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FIGURE 10.4-4
DRC fatality meta rule.

10.4.2 Computer Design Rule Checks

If a designer creates or changes a geometrical specification file manually, a design
rule check (DRC) is required. Because of the large number of geometries and the
wide variation in number and style of geometrical design rules in today’s circuits,
computer-based DRCs are necessary. Two different styles of DRC programs are
in wide use. These can be categorized as polygonal checks and raster scan checks.
Both styles will be described briefly.

Polygonal design rule checks are widely used within the semiconductor
industry. The geometrical specification file is expanded to produce polygons
defining all connected areas for the layer(s) of interest. Note that the layer of
interest may be a composite area such as active transistor area or perhaps depletion
transistor area. Or it may be a difference area such as the ion implantation
overhang created by subtracting the depletion transistor area from the ion implan-
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tation area. These special areas can be defined by logical operations on primitive
layers. Once the polygonal definitions are formed, they can be analyzed for width
and spacing errors. One valuable feature of encircling a connected area with a
single polygon is that electrical connectivity information is immediately available.
Polygonal design rule checks require substantial computing resources because of
the many mathematical operations that must be performed during the check.

Design rule checks can also be performed in a relatively simple way as raster
scan checks by passing small filters over a rasterized image of the integrated
circuit. To allow this, an entire geometrical specification file is instantiated
(expanded into the geometries and layers that represent the layout) within a two-
dimensional array where the dimensions represent the x and y coordinates of a
point and the contents are binary variables to indicate the presence or absence of
each layout level. The resolution of the x and y coordinates limits the precision
of the design rule checks. Filters such as a 4 X 4 array,!? a “plus” symbol,
or a circled “plus” symbol'> have been used to scan the instantiated layout to
check for design rule violations. These methods are conceptually simple and
computationally clean, but lack the accuracy and connectivity information of the
polygonal methods.

10.4.3 Design Rule Checker Output

To demonstrate the results from a raster scan DRC program, several errors were
placed in a geometrical specification file. The layout for this file is shown in Fig.
10.4-6. The resulting output from the DRC program is shown in Fig. 10.4-7. The
DRC program outputs a heading that gives the name of the file, the date and time,
the bounding box coordinates for the checked area, and the macro number. Below
the heading, a list of all vertical and horizontal errors is provided. This particular
sample contains three vertical and four horizontal errors. Each violation is shown
by a one-line entry containing the identification of the violated rule, the x and y
coordinates of the violation, the violation or error distance, and the length over
which the violation occurred. The resolution of the layout of Fig. 10.4-6 and the
DRC results of Fig. 10.4-7 is 0.5 A.

Definitions of the seven rule violations from Fig. 10.4-7 are given in Table
10.4-1. In each case these errors involve a spacing violation. For example, Rule
6.2 is a metal spacing error. A glance at the upper left corner of Fig. 10.4-6
shows a T formed by a long horizontal metal section and a short vertical metal
section separated from the horizontal metal (top of the T) by about 1 A. From
Rule 6.2, the spacing must be at least 3 A unless the two metal sections should
be joined, in which case the spacing would be zero. As an exercise, the reader
should find the location of each of the errors listed in Fig. 10.4-7.

Once the cause of an error is determined, corrective action must be initiated.
Since the DRC output gives the exact x and y coordinates of the violation, it
is usually relatively simple to use an interactive graphics CRT to display the
error. Actually correcting the error may not be so simple. If the layout is loosely
packed, correction in place by adjusting a single geometrical figure can possibly
be done. For some layouts, however, an error will occur in a space-critical area,
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LDRC version 3.115

Design rule check of file: BGA.TAM

Date 9-MAR-89 Time 21:08:05

Xmin= 00 Xmax= 95.0

Ymin= 0.0 Ymax= 59.0

Macro name is BGMLT

Macro number is 99

Vertical errors

Rule X loc Y loc Error X len
6.2 55 47.5 1.0 4.0
5.3 22.0 17.0 0.5 2.0
6.1 82.5 20.5 1.0 12.5
Vertical error count: 3

Horizontal errors

Rule X loc Y loc Error X len
4.3 10.5 20.5 0.0 3.0
4.2 18.5 41.5 0.5 7.0
1.2 66.5 18.5 1.0 5.0
5.6 80.0 415 1.0 2.0

Horizontal error count:

Total number of Design rule violations: 7

Design-Rule Checker Execution:

CPU Time 0: 0:26.06
Page Faults 354

requiring changes of a large number of geometries. For this reason, it is crucial to
generate a correct layout through automatic means or, in the case of a handcrafted
design, to check the layout frequently for geometrical design-rule errors as it is
generated. With care, errors are caught early before correction causes difficult

FIGURE 10.4-7
DRC output for Fig. 10.4-6.

problems.

TABLE 10.4-1

Design rule error definitions

Rule Length Definition

1.2 3A Diffusion spacing

4.2 2A Polysilicon spacing

4.3 A Polysilicon-to-diffusion spacing
5.3 A Polysilicon larger than contact
5.6 A Metal larger than contact

6.1 3A Metal width

6.2 3A Metal spacing
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The DRC program used here was run in the batch mode on a computer after
the layout was complete. Many CAD systems allow DRCs as geometries are
entered through an interactive graphics CRT using an incremental DRC program.
Either the designer is prevented from placing geometries that would violate design
rules, or a pending violation is flagged immediately by an error message. This
minimizes the need for major changes after the layout is almost complete.

DRCs are one of the more time-consuming, yet important, design verifi-
cation steps. Both polygonal and raster scan DRCs are possible. A good DRC
program provides output that accurately identifies the type and location of each
error. A good interface between the DRC program and an interactive graphics
editor is important for displaying and correcting DRC errors.

10.5 CIRCUIT EXTRACTION

After the design and layout process is complete, MOS circuits are characterized
by a machine-readable specification prior to the mask-making step. This speci-
fication is usually a geometrical specification file as described earlier. This file
contains all the information about the geometries, levels, and placements for
the circuit to be fabricated. Because geometrical specification files contain large
quantities of detailed information about the integrated circuit, it is difficult for
a designer to determine whether this information accurately describes the circuit
that was intended. Fortunately, computerized methods exist to extract the circuit
information from the geometrical specification file. The process of extracting the
circuit information from the geometrical description is called circuit extraction.

A circuit extraction program expands the geometrical specification file of
the integrated circuit into a layer-by-layer description of the geometries and
their placements. This description is then scanned to locate all transistors and
interconnections for the circuit. A result of the circuit extraction program is a net
list. A net list is a set of statements that specifies the elements of a circuit (for
example, transistors or gates) and their interconnection. Individual transistors are
described along with the nodes to which they connect. This information allows
creation of a circuit diagram based on the actual geometrical specification file.
Most importantly, the extracted circuit can be compared with the original circuit
specified by the designer so that differences are annotated. A difference usually
indicates an error that must be corrected. This comparison is called an LVS (layout
versus schematic) design verification step.

In addition to providing the details of circuit interconnections, circuit extrac-
tion is useful for calculating layout areas and perimeters for each integrated cir-
cuit layer at each node of the circuit. These layout areas and perimeters can be
used to accurately calculate the parasitic capacitances and resistances that load
the active devices. Prior to the layout and extraction step, most circuit parasitics
can only be estimated by the designer. With accurate capacitance and resistance
values from circuit extraction, a design can be accurately simulated to ensure
correct operation. Thus, circuit extraction is an essential design verification tool
for accurate characterization of modern integrated circuits.
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10.5.1 A Simple Circuit Extraction Algorithm

One simple method of circuit extraction consists of two main steps. First, the
geometrical specification file is instantiated as a set of coordinates and levels
within a computer memory. This is essentially the same operation that was
required for 'the raster scan DRC described in the previous section. This method
requires a large computer memory to store the integrated circuit levels at a
resolution matching the smallest features of the integrated circuit. For example, a
5 mm by 5 mm die using a process with a A of 1 u could require over 25 million
individual memory locations to store the instantiated layout, where each memory
location corresponds to a 1 A by 1 A cell of layout. For a CMOS process, roughly
14 possible layout levels must be remembered for each location. This results in a
storage requirement of more than 350 megabits. One useful approach to minimize
the memory requirements is to instantiate the design file in overlapping strips.
All required circuit information is extracted from each strip before the next strip
is instantiated.

The second main step in circuit extraction is the extraction of transistor and
connectivity information from the instantiated layout. This is a straightforward,
but time-consuming task. The instantiated layout is scanned using a format typical
of that used to display television images. The scanning order described here is left-
to-right and top-to-bottom, with all integrated circuit levels scanned in parallel.
Information on the extent of each level is obtained, and relations between levels
that form transistors and contact cuts are derived.

A simple algorithm to determine connectivity at each level can be described
as follows. This algorithm requires the program to look at the current cell, the cell
to the left, and the cell above. Figure 10.5-1 shows conditions of interest where a
“_ indicates no level present and an “m” indicates the presence of a level (e.g.,
metal). If the current cell does not contain a level, action is not required. This
condition is shown in Fig. 10.5-1a by a template (upper part) and a 5 A by 5
A layout sample (lower part). If the current cell contains a level, four possible
cases are of interest; these are shown in Figs. 10.5-1b through 10.5-1e.

Cell templates for each possible condition

(a) Blank : (b) Upperleft: (c) Top edge :(d) Leftedge: (e) Inside

\ corner | | | corner

- - - mo m

- - | -m | mm X -m | mm
----- == === 1 = - ===} --mmm; - -mmm
----- I e e e e el -« e« 1 - -mmm! - -mmm
scanline—> - - - - - : --mmm: mmmmm : --mmm: mmmmm
----- , - -mmm , mmmmm , - -mmm ;| mmmmm
----- I - -mmm . mmmmm | - -mmm | mmmmm

Layout samples to demonstrate each template

FIGURE 10.5-1
Connectivity extraction.
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If the current cell contains a level, say metal, then four cases must be
examined. First, if neither the cell to the left nor the cell above contains metal,
then an upper left corner has been encountered as in Fig. 10.5-1b, and a new
node number must be assigned to this location. As a second case, if the cell to
the left contains metal but the cell above does not, as in Fig. 10.5-1c, then the
extractor is moving along a top edge, and the current node is assigned the same
node number as the cell to the left. As a third case, if the cell above contains
metal but the cell to the left does not, as is shown in Fig. 10.5-1d, a left edge has
been found, and this node is assigned the same node number as the cell above.
As a final case, if both the cell above and the cell to the left contain metal, either
an internal point or an inside corner has been found. If the node numbers for
these cells are different, they should be merged. The inside corner template and
sample layout section are shown in Fig. 10.5-1e.

The procedure just described produces a list of nodes for each level and a
list of nodes that should be merged. Other information is also kept: for example,
a count of the number of times each node is encountered (the area), a count
of the number of nodes along an edge (the perimeter), and the location of the
first occurrence of each node. In addition, relationships between levels such as
contact cuts result in a second node merge list. This node merge list must be kept
separate from the homogeneous node merge list since the contact cuts represent
nodes of different materials that are connected. Electrically they represent the
same circuit node, but for capacitance and resistance calculations their individual
identity, area, and perimeter must be maintained.

Other interactions between levels must also be considered. Wherever
polysilicon and diffusion are coincident, an additional level (transistor) must
be created. This artificial level is processed in a manner similar to the other le-
vels to generate individual transistors and maintain their areas for capacitance and
drive strength calculations.

10.5.2 Circuit Extractor Output

As a minimum, the output from a circuit extraction program should contain a
complete list of transistors showing the type of transistor (p-channel, n-channel,
depletion, etc.) and the nodes to which the transistor is connected. The circuit
of Fig. 10.5-2 was extracted to show typical. output. A sample of such output,
called a net list, is shown in Fig. 10.5-3.

The extracted output of Fig. 10.5-3 lists an arbitrary trans1stor number;
the drain (DS1), source (DS2), and gate (G) connections; the type of transistor
(enhancement or depletion); the shape (ok means rectangular); the length and
width of the transistor; and the x and y coordinates of the upper left corner of the
transistor. All dimensions are based on the parameter A. The resolution of Fig.
10.5-2 and its extracted output listings is 0.5 A. With this information, transistor
size can be verified, individual transistors can be located, and the: Vpp connection
for the depletion transistors (the normal case) can be verified. The net list provides
sufficient information to allow reconstruction of a transistor-level circuit diagram
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FIGURE 10.5-2
Sample layout for circuit extraction.
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LEXTRACT version 3.337
Date 4-MAR-89 Time 19:54:46

Xmin= 00 Xmax= 950
Ymin= 00 Ymax= 214.0

Macro name is BGMLT
Macro number is 99

Final merge node list

Num DS1 DS2 G Type Shape Length  Width X-loc  Y-loc
1 GND 42 3 enhN ok 3.0 8.0 54.0 208.5
2 GND 6 4 enhN ok 3.0 8.0 22.0 203.5
3 42 7 5 enhN ok 3.0 8.0 54.0 203.5
4 6 vDD 6 depN ok 6.0 2.0 24.0 194.0
5 7 VDD 7 depN ok 6.0 20 56.0 194.0
6 3 VDD 3 depN ok 12.0 2.0 11.0 182.0
7 vDD 5 5 depN ok 12.0 2.0 76.0 173.0
8 3 51 4 enhN ok 3.0 5.0 5.0 170.0
9 9 vDD 9 depN ok 12.0 2.0 43.0 170.0

10 51 9 6 enhN ok 3.0 5.0 20.0 165.0

11 51 55 11 enhN ok 3.0 5.0 5.0 148.0

12 9 12 4 enhN ok 3.0 5.0 27.0 148.0

13 55 12 10 enhN ok 3.0 5.0 20.0 143.0

14 12 5 6 enhN ok 3.0 5.0 42,0 143.0

15 5 13 4 enhN ok 3.0 5.0 49.0 137.0

16 55 GND 14 enhN ok 3.0 5.0 5.0 126.0

17 12 17 11 enhN ok 3.0 5.0 27.0 126.0

18 GND 17 15 enhN ok 3.0 5.0 20.0 121.0

19 17 13 10 enhN ok 3.0 5.0 42.0 121.0

20 3 18 2 enhN ok 3.0 5.0 67.0 1125

FIGURE 10.5-3
Partial net list generated from Fig. 10.5-2 by circuit extractor (VDD and GND labels entered by
user).

(not shown) for the integrated circuit. The extracted circuit diagram can be
compared with the intended circuit diagram for omissions or errors.

Additional information based on the circuit extraction should be provided.
For example, for each integrated circuit layout level, a complete list of nodes
with their corresponding areas and perimeters can be provided. If the capacitance
per unit area is known for each level, the circuit extraction program can provide
an accurate estimate of the capacitance at each node. Figure 10.5-4 provides a
partial circuit extractor output for the layout of Fig. 10.5-2 showing the details of
the integrated circuit layers that form the nodes of a circuit. For each extracted
geometry, this output lists the area, top edge length, left edge length, x and
y coordinates of the upper left corner of the geometry, the new merged node
number, the old node number assigned to the geometry during extraction, the
layout level, and the node name (if any).

The output of Fig. 10.5-4 shows that node 1* is composed of a diffusion
geometry (level 1) with area of 84 square units and perimeter of 37 units, a metal
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LEXTRACT version 3.337
Date 4-MAR-89 Time 19:54:46

Xmin= 00 Xmax= 950
Ymin= 0.0 Ymax= 214.0

Macro name is BGMLT
Macro number is 99

Final merge node list

Area Top Left X-loc Y-loc New Old Lev Name

84.0 8.0 10.5 22.0 214.0 1% 1 1
4.0 20 2.0 25.5 2125 5 5 GND
380.0 95.0 4.0 0.0 213.5 4 4
4.0 20 2.0 57.5 212.5 6 5 GND
44.0 8.0 55 54.0 214.0 2 1
254.0 4.0 63.5 82.0 214.0 2% 3 3 Phi-2
4.0 2.0 2.0 83.0 205.5 11 5
154.0 13.0 38.0 73.0 150.5 87 3
380.0 95.0 4.0 0.0 206.5 9 4
90.0 10.5 22.5 65.5 1125 135 3
54.0 9.0 12.0 67.0 90.0 193 3
97.5 20.0 15.5 50.0 78.0 222 3
195.0 5.5 62.5 47.5 62.5 260 3
27.0 5.0 6.0 24.0 188.0 8* 33 1
4.0 2.0 20 25.5 185.5 38 5 vDD
12.0 6.0 2.0 23.0 182.0 46 1
380.0 95.0 4.0 0.0 186.5 37 4
4.0 2.0 2.0 57.5 185.5 39 5 VDD
87.0 5.0 18.0 56.0 188.0 34 1
12.0 6.0 2.0 55.0 170.0 68 1
4.0 2.0 2.0 76.5 185.5 40 5
43.0 5.0 14.0 75.0 187.0 36 1
193.0 15.0 20.5 5.0 123.0 16%* 122 1
4.0 2.0 20 11.0 111.5 137 5 GND
380.0 95.0 4.0 0.0 1125 134 4
4.0 2.0 20 27.0 111.5 139 5 GND
84.0 8.0 10.5 245 113.0 132 1
335.0 95.0 15.5 0.0 51.5 30* 273 4
4.0 2.0 2.0 6.5 39.0 308 5 B-in
27.5 55 5.0 5.0 40.5 299 1

FIGURE 10.5-4
Partial layer detail generated by circuit extractor for Fig. 10.5-2.

geometry (level 4) with area of 380 square units, another diffusion geometry
(level 1) of 44 square units area and 27 units perimeter, and two contacts (level
5) with area 4 square units each. The x and y coordinates of the upper left corner
of each geometry are given, allowing location of the geometry on a display or
plot. With the area and perimeter sizes determined, calculation of interconnection
capacitances is relatively easy using the values from Table 10.5-1. Example 10.5-
1 demonstrates this calculation.
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TABLE 10.5-1

Typical capacitance values (from Table 2B)
Layer Capacitance

Metal 0.025 fF/u?
Polysilicon 0.045 fF/u?

Gate 0.7 fF/u?

Diffusion (bottom) 0.33 fF/u?

Diffusion (sidewall) 0.9 fF/u

Example 10.5-1 Calculation of nodal interconnect capacitance. For a typical
MOS process, parasitic capacitance values to ground are given in Table 10.5-1.
Determine the total capacitance for node 1* of the circuit extraction output given
in Fig. 10.5-4. The units of extracted dimensions are u.

Solution: The total capacitance to ground at node 1* is the sum of the capacitance
of the layers that compose the node (the contact capacitances are neglected). The
capacitance can be calculated as follows.

Ciotat = Cuitt + Csidewatl + Cpoly + Cetal
C = (84 + 44)0.33 + (37 + 27)0.9 + (0)0.045 + (380)0.025 fF

C =42.24 +57.6 +9.5fF
C = 109.34 fF

If the geometrical specification language allows names to be assigned to
nodes, the names can be associated with their respective nodes by the circuit
extraction program. The ability to name nodes adds to the complexity of the
circuit extraction program since the name information must be kept after the
geometric layout is instantiated. This adds substantially to the active computer
memory required during a circuit extraction.

A node list with associated names is particularly valuable when checking for
open circuits and short circuits. For example, if all power and ground nodes are
named (Vpp or GND) and an individual node is associated with both the names
Vpp and GND, a short circuit between power and ground is indicated. This is not
desirable! Conversely, if the name GND is associated with two disjoint nodes,
an open circuit may be indicated for the GND node. Of course, these same name
tests can be applied to signal nodes and names, and this can be automated to report
potential problems. Figure 10.5-4 shows circuit extractor output for a circuit with
named nodes.

The nodes of Fig. 10.5-4 are named GND, Phi-2, VDD, and B-in. The fact
that two separate nodes (1* and 16*) are named GND is cause for suspicion. This
may indicate a discontinuity in the ground connection or, as in this case, it may
be the result of extracting a partial layout. It is very important to provide node
names early in a design and carry these names through the layout and simulation
steps.
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10.5.3 Interface to Other Programs

The output from a circuit extraction program can provide valuable input to circuit
and logic simulation programs. Without circuit extraction results, circuit and
logic simulations are based on manual input of the intended circuit connections
and estimated circuit parameters. If certain process characteristics such as layer
capacitance and transistor conductance are provided, a computer program can
combine the circuit extraction output with process characteristics to create an
input file for circuit simulation and logic simulation. Automatic generation of the
input files eliminates human error in providing these data and allows accurate
specification of capacitance values and transistor sizes.

Many modern integrated circuits are designed with a high-level circuit
description provided in the form of a hardware design language (HDL). If this
high-level description allows specification of circuit connections, a particularly
important check on circuit integrity can be performed as a result of circuit
extraction. The top-down circuit description from the HDL can be compared
directly with the bottom-up circuit description from the extracted circuit. This
check is valuable because it allows comparison between the designer’s intent and
the actual computer specification used to generate the fabrication masks.

Circuit extraction is a valuable design verification tool. With the aid of
an LVS program, the extracted circuit can be compared to the intended circuit.
Circuit extractor derived capacitances and resistances are extremely valuable for
accurate circuit simulation. The use of named nodes in the geometrical specifica-
tion file and subsequent extraction of these nodes allows open, short, and circuit
continuity tests.

10.6 DIGITAL CIRCUIT SIMULATION

Accurate circuit simulation is essential for the design of analog circuits such as
filters, comparators, and operational amplifiers. The need for circuit simulation
extends to the design of semiconductor memory chips even though their data are
stored in binary or digital form. For example, extremely sensitive sense amplifiers
are required within DRAM circuits to respond to the small change in voltage
caused by selecting a storage cell. SRAM circuits often use differential sensing
circuits to increase the speed of the data access operation. Both of these memory
types require accurate circuit Simulation for proper design. Circuits whose external
operation is totally digital may require accurate circuit simulation to model critical
signal-delay paths. Circuit simulations of high accuracy are almost universally
performed with a version of the SPICE circuit simulator described in Chapter 4.

Because of the large number of transistors in digital circuits such as micro-
processors, peripheral controllers, and digital signal processors, it is not com-
putationally feasible to perform a circuit simulation for the entire circuit. Since
the execution time of circuit simulation programs increases at a rate that is only
slightly less than the square of the number of nodes under consideration, verifica-
tion of the operation of large circuits must be accomplished by other means. Many
times a simulation at the logic or switch level (described in the next section) can
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provide sufficient verification of a digital circuit’s functionality. Sometimes even
logic simulation programs are too slow to model an entire processor’s behavior.
Special-purpose hardware simulators are required in these cases. !4

An intermediate class of circuit simulators is being investigated to provide
accurate circuit simulation without the computational penalty of a full circuit
simulator.!>16 These new simulators usually depend on one of two characteristic
features of digital circuits. First, most digital circuits are loosely coupled. This
means that disjoint parts of the circuit may be relatively independent of one
another. There are methods that take advantage of this structure by partitioning the
network to simplify the equations that must be solved during a simulation. Second,
only a small part, perhaps 25%, of a digital circuit is active during each clock
cycle. If a circuit simulator can take advantage of those quiescent portions of the
circuit, then only a small part of the circuit will result in simulation calculations
at any given time. In either of these two cases, accurate digital circuit simulation
can proceed at a relatively rapid rate compared to standard circuit simulation.
Nonetheless, digital circuits of any size are rarely simulated in their entirety
with circuit-level simulators. Rather, switch-level or logic-level simulators are
preferred. Such simulators are described in the next section.

10.7 LOGIC AND SWITCH SIMULATION

Digital integrated circuits are designed to operate with binary representations for
data. The basic presumption is that only two logic states are important for each
signal line. Thus, knowledge of a precise voltage versus time characteristic for
each node in the circuit is not necessary to design or analyze digital circuits. For
many purposes, this simplifies both the circuits and their analysis compared to
analog circuits. Nevertheless, computer simulation and verification of a circuit’s
functionality are necessary. Even though a digital circuit is designed based on
logic gates, the logic gates are fabricated from the basic transistors and conductors
allowed by the integrated circuit process. Therefore, it is often the case that the
electrical operation of a simple logic circuit must be characterized by using a
circuit simulator such as SPICE.

Though circuit simulation of digital circuits is frequently used, such circuit
simulation has several drawbacks. As described in the previous section, the
large number of logic gates in most digital integrated circuits precludes circuit
simulation of the entire system because of the extended computer time required.
Also, standard circuit simulators provide more detail about circuit voltages than is
required to analyze a logic circuit. In an effort to reduce computer simulation time
and to provide appropriate data to characterize the operation of digital circuits,
logic simulators were developed.

10.7.1 Logic-level Simulation

Logic simulators allow specification of the operation of a circuit block in terms
of its behavior. For example, a simple logic gate is described by its behavior,
such as AND, OR, or NOT. More complex digital blocks such as full adders
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and multiplexers are each described by their corresponding behavior rather than
their circuit structure. The circuit inputs are specified as binary values that change
at discrete time intervals. Logic simulator outputs are provided as binary values
as well. Pure logic simulation does not model time delays through logic blocks.
Only the logical behavior of the simulated system is considered, although the
concept of sequence wherein one action precedes another is important. Timed
logic simulation considers the delays of logic gates and blocks in determining
when outputs will change. Because a logic simulator models the circuit in terms
of an abstracted (less detailed) representation, larger circuits can be simulated in
a much shorter length of time than with circuit simulation. Consider the following
example.

Example 10.7-1 Comparison of circuit and logic simulation. In terms of the
number of circuit elements, nodes, and calculations, compare circuit simulation and
logic simulation requirements for a full adder built from a classical CMOS circuit
and from CMOS gates.

Solution

Circuit simulation. The two-level logic circuit for a classical CMOS full
adder requires 56 transistors and 33 nodes. This circuit is shown in Fig. 10.7-1. In
addition, continuous input waveforms that generate the eight possible logic input
conditions of three inputs must be provided. Each of these conditions must be stable
for a length of time sufficient to allow the sum and carry outputs to stabilize. This
requires about 100 to 200 time steps for each input condition. As a rough estimate,
a minimum of 800 to 1600 time-step calculauons would be required to characterize
the full-adder operation.

Logic simulation. A classical two-level logic circuit for a full adder requires
three inverters, three 2-input NAND gates, five 3-input NAND' gates, and a 4-
input NAND gate, for a total of 12 logic gates and 15 nodes. The logic gate
implementation is given in Fig. 10.7-2. Eight possible input combinations exist for
the full adder. Each of these combinations generates a digital value for the sum and
carry outputs. Correctness of the sum and carry outputs is easily verified by these
eight calculations.

Thus, circuit simulation requires approximately 1600 time-step calculations
involving 56 transistors and 33 nodes at each calculation. Logic simulation, on the
other hand, requires only 8 calculations, involving 12 logic gates and 15 nodes for
each calculation. Clearly, if simulation of the logical operation of the full adder is
the goal, logic simulation is simpler and faster. If accurate signal propagation time
or waveform characteristics are required, then circuit simulation is necessary.

Commercial logic simulators model digital logic in terms of four or more
states. As a minimum, these states include 1, 0, X, and Z. The logic values 1 and
0 model the high and low logic states. The value X is used to model an unknown
condition. For example, the value of an internal logic node may be unknown when
simulation is started. The value Z is used to model high-impedance (undriven)
nodes. A tri-state bus with all driving circuits turned off is an example of this
condition. Additional states may be defined to model the relative driving strength
of logic outputs. Of course, as the number of allowable states increases, the
simulator complexity and run time increase correspondingly.
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Classical CMOS full-adder circuit.

Many logic simulators provide a variety of digital blocks for use in modeling a
digital system. Besides the simple logic gates and more complex logic blocks
mentioned previously, models for large digital blocks such as ROMs, RAMs,
PLAs, ALUs, and even FSMs are often provided. Simulation capability is nor-
mally provided for both synchronous and asynchronous sequential circuits in
addition to simple combinational logic.
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FIGURE 10.7-2
NAND-NAND full-adder logic diagram.

Most logic simulators today are event driven. That is, calculations are required
only in response to external or internal events. External events include changes
in the state of inputs to the circuit. An internal event occurs when the output
of a logic function changes in response to changes in its inputs. For example,
when the input to an inverter changes, the corresponding change in the inverter
output is considered an event. The use of event-driven rather than fixed time-step
simulation algorithms reduces the time required for simulation of a circuit.

The capability of logic simulation is often measured in terms of events per
second or evaluations per second. Whenever the inputs to a logic block change,
an evaluation must occur to determine the correct output for the logic block.
Thus, an evaluation is the application of a circuit’s inputs to its behavior in order
to determine its outputs. An average factor of 2.5 evaluations per event is typical
for digital circuits. The performance of logic simulators depends on many factors
including the number of logic states, the cleverness of the algorithms chosen
for simulation, and the execution speed of the computer on which the simulator
is run. An execution rate of several thousand events per second is common for
today’s logic simulators on typical computer workstations.
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10.7.2 Switch-level Simulation

MOS integrated circuits present special problems for standard logic simulators
because of bidirectional pass transistors, transmission gates and charge storage.
Pass transistors are used frequently because of their desirable power dissipation
and interconnection characteristics. Pass transistors are difficult to simulate as
simple logic gates with a standard logic simulator. It might seem that the pass
transistor of Fig. 10.7-3a could be simulated by using the AND gate of Fig. 10.7-
3b. The following discussion shows why this is impractical.

A simple analysis of the operation of the circuits of Fig. 10.7-3 shows that
the two circuits are not equivalent. Assume initially that both inputs and the
output are low for both circuits. If a logic 1 is placed on a single input, the
output remains low for both circuits. If a logic 1 is placed on both inputs, the
output goes high for both circuits. If a logic 0 is placed at the i input of the
two circuits, the output goes to a 0 for both circuits. Thus far, the operation of
the two circuits seems identical. However, assume that all inputs and outputs
are initially high. Further, consider that the source diffusion of the output of the
pass transistor provides parasitic capacitance to ground. If the ¢ input to both
circuits is moved to a logic 0, the AND gate output goes to a logic 0 while the
pass transistor output remains high because of the charge storage at its output.
Clearly, the operation of the pass transistor cannot be accurately modeled in this
fashion. Either a more complex logic circuit is required, or the logic simulator
must be modified to account for drive strengths and charge storage. Examples of
drive strength are driven, resistive pullup, and undriven. The output of the pass
transistor just considered is undriven when its gate terminal is at O V.

Because selector circuits constructed from pass transistors and transmission
gates are widely used within MOS circuitry, a logic simulator for MOS must
allow specification of individual transistors and their connections in addition to
simple logic gates. When a logic simulator can describe transistors in addition to
standard Boolean logical primitives, it is called a switch-level simulator.

A typical switch-level simulator operates on circuits described by nodes,
transistors, and logic gate primitives. Nodes are equipotential points to which one
or more terminals of one or more transistors or logic primitives are connected.
Each node has an associated name, logic state, capacitance (to ground), list of
events, and perhaps other information. Each transistor has a type (n-channel, p-
channel, or depletion), effective resistance (width and length are required), and
node connection for its terminals. Macros are often allowed to describe circuits
composed of several transistors; for example, logic gates may be constructed
from nodes and transistors. These logic gates are then used as primitives.

A byte-wide MOS binary adder circuit will be used as an example to show
the operation of a switch-level simulator.!” The circuit for a full-adder stage is

c
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FIGURE 10.7-3

(a) (b) (a) Pass transistor logic, () AND-gate logic.
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given in Fig. 10.7-4, and the corresponding input net list for the switch-level
simulator is provided in Fig. 10.7-5. This net list describes the circuit of Fig.
10.7-4 in terms of four primitive elements: invert, trans, nor, and pulldown. The
net list starts with a definition of a single-bit adder macro and its five inputs {a
b cif phil phi2} and two outputs {sum cof} . Additionally, seven local signals {af
bf ci p pf k phi2f} that are internal to the full-adder macro are specified. Each
primitive element is then instantiated with its connections to other circuit nodes
defined by arguments. The formats for these four procedure calls are: (invert out
in), (trans gate source drain), (nor out in0 inl in2), and (pulldown drain gate).

Next, eight single-bit full adders are combined to define a byte-wide binary
adder, as shown in Fig. 10.7-6. The external nodes of the byte-wide full adder
are first defined. The a, b, cof, and sum nodes represent 8-bit vectors that are
expanded by the repeat statement. Signals phil and phi2 are the nonoverlapping
two-phase clock inputs. The connect statement joins the cifi carry-input scalar to
the first carry-in bit, cof.0. The repeat statement next creates eight copies of the
full-adder circuit.

The results of a sample switch-level simulation run for the byte-wide adder
are explained next. The input vector a was setto 11111111, while the input vector
b was set to 00000000. This condition provides the longest carry propagation path
for the full adder. The initial carry-in bit cifi is set to the low-true condition. A
nonoverlapping two-phase clock is defined with each phase high for 90 ns and
a 10 ns separation between phases. The results from a simulation for a complete
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FIGURE 10.7-4
Single-bit slice of clocked full-adder circuit.
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;Begin Full—-Adder Macro
(macro adder (a b cif phil phi2 sum cof)

(local af bf ci p pf k phi2f)

(invert bf b)

(invert af a)

(trans b pf a)
(trans bf pf af)
(invert (p 2 16) p
(invert (ci 2 16
(trans cif sum p
(trans ci sum pf
(invert phi2f ph
(nor k af bf phi2
(pulldown cof k)
(pulldown p phi2f)
(trans phitl cof vdd)
(trans p cof cif)

)
;End Ful l-Adder Macro

FIGURE 10.7-5
Input net list for logic simulator describing circuit of Fig. 10.7-4.

:Instantiate Byte-Wide Adder
(node a b cifi phil phi2 sum cof)
(connect cifi cof.0)
(repeat i 1 8
(adder a.i b.i cof.(1 — i) phitl phi2 sum.i cof.i)

;End of Byte-Wide Adder

FIGURE 10.7-6
Input net list for a byte-wide binary adder.

cycle (200 ns) of the two-phase clocks are given for the first and last sum (sum. 1,
sum.8) and carry-out (cof.1, cof.8) bits only. Only changes in logic value of these
bits are provided; that is, only simulator events for these bits are included. A
typical event produces a statement with the format: name = value @ time.

¢, cycle: (¢ = 0 ns to 90 ns), precharge
cof8=1@24
cof.l1 =1 @ 2.6
sum.1 =0 @ 2.8
sum.8 =0 @ 3.2

¢, cycle: (¢ = 100 ns to 190 ns), evaluate
cof.1 =0 @ 103.2

cof.1 =1 @ 104.4
sum.8 = 1 @ 104.9
cof.1 = 0 @ 109
sum.8 = 0 @ 129.8
cof.8 =0 @ 130
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Note that all carry bits are precharged to a 1 during each ¢; cycle. According to
the simulation results shown, the cof.8 bit changed to 1 at 2.4 ns and the cof.1
bit changed to 1 at 2.6 ns after ¢; was set high. As can be determined from the
circuit connections of Fig. 10.7-4, the sum bits should be set to 0 during each
¢, precharge cycle. The sum.1 bit went to O at 2.8 ns and the sum.8 bit went to
0 at 3.2 ns after ¢, was set high.

During the ¢, evaluate cycle, the carry and sum bits are set according to
the sum of the two addends a = 11111111 and b = 00000000 and the carry in
cifi = 0 (indicates a carry in). During the evaluate cycle cof.l changed to 0 at
3.2 ns, to 1 at 4.4 ns, and then back to 0 at 9.0 ns after ¢, was set high. The
most significant carry bit, cof.8, was set to 0 some 30 ns after ¢, was set high.
Also, sum.8 was set to 1 at 4.9 ns and then to O at 29.8 ns after ¢, was set high.
For the input vectors given, each full-adder stage should have set its sum bit to O
to indicate a sum of 0 and its carry bit to O to indicate a carry out of 1 (the carry
bits use negative logic). The final results from simulating the first clock cycle are
as expected. Note that the final event (cof.8 set to 0) occurred 30 ns after the ¢,
clock was set high.

Prior to the second clock cycle, the carry-in bit is set to a false condition
(cifi = 1). The following simulation results are for the second clock cycle
(200 ns = ¢ < 400 ns).

¢, cycle: (t = 200 ns to 290 ns), precharge
cof.8 = 1 @ 200.2
cof.1 =1 @ 200.4

¢, cycle: (¢ = 300 ns to 390 ns), evaluate
sum.8 = 1 @ 304.9
sum.1 = 1 @ 304.9

During the second ¢; cycle, the carry bits change as they are each
precharged to 1. The sum bits do not change during ¢, since they were already
each left set to O after the previous ¢, cycle. During the second ¢, cycle, the
sum and carry bits should be changed to indicate the sum of the two addends a
= 11111111 and b = 00000000 and the carry in cifi = 1. Thus, all sum bits
should be set to 1 and all carry out bits should be set to | indicating no carry out.
The simulation results show that the sum bits are each correctly set to 1 during
the second ¢, cycle. The carry bits do not change since they were each set to 1
during the precharge cycle.

For a third clock cycle (400 ns = ¢ < 600 ns), the carry in bit is set to 0
again (cifi = 0) and the results of the first clock cycle are repeated. These results
are as follows.

¢ cycle: (+ = 400 ns to 490 ns), precharge
sum.1 = 0 @ 402.8
sum.8 = 0 @ 403.2
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¢, cycle: (¢ = 500 ns to 590 ns), evaluate
cof.1 =0 @ 503.2
cof.1 =1 @ 504.4
sum.8 = 1 @ 504.9
cof.1 =0 @ 509
sum.8 = 0 @ 529.8
cof.8 = 0 @ 530

The previous results for three clock cycles demonstrate the operation of a
switch-level simulator. Both the timing of the byte-wide adder and the correct
logical operation of the adder are observed for the input conditions provided.
Other switch-level simulators have different input and output formats and different
capabilities, but all operate assuming discretized values for the circuit variables,
and all produce results much faster than complete circuit simulation.

10.7.3 Hardware Logic Simulation

Even with the increased speed of logic simulators as compared with circuit simu-
lators, full simulation of large digital circuits via general-purpose computers is not
practical. An alternate approach is in use by several companies. Special-purpose
hardware that executes many simulation steps in parallel has been developed to
speed the simulation process. One of the early, large parallel simulators was the
YSE (Yorktown Simulation Engine)!® developed by IBM. This hardware con-
sists of hundreds of identical processing units that each simulate part of the tar-
get circuit. By spreading the calculations over a large number of processors,
even large-mainframe computers can be simulated in detail. Of course, such
special-purpose hardware is expensive to build and to operate. Even so, several
companies now offer hardware accelerators to enhance the speed of logic
simulation. ‘

In the future, methods of machine verification other than total logic sim-
ulation must be found. Logic simulation time increases exponentially with the
number of logic components to be simulated. Thus, faster computers are neces-
sary to simulate next-generation computers that contain more logic components.
But how can the next-generation computers be built if the simulation capability
of présent-generation computers is inadequate?

Two current approaches to this problem are verification proofs and hierar-
chical simulation. For relatively simple hardware, it has been possible to verify
correct logical operation by mathematical proofs. Unfortunately, the utility of this
method diminishes quickly as the size and complexity of the hardware increase.
The second method, hierarchical simulation, attempts to model the target machine
at various levels of abstraction. Small blocks of hardware are verified by logic
simulation. These blocks are then interconnected and simulated together without
the internal detail of each block. Neither of these methods has been entirely
successful, and both are now active areas of research and development.
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10.8 TIMING ANALYSIS

For most digital circuits, a very important parameter is the maximum rate at
which the circuit can correctly process data. For microprocessors, the processing
speed is usually given in MIPS (millions of instructions per second); for scientific
calculations, the rate of execution is given in FLOPS (floating-point operations
per second); and for logical inference machines, the characteristic measure is LIPS
(logical inferences per second). The execution rate of each of these machines is
limited by parasitics and governed by its input clock. A primary goal in the design
of a digital computing machine is to operate with the fastest possible input clock.

Each digital integrated circuit has a maximum rate of operation. This rate
of operation is limited by the output drive capability of its logic elements and
by the capacitance and resistance of the loads they must drive. In a FSM (finite-
state machine), the clocking rate is limited primarily by the longest path through
its combinational logic section. For integrated circuits composed of large blocks
of circuitry, the maximum clocking rate may be limited by signal lines that must
carry information between the blocks. The designer’s task, then, is to find those
paths in an integrated circuit design that cause the maximum delay and then to
modify the circuitry to minimize that delay.

Finding the longest delay paths, called critical paths, for an integrated
circuit is not a simple task. Until recently, the most common technique for finding
critical delays was for the designer to perform detailed circuit simulation on the
paths that were suspected of contributing long delay times. Of course, using circuit
simulation for this task was not foolproof. Many times an unsuspected path that
was not considered for simulation would limit the maximum clock speed. More
recently, computer programs have been designed specifically to seek out delay
paths directly from the circuit definition without requiring simulation. This type
of computer analysis is called timing analysis.

10.8.1 Timing Analysis Methodology

Timing analysis differs from circuit and logic simulation in that all possible signal
paths are considered. Circuit simulation- and logic simulation both require the
specification of input signals to control the simulation. Thus, only delay paths
that are exercised by the particular set of inputs are tested. For many digital
circuits, it is computationally impossible to provide sufficient input conditions to
test the circuit fully. Timing analysis tools work by tracing signal paths instead
of simulating the circuit for specific inputs. Specifically, timing analysis uses
state-independent path tracing. Each time a logic gate is encountered, the gate is
assumed to pass the signal regardiess of the state of the other inputs to the gate.
A signal path is terminated only when an output is reached or a clocked storage
element is found. With this method, all possible delay paths are tested.

An example of timing analysis signal propagation through two logic gates
is shown in Fig. 10.8-1. The signal path starts at input x and reaches the NAND
gate. Inputs a and b for the NAND gate are assumed high to allow continuation
of the signal path. When the signal reaches the NOR gate, input c is assumed low
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c Y FIGURE 10.8-1

State-independent path trace.

to allow continued propagation of the signal. Finally, the signal reaches an output
y , where it terminates. The delay for this signal path includes the contributions of
the NAND gate, the NOR gate, and the series interconnections. The delay paths
fromxtoy, btoy, atoy and c to y would all be found by a timing analysis of
this circuit.

A second example shows a deficiency of timing analysis. From Fig. 10.8-2,
signal paths from a to b and from a to c are expected. However, state-independent
path tracing will also find a signal path from b to ¢ and vice versa. Although
the path from b to ¢ is a real path, it will not normally be exercised within this
circuit because node n is actively driven by the inverter. Analysis of additional
paths that will not be exercised during operation of a circuit can degrade the
performance of a timing analysis program. Circuit-level timing analyzers allow
direction setting for pass transistors and transmission gates to circumvent this
problem. Unfortunately, unless this is carefully done, some critical signal paths
may be eliminated from consideration.

10.8.2 Timing Analysis Tools

To provide further insight into the capabilities of circuit-level timing analysis
programs, two such programs will be described here. The first of these, called
TV, attempts to set directions for circuit elements by using rules. These rules,
by setting some transistor directions, minimize the number of false paths that are
found. The second tool, Crystal,® provides a wide range of capability, including
improved delay models and coverage for circuits built from CMOS technology.

TV timing analyzer for NMOS designs, operates from extracted circuit
parasitics and considers only stable, rising, and falling signal values. Program
execution time is minimized by a static analysis that sets signal flow direction and
clock qualification where possible. Otherwise, signal flow direction is determined
from a set of direction-finding rules. Some of the rules are independent of design
style. For example, the constant-propagation rule says that any transistor source
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Problem paths for timing analysis.
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- Constant propagation rule to set directions.

or drain connected to power, ground, or a clock must be a sink of signal flow,
while the other terminal must be a source. Figure 10.8-3 demonstrates this rule,
which by itself sets the directions for more than half the transistors in a typical
circuit. Another rule, demonstrated in Fig. 10.8-4, is based on Kirchoff’s current
law. This rule, the node current rule, states that if all but one of the transistors
to a node have a known direction, and the known transistors all sink or all
source signal flow, then the unknown transistor must transmit flow in the opposite
direction relative to the node. '

Other signal-flow rules depend on technology or design style. For example,
in an NMOS technology design, the k-ratio rule for inverters can be used to set
direction. This rule is based on a standard device sizing ratio k as discussed in
Chapter 7 for ratio logic. By finding the minimum resistance to ground through
each unset (direction not specified) transistor connected to a pullup, a transistor
can be considered as a pulldown (signal flow toward the pullup) or a pass
transistor (signal flow away from the pullup), depending on the resistance ratio.
The reasoning is that resistances to ground that satisfy the device sizing ratio k
with respect to the pullup path must be part of the pulldown circuit for a logic
gate. Transistors that cannot satisfy ratio rules can be safely classified as pass
transistors and their direction set accordingly. Other rules cover pass transistors
connected to a common node and having a common gate signal, and analogous
structures where the direction of a boundary transistor can be determined, thereby
allowing arrayed versions of the structure to have their directions set accordingly.

Signal path analysis is started from the clock or other input nodes. Paths are
investigated in a breadth-first manner in accordance with the transistor directions
that were set by the static analysis. Delays for paths are calculated based on the
capacitance of the interconnections and the resistance of driving and series pass

-‘_ ——» Known directions

Direction set by

T T ~~ ™ node current rule

-l_ FIGURE 10.84
Node current rule.
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transistors. Transistors are assigned a rising and a falling resistance from tables
based on their use in the circuit. Signal direction changes are propagated so that a
rising input signal to an inverter produces a falling output signal and vice versa.
Pass transistors continue the direction of the input signal. Because path delays
are calculated from a linearized model, the delays may differ from actual circuit
values by 30% or more.

Output of the TV program includes a user-selectable number of the worst-
case paths. Equivalent paths, such as parallel paths in a data bus, are condensed
in the output list so that only the last path in the list is reported. Other useful
information such as slack time for paths, excessive power used to drive a noncrit-
ical path, and nodes with unusually high capacitance are reported. The TV timing
analyzer was successfully used in the analysis of the MIPS series of micropro-
cessor chips?! developed at Stanford University.

Another timing analysis tool, Crystal, was developed to analyze the RISC
computer chips? developed at the University of California at Berkeley. This tool
has found widespread use throughout the VLSI design community, particularly
within universities. The timing analysis is based on a circuit description that is
extracted directly from a geometrical specification file. This description includes
transistor sizes and types, interconnection capacitance, and a rough calculation
of interconnection resistance. A simple delay model is used for each stage to
provide quick calculation of signal propagation delays along a path.

The Crystal timing analyzer was developed for MOS circuits with multiple
nonoverlapping clocks. The program attempts to determine how long each clock
phase must be to allow all signals to propagate to their destinations. The analysis
is state-independent, so all possible paths are checked. The user must specify a
minimum of information to begin the analysis. For two-phase clocking schemes,
only two signals must be specified. One of the clock phases is specified as a
rising edge or a falling edge to trigger the analysis. The other clock phase is
specified as a stable low value. The reason for this can be seen from the shift
register circuit of Fig. 10.8-5. Here a signal path trace is started from the o
clock. Without a specified value for the ¢, clock, the signal path would continue
through all the stages shown. If the ¢, clock is set to a stable low condition,
then the signal path will terminate correctly after the first stage. The path delay
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FIGURE 10.8-5
Clocked path analysis.



