2λ

n−2 + · · ·+ B1λ + B0 (6)

where the Bi terms are n× n constant matrices not containing λ.
Substituting Equation (6) into the left side of Equation (5) we obtain:

(A− λI)Adj[A− λI] = −Bn−1λ
n + (ABn−1 −Bn−2)λn−1 + (ABn−2 −Nn−3)λn−2

+ · · ·+ (AB2 −B1)λ2 + (AB1 + B0)λ + AB0

Using Equation (4) on the right side of Equation (5) gives

χ(λ)I = cnλnI + cn−1λ
n−1I + · · ·+ c1λI + c0I

The left side equal the right side, and the coefficients of same power of λ on the two sides
must be equal. This lead to the following set of equations

−Bn−1 = cnI
ABn−1 −Bn−2 = cn−1I
ABn−2 −Bn−3 = cn−2I

...
AB2 −B1 = c2I
AB1 −B0 = c1I

AB0 = c0I

Premultiply the first of these equations by An, the second by An−1, etc., the sum of the
right side terms is equal to χ(A). The left side sum must be equal to χ(A) too. It is easy
to verify that they add up to the 0 matrix, therefore χ(A) = 0.
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Cayley-Hamilton theorem can be used to compute the inverse of a matrix when it exists.
χ(λ) = cnλn + cn−1λ

n−1 + · · ·+ c1λ + c0 Recall that c0 = det(A) and it is zero if and only
if A is singular. Using χ(A) = 0 and assuming that A−1 exists,

Aχ(A) = cnAn−1 + cn−1A
n−2 + · · ·+ c1I + c0A

−1 = 0

or
A−1 = − 1

c0

(
cnAn−1 + cn−1A

n−2 + · · ·+ c1I
)

7.2 Reduction of a Polynomial in A to One of degree n− 1 or Less

Let P (λ) be a scalar polynomial of degree m. Let P1(λ) be another polynomial of degree
n < m. then P (λ) can always be written as P (λ) = Q(λ)P1(λ) + R(λ), where Q(λ) (the
quotient) is a polynomial of degree m − n, and R(λ) (the remainder) is a polynomial of
degree n− 1. One can find Q and R by dividing P (λ)/P1(λ) = q(λ) + R(λ)/P1(λ).

Similarly the matrix polynomial P (A) can be written as

P (A) = Q(A)P1(A) + R(A)

Now we have the following theorem:

Theorem 7.2 Let P (A) be a matrix polynomial, then

P (A) =
n−1∑

i=1

αiA
i

Any matrix polynomial (of any order) is equal to a matrix polynomial of degree at most
n− 1.
Proof. P (λ) = Q(λ)P1(λ)+R(λ), choose P1(λ) = χ(λ). Then by Cayley-Hamilton theorem
χ(A) = 0 thus P (A) = Q(A)0 + R(A) = R(A).

Corollary 7.1 Suppose A ∈ Cn×n has l distinct eigenvalues λ1, λ2 . . . , λl, let µi be the
algebraic multiplicity of the eigenvalue λi for i = 1...l. Finally let P (λ) be the polynomial
of degree m and R(λ) the polynomial of degree at most n− 1 such that P (A) = R(A) or

P (λ) = Q(λ)χ(λ) + R(λ).

Then

P (j)(λi) = R(j)(λi) for j = 1, ..., µi − 1
i = 1, ..., l

(7)

where P (j)(λi) =
djP (λ)

dλj

∣∣∣∣∣
λ=λi

.

Proof. Left as an exercise.
This corollary give a way to compute the coefficients of the matrix polynomial R(A)
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Example 7.1 Compute A100 where

A =

[
1 2
0 1

]

In other words, given P (λ) = λ100 compute P (A). The characteristic polynomial of A is
χ(λ) = (λ− 1)2. Let R(λ) be a polynomial of degree n− 1 = 1, say

R(λ) = α0 + α1λ

Now from the previous corollary P (A) = R(A) if

P (1) = R(1); 1100 = α0 + α1
P ′(1) = R′(1); 100 · 199 = α1

Solving these two equations we obtain α1 = 100 α0 = −99. Hence

A100 = R(A) = α0I + α1A = −99

[
1 0
0 1

]
+ 100

[
1 2
0 1

]
=

[
1 200
0 1

]

7.3 Function of a Matrix

Definition 7.1 Let A ∈ Cn×n have l distinct eigenvalues λ1, λ2 . . . , λl, let µi be the alge-
braic multiplicity of the eigenvalue λi for i = 1...l.

Let f(λ) be a function (not necessarily a polynomial) such that f (j)(λi) is well defined
for all j = 1, ...µi and i = 1, ..., l. If g(λ) is a polynomial such that

f (j)(λi) = g(j)(λi) for j = 1, ..., µi − 1
i = 1, ..., l

(8)

then the matrix-valued function f(A) is defined as f(A)
4
= g(A).

This definition is an extension of Corollary 7.1 to include polynomial as well as functions.
If A is an n × n matrix, given the n values of f(λ) on the spectrum of A, we can find a
polynomial of degree n− 1,

g(λ) = α0 + α1λ + · · ·+ αn−1λ
n−1

which is equal to f(λ) on the spectrum of A. Hence from this definition we know that every
function of A can be expressed as

f(A) = α0I + α1A + · · ·+ αn−1A
n−1

We summarize the procedure of computing a function of a matrix:
Given A ∈ Cn×n and a function f(λ), we first compute the eigenvalues of A and their
algebraic multiplicity. Let

g(λ) = α0 + α1λ + · · ·+ αn−1λ
n−1

where the α’s are unknown constants. Next use equations (??) to compute these α’s in
terms of the values of f on the spectrum of A. Finally have f(A) = g(A).

Exercise 7.1 Let

A =




0 0 −2
0 1 0
1 0 3




Compute eAt.
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7.4 Functions of Matrix in Jordan form

One of the reasons to use the Jordan-form matrix is that if

J =

[
J1 0
0 J2

]

where J1 and J2 are square matrices, then

f(J) =

[
f(J1) 0

0 f(J2)

]

This can be easily verified by observing that

Jk =

[
Jk

1 0
0 Jk

2

]

Moreover for a Jordan block Jij relative to an eigenvalue λi of dimension nij × nij we have
that:

(Jij − λiI) =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0




(Jij − λiI)2 =




0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

0 0 0 0 · · · 0
0 0 0 0 · · · 0




(Jij − λiI)nij−1 =




0 0 0 0 · · · 1
0 0 0 0 · · · 0
...

...
...

...
...

0 0 0 0 · · · 0
0 0 0 0 · · · 0




and (Jij − λiI)k = 0 for any integer k ≥ nij .

To simplify the notation assume J consists of only one block of dimension n × n, the
extension to multiblock is immediate given the block-diagonal structure of the Jordan form.

Given

J =




λ1 1 0 · · · 0
0 λ1 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · λ1




The characteristic polynomial of J is χ(λ) = (λ − λ1)n. Let the polynomial g(λ) be of
the form

g(λ) = β0 + β1(λ− λ1) + β2(λ− λ1)2 + · · ·+ βn−1(λ− λ1)n−1

(Note that g(λ) can always be rewritten as g(λ) = α0 + α1λ + α2λ
2 + · · ·+ αn−1λ

n−1.)
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Then the conditions in (??) give immediately

β0 = f(λ1); β1 = f ′(λ1); · · ·βn−1 =
f (n−1)(λ1)
(n− 1)!

Hence,

f(J) = g(J) = f(λ1)I +
f ′(λ1)

1!
(J − λ1I) + · · ·+ f (n−1)(λ1)

(n− 1)!
(J − λ1I)n−1 (9)

f(j) =




f(λ1)
f ′(λ1)

1!
f ′′(λ1)

2! · · · f (n−1)(λ1)
(n−1)!

0 f(λ1)
f ′(λ1)

1! · · · f (n−2)(λ1)
(n−2)!

0 0 f(λ1) · · · f (n−3)(λ1)
(n−3)!

...
...

...
...

0 0 0 · · · f(λ1)




If f(λ) = eλt then

eJt =




eλ
1 teλ1t t2 eλ1t

2! · · · tn−1 eλ1t

(n−1)!

0 eλ1t teλ1t · · · tn−2 eλ1t

(n−2)!

0 0 eλ1t · · · tn−3 eλ1t

(n−3)!
...

...
...

...
0 0 0 · · · eλ1t




Note that the derivatives are taken with respect to λ not t. Finally if A = MJM−1 then
f(A) = Mf(J)M−1.

8 Functions of a Matrix Defined by Means of Power Series

We have used a polynomial of finite degree to define a function of a matrix. An alternative
expression of a function of a matrix can be given as infinite power series. This is actually
the way the matrix exponential is defined.

eAt =
∞∑

i=0

Ai

i!

since it directly comes from the definition of the exponential function as infinite Taylor
series.

Definition 8.1 Let the power series representation of a function f be:

f(λ) =
∞∑

i=0

αiλ
i

with radius of convergence ρ. Then the function f(A) is defined as

f(A) =
∞∑

i=0

αiA
i

if the absolute values of all the eigenvalues of A are smaller than ρ, the radius of conver-
gence, or the matrix has the property Ak = 0 for some positive integer k.
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Note that this definition is meaningful only when the infinite series that defines f(λ) con-
verges. If the absolute values of all the eigenvalues of A are smaller then ρ, it can be shown
that the infinite series that defines f(A) converges. Definition 8.1 and Definition 7.1 lead
exactly to the same matrix function.

Example 8.1 Consider the Jordan form matrix J in the previous section. Let

f(λ) = f(λ1) + f ′(λ1)(λ− λ1) +
f ′′(λ1)

2!
(λ− λ1)2 + · · ·

then

f(J)
4
= f(λ1)I + f ′(λ1)(J − λ1I) + · · · f

(n−1)(λ1)
(n− 1)!

(J − λ1I)n−1 + · · · (10)

Since (J − λ1I)k = 0 for k ≥ n, the matrix function (10) reduces immediately to (9).

Example 8.2 Consider the function

f(λ) =
1

1− λ

f(λ) has a singularity at λ = 1. For all λ in the complex plane inside the circle |λ| < 1,
f(λ) can be defined by the following infinite series

f(λ) = 1 + λ + λ2 + λ3 + · · ·

If all the eigenvalues of A satisfy λi satisfy |λi| < 1, then f(A) = (I −A)−1 exists and can
be written as a convergent series

f(A) = I + A + A2 + A3 + · · ·

Note that (I − A)f(A) = I as required. When A has an eigenvalue at λ = 1, then (I − A)
is singular and the inverse does not exist. If λ = 1 is not an eigenvalue, but at least
an eigenvalue of A has magnitude greater than 1, then (I − A)−1 exists, but cannot be
represented by the above infinite series. Note that (I − A)−1 can always be found using
Definition 7.1 when A has no eigenvalues at λ = 1.

Exercise 8.1 Let

A =

[
1 1
1 1

]

Compute cos(At) in closed form.

9 Norms

Definition 9.1 A norm is a function from a vector space X to the nonnegative real num-
bers that satisfies:

a) ‖x‖ ≥ 0 and ‖x‖ = 0 ⇒ x = 0

b) ‖αx‖ = |α| ‖x‖ α ∈ C.

c) ‖x + y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ X.
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For example in Cn we have that

‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

=
√

x∗x, x∗ is the conjugate transpose of x, x∗ = (x1, x2 · · ·xn)

‖x‖1 =
n∑

i=1

|xi|

‖x‖∞ = maxi |xi|.

Using the above definitions, it is possible to define a norm on the space of all m×n matrices
A ∈ Cm×n by looking at Cm×n as Cmn, Cm×n ' Cm n. As an example, the Frobenius norm
of A is defined as follows:

‖A‖F =

(
m∑

i=1

n∑

i=1

|aij |2
)1/2

Norms defined for a matrix seen as an element of a vector space, are not so interesting. The
so called induced norms are more important for us.
When the matrix is seen as a linear operator between vector spaces, the induced norm
characterizes a measure of the maximum “gain” or amplification of the operator.
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10 Inner Product

Definition 10.1 An inner product is a bilinear function on a vector space X, denoted
〈x, y〉, with the following properties:

1) 〈x, x〉 ≥ 0 if 〈x, x〉 = 0 then x = 0

2) 〈αx, y〉 = α〈x, y〉
3) 〈x, y〉 = 〈y, x〉
4) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.

Example 10.1 Let `2 denote the space of all infinite sequences

such that
∞∑

k=0

|x(k)|2 < ∞. This is an inner product space with inner product defined as

〈x, y〉 =
∞∑

k=0

x(k)y(k).

For any inner product space there is a well defined norm given by ‖x‖2 =
√〈x, x〉. We say

that the 2-norm is compatible with an inner product.

Example 10.2 For Cn 〈x, y〉 = y∗x, ‖x‖2 =
√〈x, x〉.

Working in inner product spaces makes certain optimization problems more tractable.

Orthogonality

x ⊥ y (x is orthogonal to y) if 〈x, y〉 = 0

x ⊥ S ( x is orthogonal to the set or subspace S) if 〈x, s〉 = 0 ∀ s1 ∈ S

S1 ⊥ S2 (both are subspace) if 〈s1, s2〉 = 0 ∀ s1 ∈ S1 and s2 ∈ S2

An inner product and its compatible 2-norm satisfy the following important inequality:
Cauchy Schwarz inequality |〈x, y〉| ≤ ‖x‖2 ‖y‖2

(Recall that |〈x, y〉|2 = 〈x, y〉〈x, y〉)

Using the orthogonality condition it is very easy to prove the Pythagorean theorem:

Theorem 10.1 (Pythagorean Theorem)

If x ⊥ y, then ‖x + y‖2
2 = ‖x‖2

2 + ‖y‖2
2

The proof is left as an exercise.
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11 Projection Theorem

This theorem is valid in any inner product space.
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Theorem 11.1 Let x0 be a fixed element in an inner product space X, M is a closed
subspace of X. Then

min
m∈M

‖x0 −m‖2 = ‖x0 −m0‖2

and m0 satisfies (x0 −m0) ⊥ M . Also m0 is unique.

Proof. We will prove the theorem by contradiction. Assume that m0 is the optimal solution
but x0−m0 is not orthogonal to M , i.e., 〈x0 −m0, m̃〉 = δ for some m̃ ∈ M with ‖m̃‖2 = 1.
Define m1 = m0 + δm̃, will show that

‖x0 −m1‖2 < ‖x0 −m0‖2 ,

and hence m0 cannot be optimal. Note that

‖x0 −m1‖2
2 = 〈x0 −m1, x0 −m1〉

= 〈x0 −m0 − δm̃, x0 −m0 − δm̃〉

= ‖x0 −m0‖2
2 − δ〈m̃, x0 −m0〉 − δ〈x0 −m0, m̃〉+ |δ|2 ‖m̃‖2

2

but
〈m̃, x0 −m0〉 = δ and 〈x0 −m0, m̃〉 = δ

thus, since ‖m̃‖2
2 = 1, it follows that:

‖x0 −m1‖2 = ‖x0 −m0‖2 − |δ|2

which contradicts the hypothesis that m0 is optimal.

To show uniqueness, let m0 and m1 be two solutions, then

‖x0 −m0‖2
2 = ‖(x0 −m1) + (m1 −m0)‖2

2

= ‖(x0 −m1)‖2
2 + ‖m1 −m0‖2

2 since (x0 −m1) ⊥ M

⇒ ‖m1 −m0‖ = 0 ⇒ m1 = m0
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Exercise 11.1 Does the projection theorem hold for ‖·‖1 , ‖·‖∞ ?
(Hint: there is no inner product compatible with these norms).
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