CHAPTER

10

DESIGN
AUTOMATION
AND
VERIFICATION

10.0 INTRODUCTION

Design automation and design verification are the keys to effective use of large-
scale integrated circuit technology today. When circuits consisted of only a few
transistors or gates, layout and checking of circuits by hand were reasonable.
As circuit complexity increased to thousands and tens of thousands of transistors,
manual tools were no longer sufficient for design, causing computer-based design
aids to become prominent. With present integrated circuits containing hundreds
of thousands of transistors, heavy dependence on design automation and design
verification is necessary to design these circuits.

This chapter describes the nature and use of basic design automation and
design verification tools as applied to the design of integrated circuits. Design
automation tools are defined here as those computer-based tools that assist through
automation of procedures that would otherwise be performed manually, if at all.
Simulation of proposed design functionality and synthesis of integrated circuit
logic and layout are just two examples. Design verification tools, on the other
hand, are those computer-based tools used to verify that circuit design or layout
meets certain prescribed objectives. A geometrical design rule checker for exam-
ining layout characteristics is an example, and a logic simulator with a specific
set of input vectors and corresponding desired output vectors is another. Note
that simulation can be classified in either category according to its purpose. Both
design automation tools and design verification tools are included in the more
general class known as CAD (computer-aided design) tools.
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DESIGN AUTOMATION AND VERIFICATION 873

Both design automation and design verification tools require computer-
readable descriptions of the underlying circuit function and structure to operate.
These computer-based descriptions vary from simple geometrical specification
languages such as CIF! (Caltech Intermediate Form) to high-level functional
description languages such as VHDL? (a hardware design language). Initially
the focus of this chapter is on a description of design tools related to or based
on geometrical layout. A simplified geometrical specification language will be
examined. Required functionality provided by tools that input and display inte-
grated circuit layout will also be described. Then, tools that check layout geome-
tries and extract circuit net list information will be detailed.

Design tools for higher-level design description and verification are
described next. Circuit, switch, and logic simulation for digital circuits are intro-
duced and compared. Timing analysis is examined as a way to verify the tem-
poral operation of digital circuits. Hardware design languages such as VHDL
and EDIF® (Electronic Design Interchange Format) are introduced with simple
examples provided to clarify important concepts.

The descriptions of design verification and design automation tools provided
here use MOS examples primarily. The concepts are directly applicable to bipolar
designs, although some changes in specific tool capability may be required by
different technologies. The chapter concludes with an introduction to automated
methods of generating layout from high-level descriptions of digital circuits via
silicon compilers.

10.1 INTEGRATED CIRCUIT LAYOUT

Historically, integrated circuit design and integrated circuit layout functions were
performed by separate groups. The circuit design task resulted in mixed logic
and transistor-level circuit diagrams describing the intended circuits. A circuit
description like that of Fig. 10.1-1 was given to layout artists, who were experts
at converting circuit diagrams to geometrical layouts such as the one shown in
Fig. 10.1-2. For early commercial products, the layout drawings were transferred
to rubylith masks by hand. Later, layouts were drawn on vellum—a tough,
semitransparent drafting material —to withstand the many design modifications
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Partial circuit diagram for bit-serial multiplier of Fig. 10.1-2.
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FIGURE 10.1-2
Layout for bit-serial multiplier based on circuit of Fig. 10.1-1.
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that are inherent in the normal design process. The layouts from the large vellum
plots were digitized to computer-readable form to allow automated checks and
to provide input to the mask-making process. Although this method worked for
many years, including the early days of microprocessors, the large number of
devices required in modern integrated circuits causes fully manual layout to be
too time-consuming and prone to error. However, even today, critical sections
of the newest microprocessors are still handcrafted to pack the circuit into the
smallest possible area.

Many modern methods of integrated circuit layout include both synthesis of
control logic and handcrafting of critical building blocks that will be repeated.
These layout pieces are entered into a computer at an early stage to allow
mechanized help with replicating, checking, and plotting the complete integrated
circuit layout. Design layouts may be entered via tools that help convert graphic
layout information to computer-readable form. An early tool, shown in Fig. 10.1-
3, is called a digitizer and was used to enter layout coordinates directly into a
computer from a layout plot. Sometimes layout is converted directly to text input
in the form of a geometrical specification language. Most often, geometrical
layout information is entered through a color graphics workstation to specify the
desired integrated circuit layout.

10.1.1 Geometrical Specification Languages

Geometrical specification languages for integrated circuits allow computer-
readable definition of the geometries for the mask layers required to fabricate an
integrated circuit. These specification languages contain primitive structures such
as wires and boxes to specify geometrical shapes and layout levels. Organizational
constructs are also provided to allow placement and repetition of the geomet-
rical structures. A geometrical specification language is much like a computer
programming language, with the geometrical shape primitives corresponding to
instructions and the organizational constructs corresponding to procedures with
parameter values.

FIGURE 10.1-3
Digitizer board.
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Note: width = 2, spacing =2\
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Layout Styles: (a) Man-
(a) (b) hattan, (b) Diagonal.

A simplified geometrical specification language for Manhattan style designs for
a general MOS process is used here to illustrate relevant concepts. A Manhattan
design style is one that supports only horizontal and vertical geometries.
The name arises because Manhattan style layouts resemble an aerial view of the
street layout of New York’s Manhattan borough. This style precludes diagonal
structures, such as interconnection jogs, that are sometimes used within circuit
layouts to minimize area. Figure 10.1-4 shows layout styles with and without
diagonal structures. The potential area savings with diagonal structures must be
weighed against the increased complexity of programs used to verify the final
design. Many commercial integrated circuit manufacturers allow diagonal layout
structures but limit these to 45° angles from horizontal and vertical structures.

The simplified geometrical specification language defined here provides
only two primitive statements. The two primitives are boxes and levels, while
the organizational constructs include macros and calls. A macro is like a high-
level language (HLL) procedure, and a call is like an HLL procedure call. Table
10.1-1 provides the syntax for these primitives and organizational constructs.

All parameter values are integers. Lengths are in terms of A, a measure
related to the characteristic resolution of the process and the layout design rule set.
Macro numbers, layout levels, and orientations are limited to positive integers.
A minimum set of layers for a typical NMOS n-well CMOS process is defined
in Table 10.1-2. Appendices 2A and 2B define corresponding layers for a double
polysilicon NMOS and a p-well CMOS process, respectively.

TABLE 10.1-1

Simplified geometrical specification language

B xydxdy Box structure with length dx, width dy, and lower left-hand corner placed
atx,y

Ln Layout level for the box definitions that follow

Mn Start of macro number n

E End of a macro

Cnxym Call for macro number n with translation x,y and orientation m

Q End of layout file
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TABLE 10.1-2

MOS layer definitions

Layer CMOS NMOS
1 n-diffusion n-diffusion
2 p-diffusion Ion implant
3 Polysilicon Polysilicon
4 Metal Metal
5 Contact Contact
8 n-well —
9 Overglass Overglass

The orientation represents possible rotations of the geometrical figure after
translation. The relative order of translation and rotation is important (see Prob.
10.3). Here, rotation is performed first with translation following. The possible
orientations are defined in Table 10.1-3 and demonstrated with the block letter P
in Fig. 10.1-5.

This simple geometrical specification language will suffice to specify any
MOS Manhattan integrated circuit layout if the necessary layout levels are
defined. The description is based on alphanumeric characters and is easily dis-
played, edited, or transferred between computer systems.

TABLE 10.1-3
Rotations of geometries

Orientation Description

No rotation

Rotate 90° CCW

Rotate 180° CCW

Rotate 270° CCW

Mirror about y -axis

Rotate 90° CCW and mirror about y -axis
Rotate 180° CCW and mirror about y -axis
Rotate 270° CCW and mirror about y -axis

0 QN AW =

y
® denotes origin (0,0)
X for each rotated P.
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FIGURE 10.1-6
Static memory cell definition: (a) Geometrical specification file, (b) Circuit diagram.

An example of the geometrical specification file for a static memory cell
composed of two inverters tied back to back is shown in Fig. 10.1-6 along with
the corresponding circuit diagram. A single inverter consisting of an enhancement
pulldown transistor and a depletion pullup transistor is defined by macro 5. This
inverter is placed twice, once in a rotated and translated position, to create the
static memory cell defined as macro 8. Macro 8 is placed once to create the layout
plot shown in Fig. 10.1-7.

10.1.2 Layout Styles

In spite of high labor costs, handcrafted layout is still used within the semicon-
ductor industry because of the necessity to minimize the area required by high-
volume integrated circuits. Even automated layout methods such as silicon compi-
lation and standard cell synthesis use handcrafted layout to optimize the primitive
cells that are combined through automated techniques. Frequently the basic form
for the integrated circuit is sketched and optimized on paper prior to entry into
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a computer. The resulting geometrical layouts are digitized, sometimes through
use of a symbolic layout language but primarily with the help of an interactive
CRT graphics editor.

Handcrafted layouts can be entered directly into a computer in geometrical
form through use of an interactive CRT graphics editor. A mouse or joystick is
used in conjunction with a cursor to size and position geometrical objects such
as boxes on a high-resolution CRT display. A corresponding data file is kept
in computer memory to describe the displayed geometries. With an operator’s
command, this data file may be converted to a geometrical specification language
description or can be saved for further use. Several advantages of this graphical
editor accrue from bypassing the need to input numerical data to a computer with
a text editor or digitizer and from the ease with which geometries can be changed
or duplicated.

The graphics editor called Magic,* currently popular with universities, uses
the painting idiom to create geometrical objects on a color CRT display. The
user chooses a color (layout level) from a palette on the screen and paints
areas on the screen by specifying two opposite corners of a rectangular field.
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The chosen color fills the area. The final result is the same as for other layout
methods: a geometrical specification file is created in computer memory, saved,
and ultimately transferred to the mask shop.

Graphical editors in both industrial and university environments typically
maintain their own unique memory and disk representations of layout geometries.
For reasons of efficiency (fast editing response and minimum memory require-
ments), these representations are often highly optimized binary data structures.
In the university environment, the geometrical specification language CIF was
defined as a common interchange format among universities and between univer-
sities and the MOSIS fabrication service. In industry, EDIF was defined as the
interchange format. Most industrial CAD tools provide conversions between their
internal format and EDIF. In addition, most industrial CAD tools convert their
internal format to a special binary format for submittal to the mask shop. The
Berkeley Oct tool set> provides conversion from its internal format (Oct) to and
from both CIF and EDIF.

In summary, both specification of layout geometries and designer entry
of layout geometries are described in this section. Many different geometrical
specification languages have been defined and used. A very simple one was defined
here for demonstration purposes only. In the university environment, CIF is the
predominant interchange format, and EDIF is the interchange standard in industry.

10.2 SYMBOLIC CIRCUIT REPRESENTATION

Descriptions of integrated circuit layouts can take many forms. The geometrical
specification language of the previous section provides a primitive textual descrip-
tion of a circuit. Other, more symbolic, forms of representation are often used
by designers to specify layouts. A hierarchy of these, including a parameterized
layout representation, parameterized module generation, a graphical symbolic
representation, and logic equations, is described here.

10.2.1 Parameterized Layout Representation

A symbolic layout language! (SLL) allows a textual description of circuit lay-
out in a form that is more easily generated and understood by humans than the
geometrical specification language of the previous section. In the past, an SLL
was used to represent design layouts that were drawn by hand on graph paper and
then digitized. Two main characteristics differentiate an SLL from the geometrical
specification language described previously. First, the SLL uses descriptive iden-
tifiers for the parameters necessary to specify a geometrical layout. Examples are
BOX, POLY, and DX for the geometrical shape, the layer, and the width in the
x direction, respectively. This provides a readable description of geometries that
specify a layout. Thus, the SLL description is easily entered into a computer using
the designer’s favorite text editor. Second, symbolic entries are allowed in addi-
tion to the numerical data of the geometrical specification language. For example,
the x and y position of a geometry might be specified by the variables XPOINT
and YPOINT. This allows the final placement of the geometry to depend on the
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placement of other cells. At some point in the design process, the SLL must be
converted to a geometrical specification language for use by other CAD tools
and for transmittal to the mask shop. XPOINT and YPOINT must be assigned
numerical values to specify the location of the geometry before this conversion
takes place.

In addition to the use of symbolic parameters in an SLL, programming
constructs such as loops and conditionals can provide additional capability in the
specification of a cell’s layout. The use of an SLL to describe layout is much
like the use of assembly language to describe the machine language (binary)
program for a computer. An assembly language program uses mnemonics for the
instructions and symbols for variables to simplify and expedite the process of
programming a digital computer. Both forms describe the same end object; the
binary representation provides the most concise description, while the assembly
language is a preferable working medium for programmers.

An SLL description for the layout of the CMOS inverter of Fig. 7.5-5 is
given in Fig. 10.2-1. Note the verbose nature of this description compared to
the geometrical specification file of Fig. 10.1-6. The description of Fig. 10.2-2
demonstrates the use of variables to allow the inverter cell of Fig. 7.5-5 to be
stretched in either the VERT (vertical) or HORZ (horizontal) directions. Also, a
REPEAT statement is included to allow the cell to be repeated NR times. RX
and RY are the repeat distances along the x and y axes, respectively. If the
variables VERT and HORZ are each set to a value of 0 and NR is set to 4, the
inverter cascade of Fig. 10.2-3 is produced. The two variables VERT and HORZ
can be used to stretch the inverter cell to match the pitch of adjacent cells by

CELLNAME CMOSINV;

BOX NDIF X=3 Y=0 DX=4 DY=4;
BOX NDIF X=3 Y=4 DX=2 DY=4;
BOX NDIF X=3 Y=8 DX=4 DY=4;
BOX PDIF X=3 Y=20 DX=4 DY=4;
BOX PDIF X=3 Y=24 DX=5 DY=4;
BOX PDIF X=3 Y=28 DX=4 DY=4;
BOX POLY X=0 Y=5 DX=7 DY=2;
BOX POLY X=0 Y=7 DX=2 DY=18;
BOX POLY X=0 Y=25 DX=10 DY=2;
BOX POLY X=4 Y=14 DX=8 DY=4;
BOX MET1 X=0 Y=0 DX=12 DY=4;
BOX MET1 X=0 Y=28 DX=12 DY=4;
BOX MET1 X=3 Y=8 DX=4 DY=16;
BOX MET1 X=7 Y=14 DX=1 DY=4;
BOX CONT X=4 Y=1 DX=2 DY=2;
BOX CONT X=4 Y=9 DX=2 DY=2;
BOX CONT X=5 Y=15 DX=2 DY=2;
BOX CONT X=4 Y=29 DX=2 DY=2;
BOX CONT X=4 Y=21 DX=2 DY=2;
BOX NWEL X=0 Y=18 DX=12 DY=16;
END CMOSINV;

Figure 10.2-1
Symbolic layout language description of CMOS inverter of Fig. 7.5-5
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CELLNAME CMOSINV;

BOX NDIF X=3 Y=0 DX=4 DY=4;

BOX NDIF X=3 Y=4 DX=2 DY=4;

BOX NDIF X=3 Y=8 DX=4 DY=4,

BOX PDIF X=3 Y=20 DX=4 DY=4,

BOX PDIF X=3 Y=24 DX=5 DY=4;

BOX PDIF X=3 Y=28 DX=4 DY=4+VERT;
BOX POLY X=0 Y=5 DX=7 DY=2;

BOX POLY X=0 Y=7 DX=2 DY=18;

BOX POLY X=0 Y=25 DX=10 DY=2;

BOX POLY X=4 Y=14 DX=8+HORZ DY=4;
BOX MET1 X=0 Y=0 DX=12+HORZ DY=4;
BOX MET1 X=0 Y=28+VERT DX=12+HORZ DY=4;
BOX MET1 X=3 Y=8 DX=4 DY=16;

BOX MET1 X=7 Y=14 DX=1 DY=4;

BOX CONT X=4 Y=1 DX=2 DY=2;

BOX CONT X=4 Y=9 DX=2 DY=2;

BOX CONT X=5 Y=15 DX=2 DY=2;

BOX CONT X=4 Y=29+VERT DX=2 DY=2;
BOX CONT X=4 Y=21 DX=2 DY=2;

BOX NWEL X=0 Y=18 DX=12 DY=16+VERT;

END CMOSINV;

CELLNAME FOURINV;

REPEAT CMOSINV NR=4 RX=12+HORZ RY=0;
END FOURINV;

FIGURE 10.2-2
Parameterized symbolic layout language description for inverter cascade of Fig. 10.2-3

Inverter cascade created from parameterized symbolic layout language description.

FIGURE 10.2-3
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specifying positive values for one or both of VERT and HORZ. The use of a
programmatic description of layout greatly expands the capabilities of a layout
designer in specifying the geometrical structure of a circuit.

10.2.2 Parameterized Module Generation

A recent advance in the area of symbolic layout descriptions is the use of param-
eterized module generators. A parameterized module generator is a software pro-
cedure that can generate many different cell layouts depending on values that are
specified when the generator program is executed. Parameterized module gener-
ators have been written for RAMs, ROMs, PLAs, multipliers, adders, and data
paths, for example. Many of these generators use input parameters to specify the
width or number of bits in the generated layout.

As an example, three separate designs might require an 8-bit adder for the
first design, a 16-bit adder for the second design, and a 32-bit adder for the third
design. Typical design style would use an interactive graphics editor to create
each of these adders separately. If a parameterized generator for the adder module
could be defined, however, a single module generator could be used to produce
an N-bit adder where N is a parameter that can be set to 8, 16, 32, or some
other integer value. Then each of the three adders could be created from the same
parameterized description. A parameterized module generator is particularly well
suited to modern integrated circuit design styles, which commonly utilize regular
structures such as rows of cells and arrays of cells.

Parameterized module generators use many of the powerful constructs of
high-level programming languages to describe layout structure, position subcells,
and fit the overall layout of a larger cell together. Parameterized variables are
used with their values bound to a specific value when a module is generated.
Conditional statements allow creation of specialized edge cells and programming
of memory and PLA contents. For example, a parameterized module generator
for an array of cells might include conditional statements such that if both the x
and y indices were equal to 0, then an upper-left corner cell would be generated.
If the x and y indices were each between the smallest and largest values, a center
cell would be generated, and so forth.

The use of high-level programming language techniques also provides a
disadvantage for many parameterized module generators. That is, the layout
cannot be visualized until the generation program has been compiled and linked to
instantiate the layout for a module. These potentially time-consuming steps may
hinder the use of interactive layout in designing a module generator for a new
cell. To circumvent this problem, there is ongoing research on ways to provide
interactive graphical feedback as the geometrical structure of a cell is defined.b

With such a tool, a silicon layout specialist can create the parameterized
modules that are required in a design. Then a circuit or logic designer can use
these blocks by specifying parameters appropriate to the design task. Recently,
parameterized module generators were used to specify the layout of a commercial
RISC processor (see Sec. 10.11). An interesting, but unsolved problem, is to
prove that the output of a parameterized module generator is correct over the
valid range of parameters for the module generator.
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10.2.3 Graphical Symbolic Layout

The parameterized layout representation described previously provides little insight
into the geometrical relationships between circuit elements. This important insight
can be provided by another symbolic form for integrated circuit description,
called graphical symbolic layout. An early form of graphical symbolic layout
is called Sticks.” Sticks and related symbolic methods provide an abbreviated,
graphical description that combines circuit connectivity with layout topology
information. In the Sticks symbology, circuit connections are shown with colored
(or weighted) lines representing layout levels, while transistors are formed by
the intersection of the lines representing polysilicon and diffusion. The entire
layout diagram is composed of simple line symbols that show both connectivity
and topology but not actual or relative size for geometrical constructions.

The combination of connectivity and topological information is important in
the generation of integrated circuit layouts, as is shown with the aid of the circuit
diagram for the quasi-static memory cell of Fig. 10.2-4a. This circuit diagram
shows a forward path from the first inverter to the second inverter and a clocked
feedback path from the second inverter to the input of the first inverter. The circuit
diagram does not indicate topological requirements to realize this path.

The geometrical layout of the memory cell of Fig. 10.2-4a requires decisions
on changes of layout levels to prevent unwanted transistors and connections. The
Sticks diagram of Fig. 10.2-4b retains all the circuit connectivity information

(@

polysilicon — dashed (~—-—-) depletion transistor (- -¢ 9
diffusion — dotted (-------- ) T
metal - solid (——) enhancement transistor (--i--)

contact — dot (—¢—)
(c)
FIGURE 10.2-4

Quasi-static memory cell: (@) Logic diagram, (b) Symbolic diagram for NMOS layout, (c) Layer
legend.
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for the memory cell and also symbolically specifies the topology of the final
integrated circuit layout. In particular, it shows that the feedforward path must
be changed from the diffusion layer to the metal layer to cross the polysilicon ¢,
clock line without creating an unwanted transistor. Also, the Sticks diagram shows
that the feedback transistor is conveniently formed by allowing the polysilicon
¢, line to cross the diffusion feedback path. The diagram shows that power and
ground are provided in metal and that the input and output signals are both in the
diffusion level. The utility of Sticks and other graphical symbolic layout methods
is derived from the simple abstracted notation for layout topology and circuit
description.

Once a graphical symbolic layout for a circuit is generated, it is often simple
for a designer to convert to a full layout form. The layout task has been simplified
to the process of fattening connection lines and compacting the layout, especially
if required transistor length-to-width ratios have been noted on the graphical
symbolic layout. In fact, this process is simple enough to be automated.® If the
graphical symbolic layout description has been entered into a computer, perhaps
through an interactive graphics terminal, a symbolic compiler program can convert
the symbolic layout to a full layout by expanding the line symbols according to
a technology specification and then compacting the resulting layout.

As with most automated layout aids, a symbolic compiler usually trades
reduced designer efforts for increased silicon area. An increase in the area for
a layout generated with a program is not uncommon when compared to a hand-
crafted layout. As a result, high-volume integrated circuits such as microproces-
sors and memory continue to utilize handcrafted layout of replicated cells as a
major design component. This does not, however, minimize the value of the
symbolic representation to the designer. Capturing layout topology in symbolic
form early in the layout design prevents later problems such as isolation of a
circuit from direct metal connection to power buses.

10.2.4 Logic Equation Symbology

If the function of a digital integrated circuit can be captured by a set of Boolean
logic equations, these equations suffice to generate an integrated circuit layout.
Thus, logic equations represent a fourth symbolic means to describe a combina-
tional logic circuit. One frequently used means to convert logic equations into
layout topology is with a PLA generator, as described in Chapter 9. Two other
methods for generating geometrical layouts from logic equations are discussed
next: the Weinberger array® and SLAP!? (a methodology for silicon layout).

A Weinberger array uses a regular structure of NOR gates to implement
combinational logic in an integrated circuit form. This array structure was intro-
duced in Chapter 9. Figure 10.2-5 shows a Weinberger array used to implement
the full adder carry function described by

K =AB + AC + BC (10.2-1)

Since the final structure is regular, it is not difficult to construct a computer
program to generate the array layout using logic equations as program input. By
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FIGURE 10.2-5
Weinberger array for full-adder carry.

use of DeMorgan’s theorem, any combinational logic function can be realized
using only NOR gates. In fact, the Weinberger array requires at most a series
path of three NOR gates between an input and an output to realize a combinational
logic function. Remember that a single-input NOR gate is an inverter. Thus, a
first NOR gate may be required to provide the complement of an input while the
final two levels use the NOR-NOR logic form to realize the logic function in
product-of-sums form.

The use of NOR gates for a Weinberger array allows a constant size for
the pullup devices even though the number of inputs and their corresponding
pulldown devices may differ for each gate. Careful design allows adjacent gates
to share a single ground path, as shown in the layout of Fig. 10.2-6. This array
structure can be easily expanded by adding input variables at the bottom and NOR
gates to the right without changing the existing structure.

A comparison of the Weinberger array with the PLA yields an interesting
result. Even though the logic of a PLA is realized entirely with- NOR gates, the
AND-OR logic form corresponding to a sum-of-products description is normally
used. The AND-OR logic form can be realized with NOR gates only by inverting
both the inputs and outputs. This requires a series string of four or five NOR gates
between the PLA inputs and outputs, thus causing more delay for a PLA imple-
mentation of logic than for a Weinberger array implementation which requires
only three levels of logic.

In contrast to the PLA and the Weinberger array, both with predefined
array structures, a third method called SLAP has been proposed to compile logic
equations into layout form. SLAP first converts logic equations into a directed
graph with a graph level for each level of the logic equations. If double-rail inputs
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FIGURE 10.2-6
Layout for Weinberger array.

are available, at least two levels of gates are required to implement a general logic
function. The SLAP methodology, however, allows realization of intermediate
outputs that may then be used as inputs for other logic functions. A graph
with an arbitrary number of levels may be required, depending on the particular
representation for the logic. Figure 10.2-7 shows the directed graph for the logic
functions of the following equations.
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FIGURE 10.2-7
Directed graph for Eqs. 10.2-2 through 10.2-5.

fi1=AB + CD + ACD (10.2-2)
fa=AC +f1 (10.2-3)
f3 =ACD + CD + f, (10.2-4)
fs=CD+ D+ f4 (10.2-5)

This directed graph is formed by placing logic gates with external inputs at
the first level, secondary logic gates at the next level, and so on. Heuristics are
then used to improve the organization by reducing the number of required levels,
if possible, and to reduce the resulting layout area required. The layout density
achieved with this method is about the same as that accomplished with gate array



DESIGN AUTOMATION AND VERIFICATION 889

structures. An important characteristic of the SLAP methodology is that general
logic structures can be compiled directly into a geometrical layout, whereas the
PLA format forces a two-level logic realization.

In this section, four methods of generating layout from symbolic repre-
sentations were introduced. Of the first two, parameterized layout representation
and parameterized module generation, the second is growing in popularity for
layout of today’s designs. Graphical symbolic layout also enjoys success as a
technique for layout of random logic. Synthesis of layout directly from the fourth
symbolic form, logic equations, is fast becoming a widely used technique for
generating integrated circuit layout.

10.3 COMPUTER CHECK PLOTS

Generation of a layout plot from a geometrical specification file for an integrated
circuit is often desirable. In the past, large-scale plots, some almost big enough
to cover one end of a basketball court, were generated so that visual checking
of circuit layout could be performed. Most of these visual checks can now be
performed directly from a computer-based geometrical specification file without
manual intervention. A computer program can verify fixed rules for the millions
of geometrical figures used to describe VLSI circuits without tiring and without
error—a task that is essentially impossible for humans. However, human capability
to critique overall structure or to detect inconsistencies in an otherwise regular
design is difficult to duplicate with computer-based checks. As a result, hardcopy
plots of integrated circuit designs are still used for finding errors, for promotional
literature, and for many other purposes. Such plots are called computer check plots.

Computer check plots for integrated circuit designs are created in both
soft- and hardcopy form on CRTs, printers, and plotters using color or black
on white representations for the layout artifacts. Check plot devices range from
monochrome CRTs, with only 24 X 80 character resolution for the entire display,
to laser printers with 300 dots per inch or higher resolution. To compare the
maximum usable display capability over this range of resolution, an example
using a static memory cell is examined next.

The static memory cell of Fig. 10.1-7 has dimensions of 16 A X 30 A for an
area of 480 A2. A monochrome alphanumeric CRT using character graphics with
24 lines by 80 columns can display an area of 1920 A2, although the effective area
is somewhat less because of the 1:3 aspect ratio of the CRT display resolution.
All details of the static memory cell are visible in the CRT display, as shown
in the hardcopy plot of Fig. 10.3-1, but the cell’s relation to other cells is lost.
As a second example, a dot matrix drawing normally requires a resolution of at
least S dots per A to define the smallest details of a circuit. For a printer with
a resolution of 100 dots per inch, the static memory cell requires a plot that is
about 0.8 X 1.5 in. to show the details of the circuit. Figure 10.3-2 provides a
plot of this size for the memory cell of Fig. 10.1-7. If the memory cell were part
of a 1K-bit memory (32 cells x 32 cells), a high-resolution plot of the entire
memory array would require 25.6 X 48 in. Of course, the general form of the
memory area could be discerned with a much smaller plot. Figure 10.3-3 shows
a plot at one-tenth this scale (2.56 X 4.8 in.) for the 32-by-32 cell array.
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FIGURE 10.3-1
Hardcopy plot of SRAM cell as displayed on 24 line by 80 character CRT (A = one character
width).

A typical graphics CRT display with a 19 in. diagonal screen (15 in.
horizontal X 11 in. vertical) might have a resolution of 760 by 480 dots. This is
roughly 50 dots per display inch. Based on the analysis above, the details of a
152 A by 96 A circuit could be displayed in its entirety on the screen. This would
correspond to about a five-by-six array of the memory cells described above.
Figure 10.3-4 shows a hardcopy plot of the memory cells that could be seen on
the CRT display. Of course, an entire chip can be displayed if the layout is scaled
so that the finer details of the chip are lost. Figure 10.3-5 shows the entire layout
for a 220 X 230 mil image-processing chip composed of sixteen, 12-bit serial
multipliers with associated circuitry and input/output pads.

Color displays and plots are always a higher-cost feature than black and
white; where color is available, each integrated circuit layer is represented using

FIGURE 10.3-2
Minimum size plot for Fig. 10.1-7 with 100 dots/inch resolution.
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FIGURE 10.3-3
Plot of 32 X 32 memory cell array.

a different color. Aside from their aesthetic appeal, color renditions of circuits
show higher information content per unit area, allowing display of larger circuits
in a given area. For a color display, only 2 to 3 dots per A of resolution are
necessary to delineate circuit details. Additionally, individual color levels can
be used to show labels, flag geometrical design rule violations, or highlight
specific features of a circuit. Most modern graphics workstations provide color
displays.

When black on white plots are generated, two primary methods are used
to distinguish individual layers. Line drawings, with each layer represented by
a different style of line (solid, dotted, dashed, dot-dash, etc.) are producible
on almost any printer with dot graphics capability (see Fig. 10.3-6). Filled draw-
ings with different layers shown by characteristic area fill pattern (fine dots, heavy
dots, diagonal lines, vertical lines, etc.) are popular, even at the expense of
increased computer time to generate the plots, greater wear on the printer mech-
anism, and longer time to print the plots. Laser printers provide good resolution
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Hardcopy plot of memory cells visible on typical graphics CRT display.
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FIGURE 10.3-5
Image-processing chip (220 mil X 230 mil).

(300 dots per inch) and are frequently used for area fill check plots. A primary
advantage of the filled drawing of Fig. 10.1-7, compared with the line drawing
of Fig. 10.3-6, is that the concept of area for integrated circuit layers is quickly
conveyed to the viewer by the filled drawing. This concept is important to the
designer since the fabrication process operates on contiguous areas rather than the
individual boxes used to describe them.

In this section, a short summary of integrated circuit display media and their
corresponding resolution requirements was presented. It is important to have high-
resolution display and hardcopy capability for integrated circuit layout design.
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10.4 DESIGN RULE CHECKS

Integrated circuits are created from several layers whose geometrical structures
are defined by photolithographic masks. At any given time, a minimum resolution
exists for the structures that can be fabricated on silicon because of lithographic
and processing constraints. Any attempt to define structures that require higher
resolution or accidental specification of a higher resolution through carelessness
may lead to nonfunctional circuits. Also, violation of certain geometrical relation-
ships among layers may cause failures because of processing constraints. For each
process, a set of guidelines called design rules is specified to encapsulate geo-
metrical fabrication constraints. The design rules for the CMOS process described
in Table 2B of Appendix 2 are used as the basis for the following discussion.
However, most of the rules are determined by general lithographic and processing
constraints so that similar rules apply to other processes as well.

10.4.1 Geometrical Design Rules

A conceptual explanation of geometrical design rules is provided in this section.
Design rules were introduced in Sec. 2.3 of this text. Geometrical design rules
for a single integrated circuit layer are simple; they involve only spacings and
widths. Figure 10.4-1 demonstrates a 2 A spacing between polysilicon conductors
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26

. FIGURE 10.4-1
177155 Minimum width polysilicon conductors.

that are each 2A wide. It is worth noting that if a mask layer is complemented, all
widths become spacings. This is shown in Fig. 10.4-2, where the complemented
polysilicon conductor widths from Fig. 10.4-1 appear as spacings. Therefore, if
width is considered in terms of the complement of the layer definition, all single-
layer rules can be treated as simple spacing rules. This means that the same
computer algorithm can be used to check for both width and spacing errors.

An interesting conceptual understanding of design rules was provided by
Lyon.!! His explanation is based on the scalable parameter A, which is said to
describe the minimum resolution of the fabrication process. In practice, fabrica-
tion processes are usually characterized by their minimum transistor length. The
parameter A is normally specified as half the minimum transistor length. Thus,
a 2 u process has a minimum gate length (and width) of 2 u, and A would be
set to 1 w. Thus, A is not directly a measure of process resolution, but rather is
proportional to the minimum device length. With this in mind, the following two
meta rules (a meta rule is a rule about rules) were proposed by Lyon to generalize
geometrical design rules in terms of A.

LHT

Polysilicon

Polysilicon

FIGURE 10.4-2
Complemented layout, where spacings become

165177 4 widths.
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1. A 1 A error should not be fatal, although the intended performance of the
integrated circuit may be degraded.

2. A 2 A error may be fatal and almost certainly will degrade the performance
of the integrated circuit.

Consider the minimum width of 2 A for the polysilicon conductor shown in
Fig. 10.4-3a. If the width of the actual polysilicon that is fabricated on the chip is
! A less than this minimum, as in Fig. 10.4-3b, the polysilicon will still conduct,
although its resistance will double. If the fabricated polysilicon conductor is 1 A
wider than the minimum, as in Fig. 10.4-3c, the resistance is lowered, but the
polysilicon still functions as a conductor. Thus, a change in width of 1 A does
not cause an obviously fatal problem for the polysilicon interconnection.

Now consider a 2 A deviation from the design width of 2 A. If a minimum
width polysilicon conductor is narrowed by 2 A, as in Fig. 10.4-4q, there is no
conductor left—certainly a fatal error unless the connection was redundant. If the
width is increased by 2 A as in Fig. 10.4-4b and the minimum polysilicon spacing
is 2 A, there is a chance that the polysilicon conductor will contact an adjacent
polysilicon conductor, causing a short circuit—also a fatal error.

Other design rules involve more than one level and are harder to remember
and to verify. As an example of a two-level rule, consider that a transistor is
created by the area common to polysilicon and diffusion. This transistor area must
satisfy the 2 A minimum length rule, so the smallest transistor size is 2 A by 2
A. The diffusion areas for the source and drain of a transistor also must satisfy a
2 A minimum length. This rule is sometimes confusing from a layout viewpoint
since the source, the drain, and the transistor gate area appear as one contiguous
diffusion area. Thus, a source area 1 A long combined with a transistor area 2 A
long and a drain area 2 A long, shown in Fig. 10.4-5a, appears as a diffusion area
5 A long and does not seem to violate the 2 A diffusion length rule. However,
Fig. 10.4-5b shows that a source only 1 A long could disappear as a result of a
1 A alignment error between polysilicon and diffusion—thus a 2 A rule must be
specified for the transistor source/diffusion dimensions. Typical design rule sets
for several processes, including NMOS and CMOS, are provided in Appendix 2.

FIGURE 10.4-3
DRC degradation meta rule.
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FIGURE 10.4-4
DRC fatality meta rule.

10.4.2 Computer Design Rule Checks

If a designer creates or changes a geometrical specification file manually, a design
rule check (DRC) is required. Because of the large number of geometries and the
wide variation in number and style of geometrical design rules in today’s circuits,
computer-based DRCs are necessary. Two different styles of DRC programs are
in wide use. These can be categorized as polygonal checks and raster scan checks.
Both styles will be described briefly.

Polygonal design rule checks are widely used within the semiconductor
industry. The geometrical specification file is expanded to produce polygons
defining all connected areas for the layer(s) of interest. Note that the layer of
interest may be a composite area such as active transistor area or perhaps depletion
transistor area. Or it may be a difference area such as the ion implantation
overhang created by subtracting the depletion transistor area from the ion implan-

Drain Apparent
Drain  Apparent diffusion  diffusion
diffusion diffusion

Polysilicon Polysilicon

s N

)

Source
diffusion

(@) ®)

FIGURE 10.4-5
Transistor source width.
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tation area. These special areas can be defined by logical operations on primitive
layers. Once the polygonal definitions are formed, they can be analyzed for width
and spacing errors. One valuable feature of encircling a connected area with a
single polygon is that electrical connectivity information is immediately available.
Polygonal design rule checks require substantial computing resources because of
the many mathematical operations that must be performed during the check.

Design rule checks can also be performed in a relatively simple way as raster
scan checks by passing small filters over a rasterized image of the integrated
circuit. To allow this, an entire geometrical specification file is instantiated
(expanded into the geometries and layers that represent the layout) within a two-
dimensional array where the dimensions represent the x and y coordinates of a
point and the contents are binary variables to indicate the presence or absence of
each layout level. The resolution of the x and y coordinates limits the precision
of the design rule checks. Filters such as a 4 X 4 array,!? a “plus” symbol,
or a circled “plus” symbol'> have been used to scan the instantiated layout to
check for design rule violations. These methods are conceptually simple and
computationally clean, but lack the accuracy and connectivity information of the
polygonal methods.

10.4.3 Design Rule Checker Output

To demonstrate the results from a raster scan DRC program, several errors were
placed in a geometrical specification file. The layout for this file is shown in Fig.
10.4-6. The resulting output from the DRC program is shown in Fig. 10.4-7. The
DRC program outputs a heading that gives the name of the file, the date and time,
the bounding box coordinates for the checked area, and the macro number. Below
the heading, a list of all vertical and horizontal errors is provided. This particular
sample contains three vertical and four horizontal errors. Each violation is shown
by a one-line entry containing the identification of the violated rule, the x and y
coordinates of the violation, the violation or error distance, and the length over
which the violation occurred. The resolution of the layout of Fig. 10.4-6 and the
DRC results of Fig. 10.4-7 is 0.5 A.

Definitions of the seven rule violations from Fig. 10.4-7 are given in Table
10.4-1. In each case these errors involve a spacing violation. For example, Rule
6.2 is a metal spacing error. A glance at the upper left corner of Fig. 10.4-6
shows a T formed by a long horizontal metal section and a short vertical metal
section separated from the horizontal metal (top of the T) by about 1 A. From
Rule 6.2, the spacing must be at least 3 A unless the two metal sections should
be joined, in which case the spacing would be zero. As an exercise, the reader
should find the location of each of the errors listed in Fig. 10.4-7.

Once the cause of an error is determined, corrective action must be initiated.
Since the DRC output gives the exact x and y coordinates of the violation, it
is usually relatively simple to use an interactive graphics CRT to display the
error. Actually correcting the error may not be so simple. If the layout is loosely
packed, correction in place by adjusting a single geometrical figure can possibly
be done. For some layouts, however, an error will occur in a space-critical area,
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LDRC version 3.115

Design rule check of file: BGA.TAM

Date 9-MAR-89 Time 21:08:05

Xmin= 00 Xmax= 95.0

Ymin= 0.0 Ymax= 59.0

Macro name is BGMLT

Macro number is 99

Vertical errors

Rule X loc Y loc Error X len
6.2 55 47.5 1.0 4.0
5.3 22.0 17.0 0.5 2.0
6.1 82.5 20.5 1.0 12.5
Vertical error count: 3

Horizontal errors

Rule X loc Y loc Error X len
4.3 10.5 20.5 0.0 3.0
4.2 18.5 41.5 0.5 7.0
1.2 66.5 18.5 1.0 5.0
5.6 80.0 415 1.0 2.0

Horizontal error count:

Total number of Design rule violations: 7

Design-Rule Checker Execution:

CPU Time 0: 0:26.06
Page Faults 354

requiring changes of a large number of geometries. For this reason, it is crucial to
generate a correct layout through automatic means or, in the case of a handcrafted
design, to check the layout frequently for geometrical design-rule errors as it is
generated. With care, errors are caught early before correction causes difficult

FIGURE 10.4-7
DRC output for Fig. 10.4-6.

problems.

TABLE 10.4-1

Design rule error definitions

Rule Length Definition

1.2 3A Diffusion spacing

4.2 2A Polysilicon spacing

4.3 A Polysilicon-to-diffusion spacing
5.3 A Polysilicon larger than contact
5.6 A Metal larger than contact

6.1 3A Metal width

6.2 3A Metal spacing
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The DRC program used here was run in the batch mode on a computer after
the layout was complete. Many CAD systems allow DRCs as geometries are
entered through an interactive graphics CRT using an incremental DRC program.
Either the designer is prevented from placing geometries that would violate design
rules, or a pending violation is flagged immediately by an error message. This
minimizes the need for major changes after the layout is almost complete.

DRCs are one of the more time-consuming, yet important, design verifi-
cation steps. Both polygonal and raster scan DRCs are possible. A good DRC
program provides output that accurately identifies the type and location of each
error. A good interface between the DRC program and an interactive graphics
editor is important for displaying and correcting DRC errors.

10.5 CIRCUIT EXTRACTION

After the design and layout process is complete, MOS circuits are characterized
by a machine-readable specification prior to the mask-making step. This speci-
fication is usually a geometrical specification file as described earlier. This file
contains all the information about the geometries, levels, and placements for
the circuit to be fabricated. Because geometrical specification files contain large
quantities of detailed information about the integrated circuit, it is difficult for
a designer to determine whether this information accurately describes the circuit
that was intended. Fortunately, computerized methods exist to extract the circuit
information from the geometrical specification file. The process of extracting the
circuit information from the geometrical description is called circuit extraction.

A circuit extraction program expands the geometrical specification file of
the integrated circuit into a layer-by-layer description of the geometries and
their placements. This description is then scanned to locate all transistors and
interconnections for the circuit. A result of the circuit extraction program is a net
list. A net list is a set of statements that specifies the elements of a circuit (for
example, transistors or gates) and their interconnection. Individual transistors are
described along with the nodes to which they connect. This information allows
creation of a circuit diagram based on the actual geometrical specification file.
Most importantly, the extracted circuit can be compared with the original circuit
specified by the designer so that differences are annotated. A difference usually
indicates an error that must be corrected. This comparison is called an LVS (layout
versus schematic) design verification step.

In addition to providing the details of circuit interconnections, circuit extrac-
tion is useful for calculating layout areas and perimeters for each integrated cir-
cuit layer at each node of the circuit. These layout areas and perimeters can be
used to accurately calculate the parasitic capacitances and resistances that load
the active devices. Prior to the layout and extraction step, most circuit parasitics
can only be estimated by the designer. With accurate capacitance and resistance
values from circuit extraction, a design can be accurately simulated to ensure
correct operation. Thus, circuit extraction is an essential design verification tool
for accurate characterization of modern integrated circuits.
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10.5.1 A Simple Circuit Extraction Algorithm

One simple method of circuit extraction consists of two main steps. First, the
geometrical specification file is instantiated as a set of coordinates and levels
within a computer memory. This is essentially the same operation that was
required for 'the raster scan DRC described in the previous section. This method
requires a large computer memory to store the integrated circuit levels at a
resolution matching the smallest features of the integrated circuit. For example, a
5 mm by 5 mm die using a process with a A of 1 u could require over 25 million
individual memory locations to store the instantiated layout, where each memory
location corresponds to a 1 A by 1 A cell of layout. For a CMOS process, roughly
14 possible layout levels must be remembered for each location. This results in a
storage requirement of more than 350 megabits. One useful approach to minimize
the memory requirements is to instantiate the design file in overlapping strips.
All required circuit information is extracted from each strip before the next strip
is instantiated.

The second main step in circuit extraction is the extraction of transistor and
connectivity information from the instantiated layout. This is a straightforward,
but time-consuming task. The instantiated layout is scanned using a format typical
of that used to display television images. The scanning order described here is left-
to-right and top-to-bottom, with all integrated circuit levels scanned in parallel.
Information on the extent of each level is obtained, and relations between levels
that form transistors and contact cuts are derived.

A simple algorithm to determine connectivity at each level can be described
as follows. This algorithm requires the program to look at the current cell, the cell
to the left, and the cell above. Figure 10.5-1 shows conditions of interest where a
“_ indicates no level present and an “m” indicates the presence of a level (e.g.,
metal). If the current cell does not contain a level, action is not required. This
condition is shown in Fig. 10.5-1a by a template (upper part) and a 5 A by 5
A layout sample (lower part). If the current cell contains a level, four possible
cases are of interest; these are shown in Figs. 10.5-1b through 10.5-1e.

Cell templates for each possible condition

(a) Blank : (b) Upperleft: (c) Top edge :(d) Leftedge: (e) Inside

\ corner | | | corner

- - - mo m

- - | -m | mm X -m | mm
----- == === 1 = - ===} --mmm; - -mmm
----- I e e e e el -« e« 1 - -mmm! - -mmm
scanline—> - - - - - : --mmm: mmmmm : --mmm: mmmmm
----- , - -mmm , mmmmm , - -mmm ;| mmmmm
----- I - -mmm . mmmmm | - -mmm | mmmmm

Layout samples to demonstrate each template

FIGURE 10.5-1
Connectivity extraction.
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If the current cell contains a level, say metal, then four cases must be
examined. First, if neither the cell to the left nor the cell above contains metal,
then an upper left corner has been encountered as in Fig. 10.5-1b, and a new
node number must be assigned to this location. As a second case, if the cell to
the left contains metal but the cell above does not, as in Fig. 10.5-1c, then the
extractor is moving along a top edge, and the current node is assigned the same
node number as the cell to the left. As a third case, if the cell above contains
metal but the cell to the left does not, as is shown in Fig. 10.5-1d, a left edge has
been found, and this node is assigned the same node number as the cell above.
As a final case, if both the cell above and the cell to the left contain metal, either
an internal point or an inside corner has been found. If the node numbers for
these cells are different, they should be merged. The inside corner template and
sample layout section are shown in Fig. 10.5-1e.

The procedure just described produces a list of nodes for each level and a
list of nodes that should be merged. Other information is also kept: for example,
a count of the number of times each node is encountered (the area), a count
of the number of nodes along an edge (the perimeter), and the location of the
first occurrence of each node. In addition, relationships between levels such as
contact cuts result in a second node merge list. This node merge list must be kept
separate from the homogeneous node merge list since the contact cuts represent
nodes of different materials that are connected. Electrically they represent the
same circuit node, but for capacitance and resistance calculations their individual
identity, area, and perimeter must be maintained.

Other interactions between levels must also be considered. Wherever
polysilicon and diffusion are coincident, an additional level (transistor) must
be created. This artificial level is processed in a manner similar to the other le-
vels to generate individual transistors and maintain their areas for capacitance and
drive strength calculations.

10.5.2 Circuit Extractor Output

As a minimum, the output from a circuit extraction program should contain a
complete list of transistors showing the type of transistor (p-channel, n-channel,
depletion, etc.) and the nodes to which the transistor is connected. The circuit
of Fig. 10.5-2 was extracted to show typical. output. A sample of such output,
called a net list, is shown in Fig. 10.5-3.

The extracted output of Fig. 10.5-3 lists an arbitrary trans1stor number;
the drain (DS1), source (DS2), and gate (G) connections; the type of transistor
(enhancement or depletion); the shape (ok means rectangular); the length and
width of the transistor; and the x and y coordinates of the upper left corner of the
transistor. All dimensions are based on the parameter A. The resolution of Fig.
10.5-2 and its extracted output listings is 0.5 A. With this information, transistor
size can be verified, individual transistors can be located, and the: Vpp connection
for the depletion transistors (the normal case) can be verified. The net list provides
sufficient information to allow reconstruction of a transistor-level circuit diagram
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FIGURE 10.5-2
Sample layout for circuit extraction.
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LEXTRACT version 3.337
Date 4-MAR-89 Time 19:54:46

Xmin= 00 Xmax= 950
Ymin= 00 Ymax= 214.0

Macro name is BGMLT
Macro number is 99

Final merge node list

Num DS1 DS2 G Type Shape Length  Width X-loc  Y-loc
1 GND 42 3 enhN ok 3.0 8.0 54.0 208.5
2 GND 6 4 enhN ok 3.0 8.0 22.0 203.5
3 42 7 5 enhN ok 3.0 8.0 54.0 203.5
4 6 vDD 6 depN ok 6.0 2.0 24.0 194.0
5 7 VDD 7 depN ok 6.0 20 56.0 194.0
6 3 VDD 3 depN ok 12.0 2.0 11.0 182.0
7 vDD 5 5 depN ok 12.0 2.0 76.0 173.0
8 3 51 4 enhN ok 3.0 5.0 5.0 170.0
9 9 vDD 9 depN ok 12.0 2.0 43.0 170.0

10 51 9 6 enhN ok 3.0 5.0 20.0 165.0

11 51 55 11 enhN ok 3.0 5.0 5.0 148.0

12 9 12 4 enhN ok 3.0 5.0 27.0 148.0

13 55 12 10 enhN ok 3.0 5.0 20.0 143.0

14 12 5 6 enhN ok 3.0 5.0 42,0 143.0

15 5 13 4 enhN ok 3.0 5.0 49.0 137.0

16 55 GND 14 enhN ok 3.0 5.0 5.0 126.0

17 12 17 11 enhN ok 3.0 5.0 27.0 126.0

18 GND 17 15 enhN ok 3.0 5.0 20.0 121.0

19 17 13 10 enhN ok 3.0 5.0 42.0 121.0

20 3 18 2 enhN ok 3.0 5.0 67.0 1125

FIGURE 10.5-3
Partial net list generated from Fig. 10.5-2 by circuit extractor (VDD and GND labels entered by
user).

(not shown) for the integrated circuit. The extracted circuit diagram can be
compared with the intended circuit diagram for omissions or errors.

Additional information based on the circuit extraction should be provided.
For example, for each integrated circuit layout level, a complete list of nodes
with their corresponding areas and perimeters can be provided. If the capacitance
per unit area is known for each level, the circuit extraction program can provide
an accurate estimate of the capacitance at each node. Figure 10.5-4 provides a
partial circuit extractor output for the layout of Fig. 10.5-2 showing the details of
the integrated circuit layers that form the nodes of a circuit. For each extracted
geometry, this output lists the area, top edge length, left edge length, x and
y coordinates of the upper left corner of the geometry, the new merged node
number, the old node number assigned to the geometry during extraction, the
layout level, and the node name (if any).

The output of Fig. 10.5-4 shows that node 1* is composed of a diffusion
geometry (level 1) with area of 84 square units and perimeter of 37 units, a metal
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LEXTRACT version 3.337
Date 4-MAR-89 Time 19:54:46

Xmin= 00 Xmax= 950
Ymin= 0.0 Ymax= 214.0

Macro name is BGMLT
Macro number is 99

Final merge node list

Area Top Left X-loc Y-loc New Old Lev Name

84.0 8.0 10.5 22.0 214.0 1% 1 1
4.0 20 2.0 25.5 2125 5 5 GND
380.0 95.0 4.0 0.0 213.5 4 4
4.0 20 2.0 57.5 212.5 6 5 GND
44.0 8.0 55 54.0 214.0 2 1
254.0 4.0 63.5 82.0 214.0 2% 3 3 Phi-2
4.0 2.0 2.0 83.0 205.5 11 5
154.0 13.0 38.0 73.0 150.5 87 3
380.0 95.0 4.0 0.0 206.5 9 4
90.0 10.5 22.5 65.5 1125 135 3
54.0 9.0 12.0 67.0 90.0 193 3
97.5 20.0 15.5 50.0 78.0 222 3
195.0 5.5 62.5 47.5 62.5 260 3
27.0 5.0 6.0 24.0 188.0 8* 33 1
4.0 2.0 20 25.5 185.5 38 5 vDD
12.0 6.0 2.0 23.0 182.0 46 1
380.0 95.0 4.0 0.0 186.5 37 4
4.0 2.0 2.0 57.5 185.5 39 5 VDD
87.0 5.0 18.0 56.0 188.0 34 1
12.0 6.0 2.0 55.0 170.0 68 1
4.0 2.0 2.0 76.5 185.5 40 5
43.0 5.0 14.0 75.0 187.0 36 1
193.0 15.0 20.5 5.0 123.0 16%* 122 1
4.0 2.0 20 11.0 111.5 137 5 GND
380.0 95.0 4.0 0.0 1125 134 4
4.0 2.0 20 27.0 111.5 139 5 GND
84.0 8.0 10.5 245 113.0 132 1
335.0 95.0 15.5 0.0 51.5 30* 273 4
4.0 2.0 2.0 6.5 39.0 308 5 B-in
27.5 55 5.0 5.0 40.5 299 1

FIGURE 10.5-4
Partial layer detail generated by circuit extractor for Fig. 10.5-2.

geometry (level 4) with area of 380 square units, another diffusion geometry
(level 1) of 44 square units area and 27 units perimeter, and two contacts (level
5) with area 4 square units each. The x and y coordinates of the upper left corner
of each geometry are given, allowing location of the geometry on a display or
plot. With the area and perimeter sizes determined, calculation of interconnection
capacitances is relatively easy using the values from Table 10.5-1. Example 10.5-
1 demonstrates this calculation.
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TABLE 10.5-1

Typical capacitance values (from Table 2B)
Layer Capacitance

Metal 0.025 fF/u?
Polysilicon 0.045 fF/u?

Gate 0.7 fF/u?

Diffusion (bottom) 0.33 fF/u?

Diffusion (sidewall) 0.9 fF/u

Example 10.5-1 Calculation of nodal interconnect capacitance. For a typical
MOS process, parasitic capacitance values to ground are given in Table 10.5-1.
Determine the total capacitance for node 1* of the circuit extraction output given
in Fig. 10.5-4. The units of extracted dimensions are u.

Solution: The total capacitance to ground at node 1* is the sum of the capacitance
of the layers that compose the node (the contact capacitances are neglected). The
capacitance can be calculated as follows.

Ciotat = Cuitt + Csidewatl + Cpoly + Cetal
C = (84 + 44)0.33 + (37 + 27)0.9 + (0)0.045 + (380)0.025 fF

C =42.24 +57.6 +9.5fF
C = 109.34 fF

If the geometrical specification language allows names to be assigned to
nodes, the names can be associated with their respective nodes by the circuit
extraction program. The ability to name nodes adds to the complexity of the
circuit extraction program since the name information must be kept after the
geometric layout is instantiated. This adds substantially to the active computer
memory required during a circuit extraction.

A node list with associated names is particularly valuable when checking for
open circuits and short circuits. For example, if all power and ground nodes are
named (Vpp or GND) and an individual node is associated with both the names
Vpp and GND, a short circuit between power and ground is indicated. This is not
desirable! Conversely, if the name GND is associated with two disjoint nodes,
an open circuit may be indicated for the GND node. Of course, these same name
tests can be applied to signal nodes and names, and this can be automated to report
potential problems. Figure 10.5-4 shows circuit extractor output for a circuit with
named nodes.

The nodes of Fig. 10.5-4 are named GND, Phi-2, VDD, and B-in. The fact
that two separate nodes (1* and 16*) are named GND is cause for suspicion. This
may indicate a discontinuity in the ground connection or, as in this case, it may
be the result of extracting a partial layout. It is very important to provide node
names early in a design and carry these names through the layout and simulation
steps.
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10.5.3 Interface to Other Programs

The output from a circuit extraction program can provide valuable input to circuit
and logic simulation programs. Without circuit extraction results, circuit and
logic simulations are based on manual input of the intended circuit connections
and estimated circuit parameters. If certain process characteristics such as layer
capacitance and transistor conductance are provided, a computer program can
combine the circuit extraction output with process characteristics to create an
input file for circuit simulation and logic simulation. Automatic generation of the
input files eliminates human error in providing these data and allows accurate
specification of capacitance values and transistor sizes.

Many modern integrated circuits are designed with a high-level circuit
description provided in the form of a hardware design language (HDL). If this
high-level description allows specification of circuit connections, a particularly
important check on circuit integrity can be performed as a result of circuit
extraction. The top-down circuit description from the HDL can be compared
directly with the bottom-up circuit description from the extracted circuit. This
check is valuable because it allows comparison between the designer’s intent and
the actual computer specification used to generate the fabrication masks.

Circuit extraction is a valuable design verification tool. With the aid of
an LVS program, the extracted circuit can be compared to the intended circuit.
Circuit extractor derived capacitances and resistances are extremely valuable for
accurate circuit simulation. The use of named nodes in the geometrical specifica-
tion file and subsequent extraction of these nodes allows open, short, and circuit
continuity tests.

10.6 DIGITAL CIRCUIT SIMULATION

Accurate circuit simulation is essential for the design of analog circuits such as
filters, comparators, and operational amplifiers. The need for circuit simulation
extends to the design of semiconductor memory chips even though their data are
stored in binary or digital form. For example, extremely sensitive sense amplifiers
are required within DRAM circuits to respond to the small change in voltage
caused by selecting a storage cell. SRAM circuits often use differential sensing
circuits to increase the speed of the data access operation. Both of these memory
types require accurate circuit Simulation for proper design. Circuits whose external
operation is totally digital may require accurate circuit simulation to model critical
signal-delay paths. Circuit simulations of high accuracy are almost universally
performed with a version of the SPICE circuit simulator described in Chapter 4.

Because of the large number of transistors in digital circuits such as micro-
processors, peripheral controllers, and digital signal processors, it is not com-
putationally feasible to perform a circuit simulation for the entire circuit. Since
the execution time of circuit simulation programs increases at a rate that is only
slightly less than the square of the number of nodes under consideration, verifica-
tion of the operation of large circuits must be accomplished by other means. Many
times a simulation at the logic or switch level (described in the next section) can
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provide sufficient verification of a digital circuit’s functionality. Sometimes even
logic simulation programs are too slow to model an entire processor’s behavior.
Special-purpose hardware simulators are required in these cases. !4

An intermediate class of circuit simulators is being investigated to provide
accurate circuit simulation without the computational penalty of a full circuit
simulator.!>16 These new simulators usually depend on one of two characteristic
features of digital circuits. First, most digital circuits are loosely coupled. This
means that disjoint parts of the circuit may be relatively independent of one
another. There are methods that take advantage of this structure by partitioning the
network to simplify the equations that must be solved during a simulation. Second,
only a small part, perhaps 25%, of a digital circuit is active during each clock
cycle. If a circuit simulator can take advantage of those quiescent portions of the
circuit, then only a small part of the circuit will result in simulation calculations
at any given time. In either of these two cases, accurate digital circuit simulation
can proceed at a relatively rapid rate compared to standard circuit simulation.
Nonetheless, digital circuits of any size are rarely simulated in their entirety
with circuit-level simulators. Rather, switch-level or logic-level simulators are
preferred. Such simulators are described in the next section.

10.7 LOGIC AND SWITCH SIMULATION

Digital integrated circuits are designed to operate with binary representations for
data. The basic presumption is that only two logic states are important for each
signal line. Thus, knowledge of a precise voltage versus time characteristic for
each node in the circuit is not necessary to design or analyze digital circuits. For
many purposes, this simplifies both the circuits and their analysis compared to
analog circuits. Nevertheless, computer simulation and verification of a circuit’s
functionality are necessary. Even though a digital circuit is designed based on
logic gates, the logic gates are fabricated from the basic transistors and conductors
allowed by the integrated circuit process. Therefore, it is often the case that the
electrical operation of a simple logic circuit must be characterized by using a
circuit simulator such as SPICE.

Though circuit simulation of digital circuits is frequently used, such circuit
simulation has several drawbacks. As described in the previous section, the
large number of logic gates in most digital integrated circuits precludes circuit
simulation of the entire system because of the extended computer time required.
Also, standard circuit simulators provide more detail about circuit voltages than is
required to analyze a logic circuit. In an effort to reduce computer simulation time
and to provide appropriate data to characterize the operation of digital circuits,
logic simulators were developed.

10.7.1 Logic-level Simulation

Logic simulators allow specification of the operation of a circuit block in terms
of its behavior. For example, a simple logic gate is described by its behavior,
such as AND, OR, or NOT. More complex digital blocks such as full adders
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and multiplexers are each described by their corresponding behavior rather than
their circuit structure. The circuit inputs are specified as binary values that change
at discrete time intervals. Logic simulator outputs are provided as binary values
as well. Pure logic simulation does not model time delays through logic blocks.
Only the logical behavior of the simulated system is considered, although the
concept of sequence wherein one action precedes another is important. Timed
logic simulation considers the delays of logic gates and blocks in determining
when outputs will change. Because a logic simulator models the circuit in terms
of an abstracted (less detailed) representation, larger circuits can be simulated in
a much shorter length of time than with circuit simulation. Consider the following
example.

Example 10.7-1 Comparison of circuit and logic simulation. In terms of the
number of circuit elements, nodes, and calculations, compare circuit simulation and
logic simulation requirements for a full adder built from a classical CMOS circuit
and from CMOS gates.

Solution

Circuit simulation. The two-level logic circuit for a classical CMOS full
adder requires 56 transistors and 33 nodes. This circuit is shown in Fig. 10.7-1. In
addition, continuous input waveforms that generate the eight possible logic input
conditions of three inputs must be provided. Each of these conditions must be stable
for a length of time sufficient to allow the sum and carry outputs to stabilize. This
requires about 100 to 200 time steps for each input condition. As a rough estimate,
a minimum of 800 to 1600 time-step calculauons would be required to characterize
the full-adder operation.

Logic simulation. A classical two-level logic circuit for a full adder requires
three inverters, three 2-input NAND gates, five 3-input NAND' gates, and a 4-
input NAND gate, for a total of 12 logic gates and 15 nodes. The logic gate
implementation is given in Fig. 10.7-2. Eight possible input combinations exist for
the full adder. Each of these combinations generates a digital value for the sum and
carry outputs. Correctness of the sum and carry outputs is easily verified by these
eight calculations.

Thus, circuit simulation requires approximately 1600 time-step calculations
involving 56 transistors and 33 nodes at each calculation. Logic simulation, on the
other hand, requires only 8 calculations, involving 12 logic gates and 15 nodes for
each calculation. Clearly, if simulation of the logical operation of the full adder is
the goal, logic simulation is simpler and faster. If accurate signal propagation time
or waveform characteristics are required, then circuit simulation is necessary.

Commercial logic simulators model digital logic in terms of four or more
states. As a minimum, these states include 1, 0, X, and Z. The logic values 1 and
0 model the high and low logic states. The value X is used to model an unknown
condition. For example, the value of an internal logic node may be unknown when
simulation is started. The value Z is used to model high-impedance (undriven)
nodes. A tri-state bus with all driving circuits turned off is an example of this
condition. Additional states may be defined to model the relative driving strength
of logic outputs. Of course, as the number of allowable states increases, the
simulator complexity and run time increase correspondingly.
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Classical CMOS full-adder circuit.

Many logic simulators provide a variety of digital blocks for use in modeling a
digital system. Besides the simple logic gates and more complex logic blocks
mentioned previously, models for large digital blocks such as ROMs, RAMs,
PLAs, ALUs, and even FSMs are often provided. Simulation capability is nor-
mally provided for both synchronous and asynchronous sequential circuits in
addition to simple combinational logic.
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FIGURE 10.7-2
NAND-NAND full-adder logic diagram.

Most logic simulators today are event driven. That is, calculations are required
only in response to external or internal events. External events include changes
in the state of inputs to the circuit. An internal event occurs when the output
of a logic function changes in response to changes in its inputs. For example,
when the input to an inverter changes, the corresponding change in the inverter
output is considered an event. The use of event-driven rather than fixed time-step
simulation algorithms reduces the time required for simulation of a circuit.

The capability of logic simulation is often measured in terms of events per
second or evaluations per second. Whenever the inputs to a logic block change,
an evaluation must occur to determine the correct output for the logic block.
Thus, an evaluation is the application of a circuit’s inputs to its behavior in order
to determine its outputs. An average factor of 2.5 evaluations per event is typical
for digital circuits. The performance of logic simulators depends on many factors
including the number of logic states, the cleverness of the algorithms chosen
for simulation, and the execution speed of the computer on which the simulator
is run. An execution rate of several thousand events per second is common for
today’s logic simulators on typical computer workstations.
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10.7.2 Switch-level Simulation

MOS integrated circuits present special problems for standard logic simulators
because of bidirectional pass transistors, transmission gates and charge storage.
Pass transistors are used frequently because of their desirable power dissipation
and interconnection characteristics. Pass transistors are difficult to simulate as
simple logic gates with a standard logic simulator. It might seem that the pass
transistor of Fig. 10.7-3a could be simulated by using the AND gate of Fig. 10.7-
3b. The following discussion shows why this is impractical.

A simple analysis of the operation of the circuits of Fig. 10.7-3 shows that
the two circuits are not equivalent. Assume initially that both inputs and the
output are low for both circuits. If a logic 1 is placed on a single input, the
output remains low for both circuits. If a logic 1 is placed on both inputs, the
output goes high for both circuits. If a logic 0 is placed at the i input of the
two circuits, the output goes to a 0 for both circuits. Thus far, the operation of
the two circuits seems identical. However, assume that all inputs and outputs
are initially high. Further, consider that the source diffusion of the output of the
pass transistor provides parasitic capacitance to ground. If the ¢ input to both
circuits is moved to a logic 0, the AND gate output goes to a logic 0 while the
pass transistor output remains high because of the charge storage at its output.
Clearly, the operation of the pass transistor cannot be accurately modeled in this
fashion. Either a more complex logic circuit is required, or the logic simulator
must be modified to account for drive strengths and charge storage. Examples of
drive strength are driven, resistive pullup, and undriven. The output of the pass
transistor just considered is undriven when its gate terminal is at O V.

Because selector circuits constructed from pass transistors and transmission
gates are widely used within MOS circuitry, a logic simulator for MOS must
allow specification of individual transistors and their connections in addition to
simple logic gates. When a logic simulator can describe transistors in addition to
standard Boolean logical primitives, it is called a switch-level simulator.

A typical switch-level simulator operates on circuits described by nodes,
transistors, and logic gate primitives. Nodes are equipotential points to which one
or more terminals of one or more transistors or logic primitives are connected.
Each node has an associated name, logic state, capacitance (to ground), list of
events, and perhaps other information. Each transistor has a type (n-channel, p-
channel, or depletion), effective resistance (width and length are required), and
node connection for its terminals. Macros are often allowed to describe circuits
composed of several transistors; for example, logic gates may be constructed
from nodes and transistors. These logic gates are then used as primitives.

A byte-wide MOS binary adder circuit will be used as an example to show
the operation of a switch-level simulator.!” The circuit for a full-adder stage is

c
L ¢
; X
i L i 4}
FIGURE 10.7-3

(a) (b) (a) Pass transistor logic, () AND-gate logic.
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given in Fig. 10.7-4, and the corresponding input net list for the switch-level
simulator is provided in Fig. 10.7-5. This net list describes the circuit of Fig.
10.7-4 in terms of four primitive elements: invert, trans, nor, and pulldown. The
net list starts with a definition of a single-bit adder macro and its five inputs {a
b cif phil phi2} and two outputs {sum cof} . Additionally, seven local signals {af
bf ci p pf k phi2f} that are internal to the full-adder macro are specified. Each
primitive element is then instantiated with its connections to other circuit nodes
defined by arguments. The formats for these four procedure calls are: (invert out
in), (trans gate source drain), (nor out in0 inl in2), and (pulldown drain gate).

Next, eight single-bit full adders are combined to define a byte-wide binary
adder, as shown in Fig. 10.7-6. The external nodes of the byte-wide full adder
are first defined. The a, b, cof, and sum nodes represent 8-bit vectors that are
expanded by the repeat statement. Signals phil and phi2 are the nonoverlapping
two-phase clock inputs. The connect statement joins the cifi carry-input scalar to
the first carry-in bit, cof.0. The repeat statement next creates eight copies of the
full-adder circuit.

The results of a sample switch-level simulation run for the byte-wide adder
are explained next. The input vector a was setto 11111111, while the input vector
b was set to 00000000. This condition provides the longest carry propagation path
for the full adder. The initial carry-in bit cifi is set to the low-true condition. A
nonoverlapping two-phase clock is defined with each phase high for 90 ns and
a 10 ns separation between phases. The results from a simulation for a complete

Voo

> af
a

5
[

Sum

%

cif

FIGURE 10.7-4
Single-bit slice of clocked full-adder circuit.
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;Begin Full—-Adder Macro
(macro adder (a b cif phil phi2 sum cof)

(local af bf ci p pf k phi2f)

(invert bf b)

(invert af a)

(trans b pf a)
(trans bf pf af)
(invert (p 2 16) p
(invert (ci 2 16
(trans cif sum p
(trans ci sum pf
(invert phi2f ph
(nor k af bf phi2
(pulldown cof k)
(pulldown p phi2f)
(trans phitl cof vdd)
(trans p cof cif)

)
;End Ful l-Adder Macro

FIGURE 10.7-5
Input net list for logic simulator describing circuit of Fig. 10.7-4.

:Instantiate Byte-Wide Adder
(node a b cifi phil phi2 sum cof)
(connect cifi cof.0)
(repeat i 1 8
(adder a.i b.i cof.(1 — i) phitl phi2 sum.i cof.i)

;End of Byte-Wide Adder

FIGURE 10.7-6
Input net list for a byte-wide binary adder.

cycle (200 ns) of the two-phase clocks are given for the first and last sum (sum. 1,
sum.8) and carry-out (cof.1, cof.8) bits only. Only changes in logic value of these
bits are provided; that is, only simulator events for these bits are included. A
typical event produces a statement with the format: name = value @ time.

¢, cycle: (¢ = 0 ns to 90 ns), precharge
cof8=1@24
cof.l1 =1 @ 2.6
sum.1 =0 @ 2.8
sum.8 =0 @ 3.2

¢, cycle: (¢ = 100 ns to 190 ns), evaluate
cof.1 =0 @ 103.2

cof.1 =1 @ 104.4
sum.8 = 1 @ 104.9
cof.1 = 0 @ 109
sum.8 = 0 @ 129.8
cof.8 =0 @ 130
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Note that all carry bits are precharged to a 1 during each ¢; cycle. According to
the simulation results shown, the cof.8 bit changed to 1 at 2.4 ns and the cof.1
bit changed to 1 at 2.6 ns after ¢; was set high. As can be determined from the
circuit connections of Fig. 10.7-4, the sum bits should be set to 0 during each
¢, precharge cycle. The sum.1 bit went to O at 2.8 ns and the sum.8 bit went to
0 at 3.2 ns after ¢, was set high.

During the ¢, evaluate cycle, the carry and sum bits are set according to
the sum of the two addends a = 11111111 and b = 00000000 and the carry in
cifi = 0 (indicates a carry in). During the evaluate cycle cof.l changed to 0 at
3.2 ns, to 1 at 4.4 ns, and then back to 0 at 9.0 ns after ¢, was set high. The
most significant carry bit, cof.8, was set to 0 some 30 ns after ¢, was set high.
Also, sum.8 was set to 1 at 4.9 ns and then to O at 29.8 ns after ¢, was set high.
For the input vectors given, each full-adder stage should have set its sum bit to O
to indicate a sum of 0 and its carry bit to O to indicate a carry out of 1 (the carry
bits use negative logic). The final results from simulating the first clock cycle are
as expected. Note that the final event (cof.8 set to 0) occurred 30 ns after the ¢,
clock was set high.

Prior to the second clock cycle, the carry-in bit is set to a false condition
(cifi = 1). The following simulation results are for the second clock cycle
(200 ns = ¢ < 400 ns).

¢, cycle: (t = 200 ns to 290 ns), precharge
cof.8 = 1 @ 200.2
cof.1 =1 @ 200.4

¢, cycle: (¢ = 300 ns to 390 ns), evaluate
sum.8 = 1 @ 304.9
sum.1 = 1 @ 304.9

During the second ¢; cycle, the carry bits change as they are each
precharged to 1. The sum bits do not change during ¢, since they were already
each left set to O after the previous ¢, cycle. During the second ¢, cycle, the
sum and carry bits should be changed to indicate the sum of the two addends a
= 11111111 and b = 00000000 and the carry in cifi = 1. Thus, all sum bits
should be set to 1 and all carry out bits should be set to | indicating no carry out.
The simulation results show that the sum bits are each correctly set to 1 during
the second ¢, cycle. The carry bits do not change since they were each set to 1
during the precharge cycle.

For a third clock cycle (400 ns = ¢ < 600 ns), the carry in bit is set to 0
again (cifi = 0) and the results of the first clock cycle are repeated. These results
are as follows.

¢ cycle: (+ = 400 ns to 490 ns), precharge
sum.1 = 0 @ 402.8
sum.8 = 0 @ 403.2
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¢, cycle: (¢ = 500 ns to 590 ns), evaluate
cof.1 =0 @ 503.2
cof.1 =1 @ 504.4
sum.8 = 1 @ 504.9
cof.1 =0 @ 509
sum.8 = 0 @ 529.8
cof.8 = 0 @ 530

The previous results for three clock cycles demonstrate the operation of a
switch-level simulator. Both the timing of the byte-wide adder and the correct
logical operation of the adder are observed for the input conditions provided.
Other switch-level simulators have different input and output formats and different
capabilities, but all operate assuming discretized values for the circuit variables,
and all produce results much faster than complete circuit simulation.

10.7.3 Hardware Logic Simulation

Even with the increased speed of logic simulators as compared with circuit simu-
lators, full simulation of large digital circuits via general-purpose computers is not
practical. An alternate approach is in use by several companies. Special-purpose
hardware that executes many simulation steps in parallel has been developed to
speed the simulation process. One of the early, large parallel simulators was the
YSE (Yorktown Simulation Engine)!® developed by IBM. This hardware con-
sists of hundreds of identical processing units that each simulate part of the tar-
get circuit. By spreading the calculations over a large number of processors,
even large-mainframe computers can be simulated in detail. Of course, such
special-purpose hardware is expensive to build and to operate. Even so, several
companies now offer hardware accelerators to enhance the speed of logic
simulation. ‘

In the future, methods of machine verification other than total logic sim-
ulation must be found. Logic simulation time increases exponentially with the
number of logic components to be simulated. Thus, faster computers are neces-
sary to simulate next-generation computers that contain more logic components.
But how can the next-generation computers be built if the simulation capability
of présent-generation computers is inadequate?

Two current approaches to this problem are verification proofs and hierar-
chical simulation. For relatively simple hardware, it has been possible to verify
correct logical operation by mathematical proofs. Unfortunately, the utility of this
method diminishes quickly as the size and complexity of the hardware increase.
The second method, hierarchical simulation, attempts to model the target machine
at various levels of abstraction. Small blocks of hardware are verified by logic
simulation. These blocks are then interconnected and simulated together without
the internal detail of each block. Neither of these methods has been entirely
successful, and both are now active areas of research and development.
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10.8 TIMING ANALYSIS

For most digital circuits, a very important parameter is the maximum rate at
which the circuit can correctly process data. For microprocessors, the processing
speed is usually given in MIPS (millions of instructions per second); for scientific
calculations, the rate of execution is given in FLOPS (floating-point operations
per second); and for logical inference machines, the characteristic measure is LIPS
(logical inferences per second). The execution rate of each of these machines is
limited by parasitics and governed by its input clock. A primary goal in the design
of a digital computing machine is to operate with the fastest possible input clock.

Each digital integrated circuit has a maximum rate of operation. This rate
of operation is limited by the output drive capability of its logic elements and
by the capacitance and resistance of the loads they must drive. In a FSM (finite-
state machine), the clocking rate is limited primarily by the longest path through
its combinational logic section. For integrated circuits composed of large blocks
of circuitry, the maximum clocking rate may be limited by signal lines that must
carry information between the blocks. The designer’s task, then, is to find those
paths in an integrated circuit design that cause the maximum delay and then to
modify the circuitry to minimize that delay.

Finding the longest delay paths, called critical paths, for an integrated
circuit is not a simple task. Until recently, the most common technique for finding
critical delays was for the designer to perform detailed circuit simulation on the
paths that were suspected of contributing long delay times. Of course, using circuit
simulation for this task was not foolproof. Many times an unsuspected path that
was not considered for simulation would limit the maximum clock speed. More
recently, computer programs have been designed specifically to seek out delay
paths directly from the circuit definition without requiring simulation. This type
of computer analysis is called timing analysis.

10.8.1 Timing Analysis Methodology

Timing analysis differs from circuit and logic simulation in that all possible signal
paths are considered. Circuit simulation- and logic simulation both require the
specification of input signals to control the simulation. Thus, only delay paths
that are exercised by the particular set of inputs are tested. For many digital
circuits, it is computationally impossible to provide sufficient input conditions to
test the circuit fully. Timing analysis tools work by tracing signal paths instead
of simulating the circuit for specific inputs. Specifically, timing analysis uses
state-independent path tracing. Each time a logic gate is encountered, the gate is
assumed to pass the signal regardiess of the state of the other inputs to the gate.
A signal path is terminated only when an output is reached or a clocked storage
element is found. With this method, all possible delay paths are tested.

An example of timing analysis signal propagation through two logic gates
is shown in Fig. 10.8-1. The signal path starts at input x and reaches the NAND
gate. Inputs a and b for the NAND gate are assumed high to allow continuation
of the signal path. When the signal reaches the NOR gate, input c is assumed low
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c Y FIGURE 10.8-1

State-independent path trace.

to allow continued propagation of the signal. Finally, the signal reaches an output
y , where it terminates. The delay for this signal path includes the contributions of
the NAND gate, the NOR gate, and the series interconnections. The delay paths
fromxtoy, btoy, atoy and c to y would all be found by a timing analysis of
this circuit.

A second example shows a deficiency of timing analysis. From Fig. 10.8-2,
signal paths from a to b and from a to c are expected. However, state-independent
path tracing will also find a signal path from b to ¢ and vice versa. Although
the path from b to ¢ is a real path, it will not normally be exercised within this
circuit because node n is actively driven by the inverter. Analysis of additional
paths that will not be exercised during operation of a circuit can degrade the
performance of a timing analysis program. Circuit-level timing analyzers allow
direction setting for pass transistors and transmission gates to circumvent this
problem. Unfortunately, unless this is carefully done, some critical signal paths
may be eliminated from consideration.

10.8.2 Timing Analysis Tools

To provide further insight into the capabilities of circuit-level timing analysis
programs, two such programs will be described here. The first of these, called
TV, attempts to set directions for circuit elements by using rules. These rules,
by setting some transistor directions, minimize the number of false paths that are
found. The second tool, Crystal,® provides a wide range of capability, including
improved delay models and coverage for circuits built from CMOS technology.

TV timing analyzer for NMOS designs, operates from extracted circuit
parasitics and considers only stable, rising, and falling signal values. Program
execution time is minimized by a static analysis that sets signal flow direction and
clock qualification where possible. Otherwise, signal flow direction is determined
from a set of direction-finding rules. Some of the rules are independent of design
style. For example, the constant-propagation rule says that any transistor source

av _Do__f__n b
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Problem paths for timing analysis.
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FIGURE 10.8-3
- Constant propagation rule to set directions.

or drain connected to power, ground, or a clock must be a sink of signal flow,
while the other terminal must be a source. Figure 10.8-3 demonstrates this rule,
which by itself sets the directions for more than half the transistors in a typical
circuit. Another rule, demonstrated in Fig. 10.8-4, is based on Kirchoff’s current
law. This rule, the node current rule, states that if all but one of the transistors
to a node have a known direction, and the known transistors all sink or all
source signal flow, then the unknown transistor must transmit flow in the opposite
direction relative to the node. '

Other signal-flow rules depend on technology or design style. For example,
in an NMOS technology design, the k-ratio rule for inverters can be used to set
direction. This rule is based on a standard device sizing ratio k as discussed in
Chapter 7 for ratio logic. By finding the minimum resistance to ground through
each unset (direction not specified) transistor connected to a pullup, a transistor
can be considered as a pulldown (signal flow toward the pullup) or a pass
transistor (signal flow away from the pullup), depending on the resistance ratio.
The reasoning is that resistances to ground that satisfy the device sizing ratio k
with respect to the pullup path must be part of the pulldown circuit for a logic
gate. Transistors that cannot satisfy ratio rules can be safely classified as pass
transistors and their direction set accordingly. Other rules cover pass transistors
connected to a common node and having a common gate signal, and analogous
structures where the direction of a boundary transistor can be determined, thereby
allowing arrayed versions of the structure to have their directions set accordingly.

Signal path analysis is started from the clock or other input nodes. Paths are
investigated in a breadth-first manner in accordance with the transistor directions
that were set by the static analysis. Delays for paths are calculated based on the
capacitance of the interconnections and the resistance of driving and series pass

-‘_ ——» Known directions

Direction set by

T T ~~ ™ node current rule

-l_ FIGURE 10.84
Node current rule.
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transistors. Transistors are assigned a rising and a falling resistance from tables
based on their use in the circuit. Signal direction changes are propagated so that a
rising input signal to an inverter produces a falling output signal and vice versa.
Pass transistors continue the direction of the input signal. Because path delays
are calculated from a linearized model, the delays may differ from actual circuit
values by 30% or more.

Output of the TV program includes a user-selectable number of the worst-
case paths. Equivalent paths, such as parallel paths in a data bus, are condensed
in the output list so that only the last path in the list is reported. Other useful
information such as slack time for paths, excessive power used to drive a noncrit-
ical path, and nodes with unusually high capacitance are reported. The TV timing
analyzer was successfully used in the analysis of the MIPS series of micropro-
cessor chips?! developed at Stanford University.

Another timing analysis tool, Crystal, was developed to analyze the RISC
computer chips? developed at the University of California at Berkeley. This tool
has found widespread use throughout the VLSI design community, particularly
within universities. The timing analysis is based on a circuit description that is
extracted directly from a geometrical specification file. This description includes
transistor sizes and types, interconnection capacitance, and a rough calculation
of interconnection resistance. A simple delay model is used for each stage to
provide quick calculation of signal propagation delays along a path.

The Crystal timing analyzer was developed for MOS circuits with multiple
nonoverlapping clocks. The program attempts to determine how long each clock
phase must be to allow all signals to propagate to their destinations. The analysis
is state-independent, so all possible paths are checked. The user must specify a
minimum of information to begin the analysis. For two-phase clocking schemes,
only two signals must be specified. One of the clock phases is specified as a
rising edge or a falling edge to trigger the analysis. The other clock phase is
specified as a stable low value. The reason for this can be seen from the shift
register circuit of Fig. 10.8-5. Here a signal path trace is started from the o
clock. Without a specified value for the ¢, clock, the signal path would continue
through all the stages shown. If the ¢, clock is set to a stable low condition,
then the signal path will terminate correctly after the first stage. The path delay

04 (rising) o2 1
; L L
1"
~{>e 1 {>e [ r——I >o—-] L

I

l\ S - Path without

[ —-»| Desired path ¢ set low
found with
o set low

FIGURE 10.8-5
Clocked path analysis.
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will consist of the time for the first inverter to discharge (charge) the input of
the second inverter through the pass transistor gated by ¢; plus the time for the
second inverter to charge (discharge) the interconnection capacitance up to the
input of the pass transistor gated by ¢,.

Each path trace for a signal is started from a rising or falling input specified
by the user. As the signal path proceeds through inverters or logic gates, the
appropriate rising or falling direction is determined to correctly model asymmetric
stage delays. The path-trace analysis is done with a depth-first search algorithm.
Thus, a signal path is followed until it reaches a circuit output or is stopped by a
static signal specified by the user (like the ¢, condition examined in the previous
paragraph). Delay information from previous paths is maintained at each node so
that the signal path can be aborted on later path traces through the same node if
the cumulative delay is less than the stored value.

As with all state-independent timing analysis methods, the possibility of
reporting false paths exists. A simple example is given in Fig. 10.8-6, where a
signal path is gated by a signal and its complement. From a logical viewpoint,
there is not a signal path from node a to node ¢ because one of the AND gates
will be disabled by x or X. Since timing analysis is state-independent, this logical
constraint is not recognized, and the path from node a through node b to node ¢
will be considered and its delay calculated. A 1-of-n selector circuit is a classic
example of this condition. In normal operation, only one path through the selector
circuit will be enabled at any time, but state-independent timing analysis finds all
n paths. In most timing analyzers the capability exists to set signals to a stable
value to disable paths; however, this capability must be used carefully to avoid
accidentally disabling critical delay paths.

To facilitate fast operation, Crystal uses a simple delay model consisting of
an equivalent resistance for the drive transistor and a resistance and capacitance
for the interconnections and load devices. The transistor drive model is table-
driven with the equivalent resistance selected based on input signal slope and
capacitive load value. This is not as accurate as a circuit-level simulation but is
much faster. Once critical delay paths are found, they can be investigated with a
circuit simulator if more accurate results are required.

In summary, timing analysis is an important tool for integrated circuit
design. By using state-independent path tracing, it performs a function that is
difficult, if not impossible, to perform with timed logic simulators. The execution
time for timing analysis programs is determined by the size of the circuit

B

X FIGURE 10.8-6
Logically impossible path.
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being analyzed. While timing analysis is used to find and correct critical delay
paths, correct functional operation can be verified with a logic simulator. Thus,
logic simulation and timing analysis function as partners to ensure that a digital
integrated circuit is functionally correct and that it operates at the proper speed.

10.9 REGISTER-TRANSFER-LEVEL SIMULATION

Specifications for the operation of digital integrated circuits are often given
in terms of high-level operations on information. These high-level operations
describe transformations on data as it moves from one storage device or register
to another such device. For this reason, descriptions of this type are known as
register-transfer-level descriptions.

Register-transfer-level descriptions provide a useful level of abstraction for
the description and simulation of digital systems. The logic simulators described
previously require too much detail about the exact logical structure of an inte-
grated circuit for early design simulation. Also, because of the detailed specifi-
cation of the logical structure of the circuit, complete logic simulation of an entire
circuit such as a microprocessor requires impractically large computer resources.
Alternatively, at the highest level, a natural language description of the function
of a digital system is often ambiguous and vague. A concise natural language
description of a next-generation computer might be, “build a new computer that
is like computer XYZ, but is twice as fast and uses less power.” To fill this gap
between natural language descriptions and logical definitions, high-level descrip-
tion and simulation languages have been developed. Of these, register-transfer-
level simulation languages allow specification and simulation of operations on
data words, in addition to single-bit operations.

The operation of a digital system can be defined precisely through the use of
a register-transfer-level description. In fact, one such language, ISPS (Instruction
Set Processor Specification), was developed to allow unambiguous description
and specification of computer operation.??> The ISPS language allows data bits
to be grouped into words. Logic and arithmetic operations are allowed on both
bit-level and word-level entities as they are moved between storage registers.
Operations common to most programming languages, such as conditional state-
ments, if-then-else constructs, case statements, and procedures, arc allowed.
Thus, a register-transfer language is a special programming language tailored to
describing the operation of digital systems.

10.9.1 Simple RTL

For demonstration purposes, a primitive register-transfer language (RTL) will be
defined and used to describe the execution of one instruction from an early 8-bit
microprocessor. This primitive RTL is defined in Table 10.9-1. The first operation
required is the transfer operation—the contents of one group of bits (register) are
placed into another storage device. Second, the common arithmetic operations
of add and subtract are provided. Third, a simple conditional capability to alter
control flow is added.
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TABLE 10.9-1
Primitve RTL Definition

Operation Description
A <B transfer

C «A+B addition

D «<A-B subtraction

PC<BifA =0 conditional

The operation to be described using this RTL is the extended load of the
A accumulator of the Motorola 6802 microprocessor. This microprocessor has a
16-bit address bus and a separate 8-bit data bus. The A accumulator is an 8-bit
register. Execution of this instruction requires four memory cycles: fetch the 8-bit
instruction, obtain the high byte of the operand address, obtain the low byte of the
operand address, and obtain the data from the operand address. The approximate
register-transfer-level steps are given in Table 10.9-2 and are explained next.

The first step moves contents of the program counter (PC) to the address
bus (AB) in preparation for fetching the instruction byte. While the processor is
waiting for the memory to respond, the program counter is incremented. After a
delay time, the DBI (data bus input) is moved to the instruction register (IR). This
ends the first memory cycle. As the instruction is being decoded, the incremented
PC is moved to the address bus in preparation to fetch the next byte. The PC is
incremented again, and the contents of the DBI are moved to the internal data
bus (DB) and on to a temporary register (TMP) to complete the second cycle.
To begin the third memory cycle, the previously incremented PC is moved to the
AB and the PC value is incremented. The DBI contents are moved to DB where
they are held in preparation for the cycle that outputs the data address (this is
slightly oversimplified). The fourth and final cycle moves the data from DB to
the low-order bits of the address bus (ABL) and the contents of TMP to the high-
order bits of the address bus (ABH). At this point, the extended 16-bit address of

TABLE 10.9-2
Microprocessor Instruction Execution
Cycle Operation Explanation
1 AB <« PC pc to address bus
PC <«PC+1 incr pc
IR < DBI data to ir
2 AB <« PC pc to address bus
PC «<PC +1 incr pc
TMP <« DB « DBI data to tmp
3 AB < PC pc to address bus
PC «<PC +1 incr pe
DB <« DBI data to dynamic store
4 ABL < DB data adr to address bus
ABH <« TMP data adr to address bus

ACCA « DB « DBI

data to accumulator
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the data is present on the address bus. The memory responds with the requested
data, and this data is moved from DBI to DB and into accumulator A (ACCA) to
complete execution of the instruction. These RTL statements describe at a high
level the execution of a simple microprocessor instruction.

10.9.2 ISPS Specification and Simulation

The Instruction Set Processor Specification (ISPS) language was developed for
the certification, architectural evaluation, simulation, fault analysis, and design
automation of instruction set processors. The language provides a behavioral
rather than a structural description. There are no part numbers, pin assignments,
layouts, or technologies defined. Of course, some structural information such as
register lengths, data path widths, and connections of components are necessarily
a part of the simulation. The operation of each part of a processor is specified
algorithmically by its behavior.

The ISPS notation includes an interface and entities. First, the carriers (mem-
ory) elements are defined. This usually includes an array of memory locations
with a specified bit width and number of words. Second, the procedures necessary
for the execution of the processor statements are defined. This usually includes
instruction decoding, effective address calculation, arithmetic and logical oper-
ation definitions, and memory load/store functions. ISPS provides a typical set
of program operators, including assignment, if, case, and repeat. Additionally,
provisions are made for concurrent or sequential processing. It is possible to
specify the bit length of words. Aliases are available for variables, and bit fields
of variables can be addressed directly by other variables. Normal number repre-
sentations include binary, hex, decimal, and octal. An example will be presented
to demonstrate briefly some of the capabilities of the ISPS language.

The Motorola 68000 microprocessor will be used as the example to describe
typical ISPS capabilities. Figure 10.9-1 shows the definition of the memory and
processor state. The memory is defined here as 1 K 16-bit words with the name
M and the alias Memory. The processor state includes definition of the program
counter (PC) and extended program counter (PCA), the register array (REG), the
instruction register (IR), and other required processor state holders. In each case,
the number of registers and the width in bits are defined. Multiple references to
some resources are specified. For example, an array of sixteen 32-bit registers
(REG) is defined. Then the data registers (D) are specified as the first eight
registers, and the address registers (A) are specified as the second eight registers
of the register array.

Partial instruction execution for the 68000 microprocessor is defined in Fig.
10.9-2. In the figure, calculation of a displacement for the indexed address mode
is demonstrated, and the effective address calculation is partially defined. Note
the use of the Begin/End statements to define a block of operations and the
use of “:=" as the assignment operator. A decode statement provides a multi-
way branch depending on the value of one or more bits. For example, in the
displacement calculation, bit 11 of the memory addressed by the PC defines
whether the instruction is a word index (bit 11 = 0) or a long index (bit 11 = 1).
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M68000 :=
BEGIN

**Memory.State**
M\Memory[0:1K]<15:0>,

**Processor.State*”

PCA\Program.Counter.with.A0<23:0>,
PC\Program.Counter<22:0> :=PCA<23:1>,

REG\Registers[0:15]<31:0>,
D\Data.Registers[0:7]<31:0> :=REG[0:7]<31:0>,

A\Adr .Registers[0:7]<31:0> :=REG[8:15]<31:0>,
IR\Instruction.Register<15:0>,

OP\OP.Code<1:0> =IR<15:14>,
SIZE\OP.Size<1:0> :=|1R<13:12>,
DREG\Destination.Reg<2:0> :=I1R<11:9>,
DM\Destination.Mode<2:0> :=1R<8:6>,
SM\Source.Mode<2:0> :=1R<5:3>,
SREG\Source.Reg<2:0> :=1R<2:0>,

T\Temporary.Reg<31:0>,
PCT\Temp.PC<23:0>,
EA\Effective.Address<23:0>,
EAE\EA.without .A0<22:0> :=EA<23:1>,
BYTE\HiLo.Byte< > :=EA<0>

FIGURE 10.9-1 _
ISPS description of M68000 microprocessor state.

The effective address calculation of Fig. 10.9-2 demonstrates use of the decode
statement with a 3-bit field. This field is used to specify indirect, postincrement,
predecrement, displacement, indexed, and assorted (not shown) address modes.
A complete ISPS description of a state-of-the-art microprocessor is sev-
eral pages in length. Such a description is invaluablée for two reasons. First, the
description provides an unambiguous specification of the operation of the micro-
processor (note that the description could be unambiguous and still be incorrect).
Second, the description can be simulated to verify desired operation or to explore
architectural characteristics of design choices early in the design cycle.

10.9.3 RTL Simulation with LISP

A less formal but very powerful means to simulate high-level behavior for a digital
system is through special-purpose programs in a general-purpose programming
language such as LISP or C. In fact, LISP is particularly well suited to this task
because of its interactive nature and its symbolic representation capability. The
behavior of each element of the digital system can be represented as a separate
function. In the case of a simulation for a computer architecture, each instruction
can be represented by a LISP function. These functions can be executed and
changed interactively to examine or to verify operation of the instruction set. An
example will be used to demonstrate this.
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A partial LISP definition of a RISC processor is given in Fig. 10.9-3. A
subset of the arithmetic, logical, and load functions is presented. Other functions,
especially PC modification instructions, must be included to allow full execution
of a RISC program. Each instruction is represented by a separate function with
arguments that are derived from the bit fields of the instruction.

The add instruction of Fig. 10.9-3 will be examined to clarify the instruction
definitions provided by the LISP functions in the figure. This instruction is a
triadic instruction on this RISC processor. That is, the instruction requires three
arguments: two sources and a destination. On many computers, because of
instruction word width limitations, the add instruction is dyadic, requiring the
destination and one source to be specified by the same bit field. The arguments

(defun add (rs s2 dest)
(setq rd (+ rs s2))
(store (reg (eard dest)) rd)
(setq pc (addi1 pc)))

(defun sub (rs s2 dest)
(setqg rd (- rs s2))
(store (reg (eard dest)) rd)
(setq pc (addi1 pc)))

(defun and (rs s2 dest)
(setq rd (and rs s2))
(store (reg (eard dest)) rd)
(setqg pc (add1 pc)))

(defun or (rs s2 dest)
(setg rd (or rs s2))
(store (reg (eard dest)) rd)
(setq pc (addt1 pc)))

(defun xor (rs s2 dest)
(setq rd (xor rs s2))
(store (reg (eard dest)) rd)
(setg pc (add1 pc)))

(defun sll (rs s2 dest)
(setq rd (shiftl rs s2))
(store (reg (eard dest)) rd)
(setq pc (addil pc)))

(defun sra (rs s2 dest)
(setg rd (shiftra rs s2))
(store (reg (eard dest)) rd)
(setq pc (add1 pc)))

(defun 1dl (rs s2 dest)
(setqg rd (plus rs s2))
(store (mem (dest)))
(setq pc (add1 pc)))

FIGURE 10.9-3 .
Partial LISP definition of RISC processor.
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to the triadic add instruction presented here include rs as one source, s2 as the
second source, and dest as the destination for the add. The first line of the function
defines the operation and the required arguments as “defun add (rs s2 dest).”

The operation of the function body for the add instruction of Fig. 10.9-3
can be explained as follows. The second line of the function definition sets a
temporary variable rd to the sum of the contents of rs and s2. The third line
invokes two functions (definitions not shown in the example) to store the results
of the add in a register array. The eard function calculates the effective address
within the register array for the store. The eard function must include the effects
of the overlapped register storage mechanism usually employed within a RISC
processor. The store function places the contents of the previously calculated rd
into the proper slot within the register array. The final line of the add function
increments the program counter pc by one.

A top-level program is required to accept a test instruction stream, decode
the instruction into the appropriate bit fields, and then call the instruction primitive
definitions of Fig. 10.9-3 with the arguments set appropriately. The operation
of the program can be observed by including print statements at appropriate
places, by tracing the execution of the program, or by examining the program’s
side effects on the register array, pc, other processor state holders, and memory
contents.

Because of the ease with which variations in instruction definition can be
tested, an interactive simulation through a LISP program is a powerful tool for
system development. The interactive nature of LISP provides an excellent means
to correct errors and to test new ideas quickly. There is no need to wait for
compile and load steps between each change in the model. As a final comment,
it should be noted that the example presented for the RISC processor did not
include any effects of word length or arithmetic overflow. Additional statements
are necessary to include these effects.

In this section the concepts of high-level definition and simulation of digital
systems were introduced. A primitive RTL was used to define the execution
of a simple microprocessor instruction. Then the ISPS language was presented
as one example of an RTL language that was designed to specify and evaluate
instruction processor architectures. Finally, an example was presented that used
LISP as a powerful, but informal, method of simulating and evaluating digital
system architectures.

10.10 HARDWARE DESIGN LANGUAGES

Machine-readable descriptions of integrated circuit designs have become an
important factor in designing VLSI circuits. These descriptions are often defined
in terms of design languages that, like computer languages, have specific syntax
and semantics. Such design languages have been used to describe circuits from
the geometrical level up through the architectural level. As new designs become
increasingly dependent on CAD tools, machine-readable descriptions become
extremely important. Two hardware design languages have evolved as ANSI
(American National Standards Institute) standards within the last few years. One
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of these, EDIF (Electronic Design Interchange Format), is intended to describe
designs from the layout level through the logic level. Another such language,
VHDL (VHSIC Hardware Description Language), is used to characterize both
the function and structure of designs from logical primitives through architectural
descriptions. The basics of these two languages will be introduced here along
with simple examples of each.

10.10.1 EDIF Design Description

As integrated circuit designs increased in complexity and the use of comput-
ers became prominent within the semiconductor industry, the need for a com-
mon interchange format for integrated circuit design information arose. With
such a standard, silicon foundries could accept design descriptions from many
sources, CAD vendors could create widely applicable programs to process
designs, and designers would benefit from wider availability of CAD tools and
silicon processing. The EDIF (Electronic Design Interchange Format) standard
was created by interested companies to fulfill this need.

Key elements in the design of the EDIF language were broad applicability
and easy extensibility. To meet these goals, EDIF was designed with a syntax that
is similar to LISP with all data represented as symbolic expressions. Primitive
data such as strings, signals, ports, layers, numbers, and identifiers are the atoms
of EDIF. These atoms are formed into more complex structures as lists; many
times, the first element of a list is a keyword that gives a particular meaning
to the subsequent elements of the list. This syntax is easily parsed, and the
keywords —not the syntax—provide the semantics of the language. Thus, it is
desirable to design EDIF parsers that respond to the particular set of keywords
for their intended function. Unrecognized keywords may be ignored successfully,
allowing upward compatibility with new extensions of the language.

EDIF is intended neither as a programming language nor a database lan-
guage, but rather as an efficient interchange format for integrated circuit designs.
The LISP-like structure is relatively compact and yet maintains a textlike property
that allows it to be read and written directly by humans. An EDIF description may
contain mask descriptions, technology information, net lists, test instructions,
documentation, and other user-defined information. The structure is hierarchical
in that larger design descriptions can be built from component descriptions and
libraries of standard elements.

The basic organizational entity for describing designs within EDIF is the
cell. A cell may contain different representations or views of a design. For
example, one view might contain mask layout information while another view
may contain behavioral-level modeling information. A view may be one of several
types such as physical, document, behavior, topology, or stranger. Each view will
contain a specific type of information about the cell. For example, the physical
view may contain geometric figures for circuit schematics or mask artwork, but
it will not contain behavioral information. The topology view might contain net
list descriptions, schematic diagrams, or symbolic layout. The document view
could contain a textual description of a design, figures describing the design, or
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specifications for the behavior of the design. The stranger view is provided for
data that does not meet the conventions of the other view types.

Each view of a cell may specify its interface to the external world. This
interface includes a list of external ports and their characteristics. The interface
description does not specify how the cell performs its function internally but
rather defines how the cell will relate to its environment. A second part of the
cell definition is its contents. The contents provide the detailed implementation
for each view. This could include instances of other cells or could be the actual
definition of mask geometry for the cell layout. A net list view and a mask layout
view for a full adder are described here as examples of EDIF contents.

10.10.2 EDIF Net List View of Full Adder

The net list view is available in EDIF to describe collections of cells and their
interconnections. Cell instances have interface sections that describe their ports.
Within the EDIF net list view, the joined construct is used to show the intercon-
nection of cells and interface ports. A sample EDIF file segment that describes
the net list for the full adder of Fig. 10.10-1 is given in Fig. 10.10-2. This net
list view starts with an interface description that declares the three input ports and
two output ports of the full adder. This is followed by the contents section, which
declares local signals, instantiates component cells of the full adder, and then
joins appropriate signals to realize the full-adder circuit. The component cells are
from a p-well CMOS library of cells. The reader should verify that the EDIF net
list of Fig. 10.10-2 accurately describes the full-adder circuit of Fig. 10.10-1.

10.10.3 EDIF Mask Layout View of Full Adder

EDIF allows hierarchical descriptions of mask layout information. Public domain
formats such as CIF, as well as company proprietary formats for artwork descrip-
tions, can be described within EDIF. As an example, a partial layout of the cell-

BO Lo
X1
CIN
N\ L1
Al
J/ o1 COuT
A2 L2

FIGURE 10.10-1
Full-adder circuit.
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(cell FullAdder
(view Topology Netlist
(interface
(declare input port (BO B1 CIN))
(declare output port (SUM COUT))

(contents

(declare local signal (LO L1 L2))
(instance pwellcmoslib:xor X1)
(instance pwellcmoslib:xor X2)
(instance pwellcmoslib:and A1)
(instance pwellcmoslib:and A2)
(instance pwellcmoslib:or O1)
(joined B0 X1:a Al1:a)
(joined B1 X1:b A1:b)
(joined CIN X2:b A2:b)
(joined LO X1:c X2:a A2:a)
(joined L1 A1:c O1:a)
(joined L2 A2:c O1:b)
(joined SUM X2:c¢)
(joined COUT O1:c)

)
)

FIGURE 10.10-2
EDIF description of net list for full adder.

based full adder of Fig. 10.10-1 is described in CIF as shown in Fig. 10.10-3a. To
simplify the figure, only the interconnection layout for the input signals B0, B1,
and CIN is provided by the CIF description. The description presumes that the
CIF layout descriptions for the five component cells of the full adder have been
instantiated. Definitions for the CIF statements used in this example are provided
in Fig. 10.10-3b. This CIF example allows a comparison with the corresponding
EDIF description for the interconnection layout of the cell-based full adder of Fig.
10.10-1, as provided in Fig. 10.10-4. The EDIF description contains definitions
of the cell name (CONNE), celltype (GENERIC), view (physical), viewtype
(MASKLAYOUT), and the figures (rectangle) that form the interconnections
among the full-adder cells. Each rectangle is described by the endpoints of one
of the diagonal lines that pass through a corner of and bisect the rectangle. The
EDIF keywords used here should be self-explanatory. For additional detail on
EDIF layout descriptions, see the EDIF standard®.

Since its introduction and later adoption as a standard, the EDIF language
has become widely accepted within the semiconductor industry for the interchange
of design information. It is now supported as an interchange mechanism by
most CAD vendors. Thus, for example, results from design entry or computer-
based analysis on a workstation can be moved to a different workstation or to
a mainframe computer for further processing. A full description of the EDIF
standard is provided by ANSI/EIA standard EDIF 2 0 0.3
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Q
»

2;
CONNE ;
MET1 ;

80 80 40 700;
200 80 100 840;
1200 80 600 980;
COND ;
40 40 40 700;

40 40 160 840;
40 40 720 980;
40 40 1160 980;
POLY;

120 40 140 220;
40 460 60 430;
40 740 60 1110;
80 80 40 700;
120 40 140 1460,
40 40 180 380;
40 440 140 580;
40 440 140 1100;
80 80 160 840;
40 40 180 1300;
120 40 820 220;
40 740 740 570;
80 80 720 980;
80 80 1160 980;
40 300 1140 1170;
40 40 1180 1300;

mo OO rOmPrr  ODWEor ©

F L}
2 T O O;
(@
DS 2 ; define symbol number 2
9 ABCDE label (cell name)
L MET1 layer definition (metal)

B DX DY X Y rectangle, length DX, width DY,

location X,Y

DF end of symbol definition
CNTXY call symbol N, transiate by X,Y
E end of CIF definition

(b)

Figure 10.10-3
CIF layout example, (@) CIF layout file for input connections to cell-based full adder of Fig.
10.10-1, (b) Definition of CIF statements used in part a.
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10.10.4 VHDL Design Description

VHDL was developed for the design, description, and simulation of VHSIC
components. VHSIC is the acronym for the Very High Speed Integrated Circuits
program of the U.S. Department of Defense. Thus, the language was originally
developed to describe hardware designs for military purposes. Because the need
for a standard hardware description language is industrywide, the VHDL language
was adopted by the IEEE and formalized as an industry standard.

VHDL is concerned primarily with description of the functional operation
and/or the logical organization of designs.?* This description is accomplished
by first specifying the inputs and outputs of a system or device. Then either its
behavior (outputs as functions of inputs) or its structure (in terms of intercon-
nected subcomponents) is specified. The primary abstraction in VHDL is called
a design entity. A design entity has two parts: the interface description and one
or more body descriptions.

An interface description must perform several functions. It must define the
logical interface to the outside world. It must specify the input and output ports and
their characteristics. Additionally, operating conditions and characteristics may be
included. To accomplish this, the interface description provides a port declaration
for each input and output of the design entity. Each port declaration includes a
port name and an associated mode and fype. The mode specifies direction as in,
out, inout, buffer, or linkage. The type qualifies the data that flows through a port.
Standard types include BIT, INTEGER, REAL, CHARACTER, and BIT_VECTOR.
Additionally, user-defined types are acceptable.

As a simple example with well-defined interface characteristics, the interface
description for the full adder of Fig. 10.10-1 is given in Fig. 10.10-5. The full
adder has three binary inputs, BO, B1, and CIN, and two binary outputs, SUM
and COUT. The interface description may be thought of as the “black box” view
of the design entity. '

The body description of VHDL defines the internal operation or organization
of the hardware, providing an “open box” view of the design entity. The internal
operation is often termed a behavioral description, while the organization is
called a structural description. These descriptions can occur at one of several
levels, such as a logical definition, a register-transfer definition, or an algorithmic
definition. The body description contains a header that provides a name for the
description and identifies the associated interface description. The block...end
block section contains all the descriptive information about the internal operation
and organization of the hardware.

entity FULL_ADDER is

port (BO,B1: in BIT; —— one-bit addend
CIN: in BIT; —— carry input
SUM: out BIT; —- single-bit sum
COUT: out BIT); —— carry output

end FULL_ADDER;

FIGURE 10.10-5
VHDL interface description for full adder.
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architecture GATE_IMPLEMENTATION of FULL_ADDER is
—— component declarations
component AND_GATE port (X,Y: in BIT; Z: out BIT); end component;
component XOR_GATE port (X,Y: in BIT; Z: out BIT); end component;
component OR_GATE port (X,Y: in BIT; Z: out BIT); end component;
-— local signal declarations
signal LO, Lt, L2: BIT;
begin
—-— component instantiations
: XOR_GATE port (BO, B1, LO);
X2: XOR_GATE port (LO, CIN, SUM);
A2: AND_GATE port (CIN, LO, L2);
A1: AND_GATE port (BO, Bt1, L1);
O1: OR_GATE port (L1, L2, COUT);
end GATE_IMPLEMENTATION;

FIGURE 10.10-6
VHDL gate-level description for full adder.

The full-adder example of Fig. 10.10-1 will be used to demonstrate three
different body descriptions. A gate-level implementation of a full adder is defined
in Fig. 10.10-6. GATE_IMPLEMENTATION describes a common network of
simple logic gates that realizes the full-adder function. This definition for the full
adder uses AND, XOR, and OR gate components that must be defined elsewhere.
The component declarations include an interface description for each of the
logic gates. Following the component declarations, a signal declaration specifies
signals that are used internally in the full-adder implementation. (Remember that
the interface description of the full adder specifies signals that appear externally.)
Finally, a procedure block describes the interconnection of the previously declared
components that realizes the full-adder function. GATE_IMPLEMENTATION is
a structural definition; that is, information is given about how to interconnect
the components that compose the full adder. Without further knowledge of the
behavior of components used in the definition, insufficient information is provided
for simulation of the full adder.

The full adder can also be defined through a register-transfer-level
description. The RTL_IMPLEMENTATION of Fig. 10.10-7 provides such a
description. RTL_IMPLEMENTATION is a behavioral-level description. The
structure of the implementation is left undefined; only the logical relationship

architecture RTL_IMPLEMENTATION of FULL_ADDER is
signal LO, L1, L2: BIT;
begin
LO <= B0 xor B1;
SUM <= LO xor CIN;
L1 <= B0 and B1;
L2 <= L0 and CIN;
COUT <= L1 or L2;
end RTL_IMPLEMENTATION;

FIGURE 10.10-7
VHDL RTL description of full adder.
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of the signals is given. The description is given in terms of external signals
defined in the interface description and three internal signals defined within the
RTL description. The procedure block defines the relationship among the external
and internal signals in terms of standard logic functions. Assuming that standard
logical operations are known by the VHDL simulator, the behavior of the full
adder could be simulated. Although this description does not specify structure
for the full adder, an implied structure is provided in this case because there is a
well-known mapping from the logic operations to standard hardware components.

As a final description of the operation of the full adder, an algorithmic
declaration is given as ALG_IMPLEMENTATION, shown in Fig. 10.10-8. The
ALG_IMPLEMENTATION declaration of the full adder is another behavioral
description. This definition bears little relationship to the underlying physical
implementation. Instead, a procedure is given to calculate the outputs of the
interface description based on the inputs from the same description. This decla-
ration is sufficient to simulate the operation of the full adder but provides little
indication about its structure. This type of description is most useful for high-
level definition and simulation of hardware operation. A high-level description
can be provided early in the design to allow use of simulation to verify expected
system behavior. Typically, an algorithmic description can have many different
physical realizations.

A complex hardware system is normally described by a hierarchy of VHDL
design entities. Initially, subcomponents of the design are defined by component
declarations that are similar to the interface descriptions given earlier for the full
adder. These components are interconnected to form more complex structures
as defined within body descriptions. These complex structures may, in turn, be
used as components in still more complex definitions. Ultimately, the definitions

architecture ALG_IMPLEMENTATION of FULL_ADDER is

begin
process (B0, B1, CIN)
variable S: BIT_VECTOR (1 to 3) := BO & B1 & CIN;
variable Num: INTEGER range 0 to 3 := 0;
begin
for I in 1 to 3 loop
if S(I) = "1’ then
Num := Num + 1;
end if;
end loop;

case Num is

when 0 => SUM <= '0’; COUT <= '0";
when 1 => SUM <= ’'1’; COUT <= '0°’;
when 2 => SUM <= '0’; COUT <= "1’ ;
when 3 => SUM <= '1’'; COUT <= '1’;

end case;
end process;
end ALG_IMPLEMENTATION;

FIGURE 10.10-8
VHDL Algorithmic description of full adder.
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of lower-level components, such as logic gates, are bound to VHDL library
definitions of primitive components. Then a particular instance of the component
is created along with its interconnections to other components, as defined within
the VHDL block statements. Thus, a VHDL description can be created for an
arbitrarily complex digital system design.

In this section, the two primary hardware design languages, EDIF and
VHDL, were introduced. Both have become ANSI standards, EDIF in 1987 and
VHDL in 1988. A full adder was used to provide simple examples of some of
the capabilities of each standard. Both EDIF and VHDL are in the process of
becoming widely accepted and supported by manufacturers and CAD vendors.
EDIF functions primarily to allow simplified interchange of circuit and layout
information between companies and within the same company. VHDL provides
high-level definition and simulation of complex digital systems. It can serve to
support analysis of design alternatives and to function as a common definition of
digital system operation in the presence of multiple vendors.

10.11 ALGORITHMIC LAYOUT GENERATION

Algorithmic generation of integrated circuit layout is often perceived as a solution
to the VLSI complexity problem. The basis of this well-known problem is that
integrated circuit design cost is increasing for complex chips while the product
life cycle is decreasing for these same chips. Design cost increases because of the
design time and computer resources that must be expended to complete a state-
of-the-art chip or system. Product life cycle is decreasing for these same designs
because of rapid advances in technology and fierce competition to get the next-
generation product to the market first.

Three approaches have been suggested to address this problem.?® The first
approach is to enhance the productivity of the human designer with faster com-
puter workstations and improved design analysis tools. To date, this approach
has been the most evident, and its description comprises the bulk of the topics in
this chapter. A second approach is to capture the knowledge of a human designer
with an expert system. This involves a knowledge base of concepts, rules, and
strategies. These are processed by an inference engine that produces design frag-
ments and design refinements to aid the design process. This approach is a sub-
ject of active research. A third approach is to algorithmically generate or synthe-
size designs from high-level descriptions or from parameterized definitions. Each
variant of this approach tends to concentrate on a particular target architecture.
For example, the PLA generators discussed earlier accept Boolean equations and
generate layout in a well-defined form. More complex algorithmic generators are
often termed silicon compilers. This section describes two pioneering efforts in
this area and follows with a description of a state-of-the-art microprocessor chip
set that was designed with heavy dependence on a commercial silicon compiler.

10.11.1 Bristle Blocks Silicon Compiler

The Bristle Blocks silicon compiler was first described in 1979.%6 The goal of
the Bristle Blocks system was to produce a layout mask set from a single-page,



DESIGN AUTOMATION AND VERIFICATION 939

high-level description of an integrated circuit. Many designs have their high-
level structure and function frozen early in the design cycle, before the effects
of such decisions are well known. If, on the other hand, a designer could use a
few building blocks, organize them, and then obtain complete mask layouts and
simulations early in the design cycle, then experimental configurations could be
tried with a minimum of effort.

The Bristle Blocks system attempted to build designs based on a philos-
ophy that includes structured design, hierarchical design, and multiple design
representations. The structured design methodology encourages the use of reg-
ular computing structures. The design philosophy is hierarchical in that a chip
is divided into sections that are subdivided to exploit hierarchical DRCs and
simulations. Finally, the blocks are described via multiple design representations
of increasing abstraction including layout, sticks, transistors, logic, text, simula-
tion, and ultimately block as shown in Fig. 10.11-1. Note the general agreement
between these levels of abstraction and those given in Fig. 7.1-1 of Chapter 7.

The fundamental unit in the Bristle Blocks system is the cell. Each cell
can contain geometrical primitives and references to other cells. A cell can
be compared to an HLL (high-level language) subroutine that contains some
primitive operations and contains some references to other subroutines. A cell
has the capability of containing each of the seven representations just presented.
Each cell contains only local information. External connections are specified by
their location and type. The location indicates where along the cell boundary
the connection should occur, and the type specifies the kind of connection—
for example, external output pad. The Bristle Blocks methodology gets its name
from the connection points, which are like bristles along the edges of the cells.
A primary directive of this method is that local information is kept local to the
cell, while global information such as the location and routing to an external pad
is kept separately.

Blocks
[
Simulation
[
Text Increasing
T abstraction
Logic
l :
Increasing
Transistors detail
' '
Sticks
]
Layout FIGURE 10.11-1
Bristle Blocks design abstraction hierarchy.
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Information specifying the various representations of cells is kept in cell
libraries and is accessed as needed. Each low-level cell must have been designed
before it can be used in the Bristle Blocks system. Each such cell is defined by
specifying the actual layout of the cell. It is felt that design of low-level cells
does not take much time because of their small size. Also, the design is relatively
error-free, and designer ingenuity is most beneficial at this design level.

The format of chip design using Bristle Blocks consists of physical, logical,
and temporal information. The physical format is composed of a central core
of operational logic and an instruction decoder, with these elements surrounded
by interface pads as in Fig. 10.11-2. The instruction decoder and pads are
automatically generated based on the requirements of the core section. The logical
format consists of core execution units that are interconnected by two buses. In
general, the order of placement of the core units is irrelevant to the operation of
the system. The appropriate control functions are generated from microcode words
that are provided from an external source and applied to the decoder inputs. The
temporal format is a nonoverlapping two-phase clock. One clock phase controls
the transfer of data between execution units via the buses. The other clock phase
controls execution within the core execution units. During the execution clock
phase, the buses are precharged to a high state.

The operation of the Bristle Blocks compiler requires three passes: a core
pass, a control pass, and a pad pass. The first pass constructs the core execution
units from user input and library cell definitions. The control pass adds the
instruction decoder to generate signals required by control connection points in

Pads
| 1| | | I I O
Execution Execution N Execution Execution
Data _ [ ynit unit unit || unit Data
Pads 1 — 2 — 3 4 Pads
[ | [ | L |
Buffers
Decoders
17 17 17 17 1 11
Control Pads

FIGURE 10.11-2
Physical format for Bristle Blocks compiler layout.
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the core section. The pad pass adds pads to the perimeter of the chip and routes
connections to the pads. User input to the compiler consists of three types of
information. First, the microcode width and field decomposition of the control
word is specified. Then the data word width and the buses that run through the
core of the chip are defined. Finally, the execution units of the chip’s core are
defined along with any parameter values required to expand the units.

During the core layout phase, the various core cells must be interconnected.
To minimize intercell routing of wires, it is advantageous for the cells to maintain
a common pitch for interface connections. This requires a common width for all
cells, so all cells must be designed to match the width of the widest cell. If a
wider cell is added in the future, then all other cells would have to be redesigned
to match the new constraint. A solution to this dilemma is to provide stretchable
cells. This idea is a major contribution of this methodology. Each core cell is
designed with places to stretch so that the cell width is constrained only by a
minimum dimension. During the first pass, all core cells are scanned to determine
the cell that constrains the minimum width. Then all other cells are stretched to
match this width.

Other layout details are fixed during the first phase as well. For example,
power requirements may indicate widening of the power buses. Each individual
core cell is designed under interface constraints necessary to allow it to mesh with
any other core cell without causing design or electrical rule violations. Finally, a
bus start and stop capability along with precharge circuits are added to each bus.

The control phase generates control signal buffers to drive the control lines
required by the core execution units. Then the appropriate instruction decoder
is added to provide the control signals. The final stage of pad layout collects
all pad connection points, sorts the points into clockwise order, and then routes
connections to the pads.

The Bristle Blocks system generates data path chips based on micropro-
gram control from an external source. Chip area for layout was reported to be
within about 10% of hand layout using the same structured design methodology.
Although attempts were made to generalize the structure implied by the Bristle
Blocks methodology, other architectures are sufficiently different so as to require
separate classes of Bristle Blocks compilers. Several commercial vendors have
used the Bristle Blocks methodology as a basis for their products.

10.11.2 MacPitts Silicon Compiler

A flexible register-transfer-type language called MacPitts was described in 1982 to
address the generation of microprogram-sequenced data path designs.?’ Designs
described in this high-level language are compiled into a technology-independent
intermediate form. The intermediate form is then compiled into a CIF geometrical
layout description, which can be submitted to a silicon foundry for fabrication.
The latter compilation is accomplished by limiting the possible degrees of freedom
in mask layout and restricting the layout to a fixed target architecture. The target
architecture consists of two distinct sections: a data path and a control unit. This
architecture is shown in Fig. 10.11-3. '
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FIGURE 10.11-3
MacPitts data path/control architecture.

The data path consists of registers of width specified by the MacPitts source
program. Operators for testing and modifying the data stored in the registers are
also created. Data is communicated to the external world through parallel buses of
wires called ports. A particular port can be an input port, a tri-state port, or an
1/0 port. The operations performed by the data path are specified by the control
unit. In general, the control unit generates signals that cause the data path to
perform certain operations. The data path returns signals that can be used to alter
the control sequence. In addition, the control unit communicates to the external
world through single-wire signals that may be input, output, tri-state, or I/O lines.

The data path is unconventional because it contains more than just a register
array and an ALU, as is common in many microprocessors. Rather, the data
path may contain many functional units interspersed among the registers. As
many functional units as are needed to compute a set of parallel operations may
be included between global buses. The functional units are interconnected by
dedicated local buses as required by the function they perform. A given unit may
take its input from several possible sources, so a multiplexer is often included
to select the particular input for an operation. The output of the units is either



DESIGN AUTOMATION AND VERIFICATION 943

a full word used by the data path or possibly a test result that is used directly by
the control unit. A unit like an adder can generate both a word (sum) for the data
path and a test signal (overflow) for the control unit. The number and type of
register/operator units provided in the data path differ from system to system as
specified by the MacPitts source language.

The control unit is implemented as a simplified variation of a finite-state
machine. A typical FSM consists of combinatorial logic and a state register; the
combinatorial logic computes the output signals and the next-state information.
If the program flow is sequential, this general form of FSM is less efficient than
simply using a counter to present the next state. The MacPitts compiler generates
a FSM consisting of a counter and a state stack to allow subroutine calls. The
logic portion of the control unit is implemented by a Weinberger array layout
style consisting of interconnected NOR gates. This regular form for logic allows
multilevel realizations of logic within the control unit for increased efficiency
compared with a PLA-style implementation.

The MacPitts silicon compiler is an example of the use of algorithmic-
level design specifications and an automation of the refinement process used to
create a layout description. Standard design practice cycles between a synthesis
step to create a design and an analysis step to demonstrate that the design
meets prescribed objectives. Usually, the analysis step requires location and
removal of flaws that are injected during the design synthesis. If the MacPitts
compilation correctly generates layout corresponding to the high-level description,
the design task is reduced to one of properly specifying that high-level description.
An additional potential advantage of this design method accrues because of
the technology independence of the intermediate-level representation generated
from the high-level MacPitts source language. Because a technology-dependent
synthesizer is used to create the layout from the intermediate-level representation,
only this portion of the synthesis system needs to be replaced to generate the same
design in a different technology.

10.11.3 Commercial Silicon Compilers

Following the early efforts described in this section, several commercial ventures
were started to develop silicon compiler technology. New companies were formed
to capitalize on the potential of this methodology, and existing CAD vendors
developed efforts in the synthesis and silicon compilation areas. For the most
part, silicon compilation has been applied only in isolated cases without great
commercial success. However, a possible exception that may demonstrate the
maturing of silicon compiler technology is described next.

A recently announced product, the Motorola 88000 RISC processor, was
developed largely with silicon compiler technology.?® Skilled IC designers com-
pleted the design of the 164,000-transistor CPU chip in only 20 calendar months,
a productivity increase reported to be a factor of 10 to 20. A second team built
the companion 750,000-transistor cache chip in only 11 months. The individual
leaf cells of these products were laid out manually, but parameterized module
generators speeded the design once the leaf cells were complete.
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The design was started in a top-down manner with executable behavioral-
level specifications. Then designers began to implement the logic and layout
design of selected blocks. These low-level blocks were used to simulate the timing
requirements for the chip, with architectural changes made based on the simulation
results. Reusable, parameterized module generators were created for blocks such
as adders, subtracters, multipliers, register files, and decoders. Module generators
were also written for high-speed static RAM, tag memory, and translation buffers
on a memory management chip. Through the use of parameterized modules,
designers were able to make architectural revisions late in the design. Since
the module generators are reusable, further versions of this chip set should be
relatively easy to create. Also, because of the technology-independent description,
the design should be easier to port to another process or technology.

The result reported here is an important step in the application of silicon
compilers to commercial chip development. It may be noted that the apparent
success in this case is a result of automating the assembly process of handcrafted
leaf cells. Silicon compilation has also been extended to analog design for circuits
such as CMOS op amps.? It will be interesting to watch the development of
silicon compilers with broader applicability and with true synthesis capabilities.

10.12 SUMMARY

The use of computers has become essential to the design of VLSI circuits because
of the complexity of such circuits. Computers are used to create, store, verify,
modify, and interchange design information. The application areas of computer-
based tools are broad and extend over the range of design hierarchies shown in Fig.
7.1-1. In fact, one expert in the area has classified computer-based tools according
to their level of hierarchy and date of widespread use. This evolution commenced
with the 1970s, when computers were used to aid in the design and checking of
integrated circuit layout. The early 1980s saw an influx of computer-based tools
for circuit and logic design, including schematic capture tools. Then the late
1980s saw the introduction of computer-based tools that work at the RTL level
of design. These include synthesis tools that automatically create lower levels of
the design hierarchy from previously designed cells. In the early 1990s, tools that
work at the system level will likely become prominent. Synthesis and analysis
tools, both based on high-level block diagrams and behavioral descriptions of a
design, are examples of this capability.

As each new generation of CAD tools becomes prominent, new tool ideas
and new companies are formed. Eventually, the market settles on a few concepts
and firms that represent the most useful innovations with the best evolutionary
ties to existing design tools. At each stage of this development, the world of VLSI
design opens to a broader cadre of designers who require less knowledge of the
underlying technology to make productive use of VLSI. For example, the number
of logic designers is much greater than the number of integrated circuit layout
specialists. In the 1980s, when computer tools based on logic descriptions became
widely available, a far greater number of designers could use VLSI technology.
The number of system designers and programmers who could use VLSI based
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on RTL or algorithmic descriptions is, in turn, much larger than the number of
skilled logic designers. Thus, it has been the trend that more and more designers
have access to the capabilities of VLSI technology as time progresses. Computer-
based tools are the primary driving force for this trend.

The material in this chapter represents an introduction to many of the com-
puter-based tools that are used in design automation and design verification. The
section headings indicate coverage of integrated circuit layout, symbolic circuit
representation, computer check plots, design rule checks, circuit extraction, dig-
ital circuit simulation, switch and logic simulation, timing analysis, RTL simula-
tion, hardware design languages, and algorithmic layout generation. Other impor-
tant areas of integrated circuit CAD that are not introduced in this chapter include
process simulation, schematic capture, place and route (discussed briefly in con-
junction with gate arrays in Chapter 9), mixed-mode simulation (combined analog
and digital simulation—a growing number of integrated circuits contain both ana-
log and digital sections), testability and fault analysis, and logic synthesis. Each
of these areas provides its own important contributions to the design of VLSI
circuits.

The intent of this chapter has been to cover many of the CAD tools and
methods that blend with the material presented in the first nine chapters and to
introduce some tools that are just now coming into prominence, such as hardware
design languages and algorithmic layout generation. Two primary sources of
information regarding new CAD tools in any of the areas mentioned above are (1)
the Design Automation Conference (DAC) held each summer and sponsored by
the Association of Computing Machinery (ACM) and the IEEE Computer Society,
and (2) the International Conference on Computer-Aided Design (ICCAD) held
each fall and sponsored by the IEEE.
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PROBLEMS

Section 10.1

10.1. Using engineering paper or the equivalent, plot the layout described by the fol-

lowing statements, based on the definitions of Table 10.1-1 and Table 10.1-2.

L1 L4
B01344 B00154
B01523 B018154
B01382 LS
B80415 B9122
L3 B41022
B05142 B91222

B3948 B11922
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10.2. By hand, digitize the Manhattan layout shown in Fig. 10.1-4a. Assume that the
lines are metal that ends at the figure edges and the width and spacing are 2 units
each.

10.3. The layout for the block letter L is described by the following macro, based on
the definitions of Table 10.1-1 and Table 10.1-2.

M4

L1
B0041
BO115S
E
C410102

Show the layout resulting from the C statement above (a) if the rotation precedes
the translation and (b) if the order of translation and rotation is reversed. Is the first
order sufficient to create any desired layout?

Section 10.2

10.4. Show how to modify the description of Fig. 10.1-6 so that the parameter VERT
can be used to modify the vertical dimension and the parameter HORZ can be
used to modify the horizontal dimension.

10.5. Create a Sticks diagram for the circuit of Fig. 10.2-5.

10.6. Show the circuit diagram of a Weinberger array for an exclusive-OR gate with
inputs @ and b and output c.

10.7. Show a digraph for the logic specified by the following equations.

X =AB +CD
Y =BC+ X
Z =AB +AY + X

Section 10.3

10.8. Assume that a good layout density metric is 200 A2 per transistor. How many
transistors can reasonably be displayed on a 24-line by 80-character A/N CRT
display?

10.9. If a resolution of 5 dots per A is sufficient to display the details of a layout and
the layout requires 200 A2 per transistor, how many transistors can reasonably be
displayed on a laser printer with a resolution of 300 dots per inch and a page size
of 8 by 10 inches?

10.10. A Macintosh personal computer display has a resolution of 512 dots by 342 dots.
Using a metric of 5 dots per A for a readable display and 250 A2 per transistor,
how many transistors can be displayed on the Macintosh screen?

Section 10.4

10.11. Identify all the design rule errors listed in Fig. 10.4-7 on a copy of the check plot
of Fig. 10.4-6.

10.12. If a window template formed from a “plus” symbol is passed in raster scan fashion
over a design to check for spacing and width violations, some errors are missed.
Show an example of such an error.
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10.13.

Section

10.14.

10.15.

10.16.

Section
10.17.

Section

10.18.

10.19.

10.20.

Section

10.21.

Simple design rules are on the order of 1 to 3 A for spacings and widths. What
are the horizontal and vertical A dimensions required for a “plus” symbol used in
a raster scan DRC to check for Manhattan design rule violations?

10.5

Based on the capacitance values in Table 10.5-1, calculate the capacitance for
node 2* in Fig. 10.5-4 if layer 3 is polysilicon, layer 5 is a contact, layer 4 is
aluminum, and the extracted dimensions are in microns.

Using the raster scan algorithm described in this chapter, how many different node
numbers will be assigned in scanning the block letter H represented as a 5 X 7 dot
matrix? At what point in the scan (left to right and top to bottom) will the list of
nodes that must be merged be complete? (Give the x,y coordinates of the point.)
Some circuit extraction algorithms estimate connection resistance from the
extracted area and perimeter values assuming rectangular shapes. Derive an algo-
rithm based on area A and perimeter P to estimate resistance R in terms of resis-
tance per square (sheet resistance). Estimate the resistance for an area of 10 square
units and a perimeter of 22 units, assuming the terminals are on opposite sides.
Is there more than one possible answer?

10.6

If the time to simulate a circuit goes up as the 1.75 power of the number of nodes,
and a 100-node circuit requires 30 seconds of computer time, approximately how
much time would be required to simulate a circuit with 100,000 nodes?

10.7

Provide a logic diagram for the circuit defined by the following net list description.
The syntax is (function output input-1...input-n).

(invert sb s)
(nor x a s)
(nor y b sb)
(mor fxy)

Based on the switch-level results for the byte-wide adder presented in Sec. 10.7,
estimate the maximum clock frequency for the circuit, and explain what limits this
clock frequency.

Provide logic-level and transistor-level net list descriptions for the quasi-static
memory cells of Fig. 10.2-4 g and b. The function (pullup a) can be used to
describe a depletion pullup transistor attached to node a.

10.8

For a direct realization of the following logic equations, identify all signal paths.
Label the paths by using the logical names for signals. The path B,BC,X,Y is an
example of one path. Assuming unit delays for the logic gates, find the longest
and shortest paths.

X = AD + BC
= AC+ X + BD
Z = BY + ACX



10.22.

10.23.

10.24.
10.25.
10.26.
Section
10.27.
10.28.

10.29.

10.30.

Section

10.31.

10.32.
10.33.

10.34.
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Assume a string of » ripple-carry full-adders where the carry out cout(n-1) of full-
adder (n-1) is sent to the carry in cin(n) of full adder n. If a timing analyzer is
used on this string of full-adders, what would you expect to find for the longest
path?

For a circuit with four input ports, three output ports, and one bidirectional port,
how many signal paths are possible? How does the number of paths increase as
the number of ports increases?

For the circuit of Fig. 10.2-5, (if possible) set the signal directions of each transistor
using the rules developed in this chapter.

For the circuit of Fig. 10.7-4, set the signal directions of all possible transistors
using the rules developed in this chapter.

If the a input of a two-input exclusive-OR gate is rising, what can you tell about
the output signal in terms of the b input?

10.9

Describe a 4 X 4-bit shift-and-rotate multiplication using the simple RTL defined
in the chapter. You may want to add shift and logical operators.

Based on the description in Fig. 10.9-1, identify and total the unique bits of
processor state defined for the 68000 processor.

Using the definition of the effective address operation of Fig. 10.9-2, indicate
the operations performed to compute the effective address for a word-length
postincrement instruction. How does the word-length predecrement instruction
differ?

Using the partial LISP definition of a RISC processor in Fig. 10.9-4 as an example,
write a LISP function for the NOT operation.

10.10

Based on the EDIF description given in Fig. 10.10-2 for the full-adder of Fig.
10.10-1, give an EDIF description of the NAND-NAND full-adder circuit of Fig.
10.7-2.

Using the EDIF physical layout description of Fig. 10.10-4 as an example, convert
the static memory cell definition of Fig. 10.1-6a to an equivalent EDIF description.
Give a VHDL interface description and structural body description for the NAND-
NAND full-adder circuit of Fig. 10.7-2.

Provide a VHDL interface description and RTL body description for the NAND-
NAND full-adder circuit of Fig. 10.7-2.



