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ANALOG SYSTEMS

8.0 INTRODUCTION

The systems viewpoint of microelectronic design for analog integrated circuits is
presented in this chapter. This material represents the highest level in the design
hierarchy illustrated in Table 5.0-1. It is built on the circuits of Chapter 6, which
are in turn built on the blocks and components of Chapter 5. A parallel hierarchy
is presented in Chapters 7 and 9 for digital integrated circuit design. The subject
matter in this chapter deals with the design of systems rather than the design
of circuits. In this sense, the designer moves to a higher plateau of design. For
example, rather than the design of op amps, the subject will include design with
op amps.

The material presented in this chapter has been selected to be representative
of the concepts and techniques in analog signal processing. In this chapter, we will
discuss digital-to-analog and analog-to-digital conversion; review the concepts of
continuous-time filter theory; and present switched capacitor filters, modulators
and multipliers, waveshaping circuits, and oscillators. Although these subjects
may be classified as either subsystems or systems, they are representative of
analog design concepts applied at a system level. A microelectronic system often
contains both digital and analog circuits and systems, so that in this sense, the
material in Chapters 8 and 9 should be treated as a subsystem.

8.1 ANALOG SIGNAL PROCESSING

Figure 8.1-1 shows a simple block diagram of a typical signal processing system.
As IC technology begins to exploit VLSI techniques and capabilities, many sys-
tems with this format will be built on a single chip. An example of this approach
is the analog signal processor.! The advent of analog sampled data techniques
and MOS technology has made the design of a general signal processor a viable
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A block diagram of a typical signal processing system.

approach. At the present, CMOS technology is more suitable for combining
analog and digital techniques. The primary reason for this situation is that digital
VLSI circuits are typically implemented in CMOS. For this reason we will
emphasize CMOS over BJT technology in this chapter. Recently, BJT and CMOS
technologies have been combined to produce a new technology called BiMOS.
BiMOS technology gives the designer an additional degree of freedom to select
the most suitable devices for a given application.

The first step in the design of an analog signal processing system is to
examine the specifications and to partition the system into the analog part and
the digital part. In most cases, the input signal is analog. It could be a speech
signal, a sensor output, a radar return, etc. The first block of Fig. 8.1-1 is a
preprocessing block. Typically, this block will consist of filters and an analog-
to-digital converter. Often, there are very strict speed and accuracy requirements
on the components in this block. The next block of the analog signal processor
is essentially a microprocessor. An obvious advantage of this approach is that
the function of the processor can easily be controlled and changed. Finally, it
is often necessary to provide an analog output. In this case, a postprocessing
block is necessary. It will typically contain a digital-to-analog converter and some
filtering. An interesting decision for the system designer is deciding where to
place the interfaces indicated by the dotted lines.

For signal processing, probably the most important system consideration is
the bandwidth of the signal to be processed. A graph of the bandwidths of a
variety of signals is given in Fig. 8.1-2. The bandwidths in this figure cover the
enormous range of 10 orders of magnitude in frequency. At the low end are the
seismic signals, which do not extend much below 1 Hz because of the absorption
characteristics of the earth. At the other extreme are the microwave signals, which
are not used much above 30 GHz because of the difficulties in performing even
the simplest forms of signal processing at higher frequencies.

To perform signal processing over this range of frequencies, a variety of
techniques have been developed that are almost exclusively analog above 10
MHz and digital below 100 Hz, as shown in Fig. 8.1-3. In the overlap region,
a tradeoff must be made between the accuracy and flexibility of a digital approach
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Bandwidths of signals used in signal processing applications.

and the low cost, power, and size of analog techniques. These considerations
illustrate some of the advantages of a combined MOS-BJT technology.

By assuming the continuing development of MOS and bipolar technology,
it is possible to extrapolate the trends of the past 10 years to obtain predictions
about the capability of IC technology in the next 10 years. Some of the
implications of these predictions have been considered and show that even at
the limits of scaling, the processing bandwidth of MOS technology will
have improved only to the point where it is equivalent to today’s advanced
bipolar technologies.

The ranges indicated in Fig. 8.1-3 are due to technology and are constantly
increasing. One of the fastest-moving boundaries in Fig. 8.1-3 is the upper
limit of the MOS digital logic, which, as the technology progresses to VLSI,
should be able to process signals by the year 1992 at bandwidths of 50-100
MHz. This will be accomplished by using greatly increased density along with
moderately increased device speeds. However, as can be seen in Fig. 8.1-3,
bipolar digital techniques are already able to process at these rates. Therefore,
VLSI will not make possible increased processing rates over what can now be
achieved with processors built with bipolar technology, but rather will offer
the primary advantages of reduced cost, size, and power requirements of the
MOS VLSI signal processors. This will make it possible for signal processing
techniques to make an impact in such cost-sensitive areas as consumer products
that until now have been unable to afford the costs of using more sophisticated
techniques. The combination of BJT and MOS technology offers the best promise
of high performance, VLSI signal processing capability.
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Signal bandwidths that can be processed by present-day (1989) technologies.

8.2 DIGITAL-TO-ANALOG CONVERTERS_

The ability to convert digital signals to analog and vice versa is very important
in signal processing. This section will examine the digital-to-analog conversion
aspect of this important interface. Analog-to-digital conversion will be discussed
in the next section. Most of the discussion in these two sections will be indepen-
dent of whether the technology is BIT or MOS. The op amps and comparators
used can be of either type. The switches will be MOS. The resistors and capac-
itors can be implemented by either technology, depending on the performance
requirements.

Figure 8.2-1 illustrates how analog-to-digital (A/D) and digital-to-analog
(D/A) converters are used in data systems.? In general, an A/D conversion
process will convert a sampled and held analog signal to a digital word that
is a representation of the analog sampled signal. Often, many analog inputs are
multiplexed to the A/D converter. The D/A conversion process is essentially the
inverse of the A/D process. Digital words are applied to the input of the D/A
converter to create from a reference voltage an analog output signal that is a
representation of the digital word.

This section will introduce the pr1nc1ples of D/A converters and will then
discuss the performance characterization of D/A converters. The various types
of linear D/A converters that will be examined include current-scaling, voltage-
scaling, charge-scaling, combinations of the preceding types, and serial D/A
converters. In the next section, we will see that D/A converters have an important
role in the design and implementation of some A/D converters.
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Converters in signal processing systems: (a) A/D, (b) D/A.

Figure 8.2-2a shows a conceptual block diagram of a D/A converter. The

inputs are a digital word of N bits (by, by, b3, . . .

, by ) and a reference voltage,

Vres. The voltage output, Voyr, can be expressed as

Vour = K VietD (8.2-1)
where K is a scaling factor and the digital word D is given as
by by b by
D—§+—+§+ +ZT (8.2-2)

N is the total number of bits of the digital word, and b; is the ith bit coefficient
and is either 0 or 1. Thus, the output of a D/A converter can be expressed by
combining Eqs. 8.2-1 and 8.2-2 to get

4
1

by bs
t Tt T

b
Vour = K Ve = C+ z—x— (8.2-3)
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(a) Conceptual block diagram of a D/A converter, (b) Clocked D/A converter.

or
Vour =KVl-ef(b12_1 + b22_2 + b32_3 + -+ by Z—N)

N
=K Vit . b;27 (8.2-4)
j=1

In many cases, the digital word is synchronously clocked. In this case it is
necessary to use latches to hold the word for conversion and to provide a sample-
and-hold circuit at the output, as shown in Fig. 8.2-2b. A voltage that has been
sampled and held is denoted by an asterisk. The sample-and-hold circuit consists
of a circuit such as that shown in Fig. 8.2-3, where the analog signal is sampled
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FIGURE 8.2-3
(a) Simple sample-and-hold circuit, (b) Waveforms illustrating the operation of the sample-and-hold.




618  VLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

on a capacitor, Cy, when the switch is closed; this is called the sample mode.
During the time that the switch is open, or the hold mode, the voltage at time
ty remains available at the output. An alternate version of the sample-and-hold
circuit with higher performance is shown in Fig. 8.2-4. It is important that the
sample-and-hold circuit be able to rapidly track changes in the input voltage
when in the sample mode and not discharge the capacitor when in the hold
mode.

The basic architecture of the D/A converter without an output sample-and-
hold circuit is shown in Fig. 8.2-5. The various blocks are a voltage reference,
which can be externally supplied, binary switches, a scaling network, and an
output amplifier. The voltage reference, binary switches, and scaling network
convert the digital word as either a voltage or current signal, and the output
amplifier converts this signal to a voltage signal that can be sampled without
affecting the value of the conversion.

The characterization of the D/A converter is very important in understanding
its use and design. The characteristics of the D/A converter can be divided into
static and dynamic properties. The static properties are independent of time and
include the converter transfer characteristic, quantization noise, dynamic range,
gain, offset, and nonlinearity.3

Figure 8.2-6 shows the transfer characteristic of an ideal D/A converter.
This D/A converter has been designed so that the analog output occurs at odd
multiples of the full scale signal (FS) divided by 16. The right-most bit of the
digital input code is called the least significant bit (LSB). Each time the LSB
changes, the analog output changes by FS/2" , where N is equal to the number
of digital bits. Although this change is an analog quantity, it is often called an
LSB change and should be interpreted as the analog change due to a change in
the LSB of the digital input code.

The resolution of a converter is the smallest analog change that can be
distinguished by an A/D converter or produced by a D/A converter. Resolution
may be stated in percent of FS, but is commonly expressed in number of bits,
N, where the converter has 2V possible states. The finite resolution of converters
causes an inherent uncertainty in digitizing an analog value. This uncertainty
is called the quantization noise and has a value of up to +0.5 LSB. In the
characteristic of Fig. 8.2-6, the quantization noise is seen to be =0.5LSB

FIGURE 8.2-4
An improved sample-and-hold circuit.
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Block diagram of a D/A converter.

or +FS/2¥ *1 about each of the multiples of FS/8. The straight line in Fig. 8.2-6
through the midpoint of each analog step change represents the ideal performance
of the D/A converter as N approaches infinity.

The full scale range (FSR) is the difference between the maximum and
minimum analog values and is equal to FS in Fig. 8.2-6 as N approaches infinity.
The dynamic range (DR) of a noiseless converter is the ratio of the FSR to the
smallest difference it can resolve. Thus, the DR can be given as

DR =2V (8.2-5)
or in terms of decibels as
DR(dB) = 20 loglo(ZN) = 6.02N (8.2-6)
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Ideal input-output characteristics for a 3-bit D/A converter.
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The signal-to-noise ratio (S/N) is also useful in characterizing the capability
of a converter. Assume that an analog ramp input is applied to an ideal A/D
converter cascaded with an ideal D/A converter. If the analog output of the D/A
converter is subtracted from the original analog ramp input, a sawtooth wave-
form of +FS/2¥ *1 results. This sawtooth waveform represents the ideal quan-
tization noise and has an rms value of (FS/2V )/ V12. The S/N expressed as a
power ratio in dB can be found from the ratio of the peak-to-peak signal, FS,
to the noise as
FS r
FS/[2VN (12)1/2]

S/N(dB) =10logo

=201log;o(2") + 20logio(12)"/? = 6.02N + 10.8 (8.2-7)

It can be seen that the S/N ratio increases by a factor of approximately 6 dB for
each additional bit of resolution.

The remaining static characteristics include offset error, gain error, non-
linearity, and nonmonotonicity. Figure 8.2-7 illustrates the first three of these
characteristics for a 3-bit D/A converter. In each case the ideal characteristic of
Fig. 8.2-6 is shown by dashed lines for comparison. An illustration of offset error
is shown in Fig. 8.2-7a. An offset error is seen to be a vertical shift in the D/A
transfer characteristic of the ideal D/A transfer characteristic. The offset error is
defined as the analog output value by which the transfer characteristic fails to
pass through zero. It may be expressed in millivolts or percent of FS.

Figure 8.2-7b illustrates the gain or scale factor error of a 3-bit D/A
converter. The gain or scale factor error is defined as the difference in the full
scale values between the ideal and actual transfer characteristics when the offset
error is zero and may be expressed in percent of full scale.

Figure 8.2-7c is an illustration of nonlinearity error in a 3-bit D/A
converter. Nonlinearity is further divided into integral nonlinearity and differential
nonlinearity. Integral linearity is a global measure of nonlinearity of the converter
and is defined as the maximum deviation of the actual transfer characteristic from
a straight line drawn between zero and the FS of the ideal converter. Integral
nonlinearity is expressed in terms of percent of FS or in terms of LSBs. In the
characteristics of Fig. 8.2-7c, the maximum deviation, which occurs at 111, is
—1.5 LSB or —18.75% of FS.

Differential nonlinearity is defined as the maximum deviation of any of the
analog output changes caused by an LSB change from its ideal size of FS/2¥ or
1 LSB. It is typically expressed in terms of =LSBs. In the characteristic of Fig.
8.2-7¢, the maximum deviation also occurs at 111 and is a differential nonlinear-
ity of £1 LSB. The characteristic of Fig. 8.2-8 shows how differential nonlin-
earity differs from integral nonlinearity. Figure 8.2-84 is for a 4-bit D/A converter
having *2 LSB integral nonlinearity and +0.5 LSB differential nonlinearity.
Figure 8.2-8b illustrates a 4-bit D/A converter having + 0.5 LSB integral non-
linearity and = 1 LSB differential nonlinearity.
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FIGURE 8.2-7
Examples of various types of static characteristics for a 3-bit D/A converter: (a) Offset error, (b)
Gain error, (¢) Nonlinearity.

Figure 8.2-9 illustrates a 3-bit D/A converter that is not monotonic. A
monotonic D/A converter is one in which an increasing digital input code produces
a continuously increasing analog output value. A nonmonotonic D/A converter
can result if the differential nonlinearity error exceeds =1 LSB. In Fig. 8.2-9, a
differential nonlinearity of +1.5 LSB occurs at a digital input code of 001. Note
that there are two occurrences of nonmonotonicity in Fig. 8.2-9.

The dynamic characteristics of the D/A converter are associated with chang-
es in the input digital word. The time required for the output of the converter to
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respond to a bit change is called the settling time and is defined similarly to the
settling time for op amps in Fig. 6.5-21. Settling time for D/A converters depends
on the type of converter and can range from as much as 100 us to less than 100
ns.

Many techniques have been used to implement D/A converters. Three ap-
proaches that are compatible with integrated circuit technology will be examined.
These methods are current-scaling or division, voltage-scaling or division,
and charge-scaling or division. Current-scaling is widely used with BJT techno-
logy, whereas voltage- and charge-scaling are popular for MOS technology.

8.2.1 Current-Scaling D/A Converters

The general principle of current-scaling or division D/A converters is shown in
Fig. 8.2-10a. The reference voltage is converted to binary-weighted currents,
I1,15,13,...,Ix. An implementation of this technique using resistors is shown
in Fig. 8.2-10b. Each of the switches, §;, is connected to Vs if the ith bit, b;,
is 1 and to ground if b; is 0. It is seen that the output voltage of the op amp can
be expressed as '
R, _~R(bi b, by, by

—Jn = -+
29 2\R "2R " 4R N —1R

Vou = Viet

=—Veef0127V + 52272 + 53273 + - + by27V) (8.2-8)

The feedback resistor, Rr, can be used to achieve the scaling factor K of Eq.
8.2-1. The switches can be moved from the V¢ side of the resistors to the
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(a) Conceptual illustration of a current-scaling D/A converter, (b) Implementation of (a).

side connected to the inverting input of the op amp. The advantage of the latter
configuration is that the voltages at the switch terminals are always ground. As
a consequence, the switch parasitic capacitances are not charged or discharged.

The binary-weighted resistor ladder configuration of Fig. 8.2-10b has the
disadvantage of a large ratio of component values. For example, the ratio of the
resistor for the MSB, Rysg, to the resistor for the LSB, Ry g, is

Rvysg _ 1
a = F (8.2-9)

For an 8-bit D/A converter, this gives a ratio of 1/128. The difficulty with this
approach is that the accuracy of Rysp must be much better than that of the value
of Ry sp for the converter to work properly. For example, Rysg of an 8-bit D/A
converter must have a relative accuracy with respect to Ry s to within +0.78%,
and preferably better. Such accuracy is difficult to achieve without trimming the
resistors, which is done for high-resolution D/A converters using binary-weighted
components.
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An alternative to the binary-weighted approach is the use of an R-2R ladder,
shown in Fig. 8.2-11. Each of the switches, S;, is connected to Q if the ith bit
is 1 and to ground if the ith bit is 0. Q is the inverting input of the op amp.
Obviously, the current I, is equal to V¢/2R. Using the fact that the resistance
to the right of any of the vertical 2R resistors is 2R, we see that the currents /,
L, I, ..., Iy are binary-weighted and given as

[, =21,=4l3=..=2""1Iy (8.2-10)

Thus, the output voltage of the R-2R D/A converter of Fig. 8.2-11 is given by
Eq. 8.2-8. Figure 8.2-11 is an example of using the switches connected either to
ground or the inverting terminal of the op amp. Vs and the inverting input of the
op amp (point Q) can be interchanged if desired. While the R-2R D/A converter
has twice as many resistors as the binary-weighted resistor D/A converter, it
requires resistors with only the ratio of 2:1, which is more practical to accomplish.
One disadvantage of the R-2R configuration is that there are up to 2V ~! floating
nodes, which are sensitive to parasitic capacitances. Floating nodes are nodes
with relatively large resistance to ground. The charging and discharging of these
capacitances will require time and delay the response of the converter. Possible
architectures for bipolar D/A converters using the R-2R ladder approach are shown
in Fig. 8.2-12. Note that the emitter areas of the BJT devices must be proportional
to the emitter current in Fig. 8.2-12a4.

Two approaches for using binary-weighted D/A converters while keeping the
MSB and LSB resistor ratios small deserve mention. The first is called cascading
and is illustrated in Fig. 8.2-13a. The use of a current divider allows two 4-bit,
binary-weighted current sources to be cascaded to achieve an 8-bit D/A converter.
The accuracy of the 1:16 attenuating resistors must be within the magnitude of
the LSB of the entire ladder. A second approach is shown in Fig. 8.2-13b and
is called the master-slave ladder. In this approach, a master ladder consists of the
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Two implementations of D/A converters using R-2R ladders and BJT current sinks. (a) Binary-
weighted emitter areas, and (b) Equal emitter areas. Both converters are described by Voyr =
—Relfby + 27 + ... + 2V " lpy1.

half of the bits that are most significant, and the slave ladder consists of the
half of the bits that are least significant. The crucial point in this approach is the
accuracy of the 1/16 current source for the slave ladder. It must have accuracy
better than +0.5 LSB.

8.2.2 Voltage-Scaling D/A Converters

Voltage-scaling uses series resistors connected between V¢ and ground to selec-
tively obtain voltages between these limits. For an N-bit converter, the resistor
string would have at least 2V segments. These segments can all be equal or
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FIGURE 8.2-13

(a) Use of current division to cascade two 4-bit, binary-weighted current sinks to get an 8-bit D/A
converter, (b) Master-slave technique to combine two 4-bit binary weighted current sources to obtain
an 8-bit D/A converter. Note that /| = [/16.

the end segments may be partial values, depending on the requirements. Figure
8.2-14a shows a 3-bit voltage scaling D/A converter. Note that the op amp is
used simply to buffer the resistor string. Each tap is connected to a switching tree
whose switches are controlled by the bits of the digital word. If the ith bit is 1,
then the switches controlled by b; are closed. If the ith bit is O, then the switches
controlled by b; are closed.

The voltage-scaling D/A converter of Fig. 8.2-14a works as follows.
Suppose that the digital word to be converted is by = 1,b, = 0, and b3 = 1.
Following the sequence of switches, we see that Voyr is equal to 11/16 of V.
In general, the voltage at any tap i of Fig. 8.2-14a can be expressed as

v, = ’°f(z —-0.5) (8.2-11)
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FIGURE 8.2-14
(a) Nlustration of a 3-bit voltage-scaling D/A converter, (b) Input-output characteristics of a.

Figure 8.2-14b shows the input-output characteristics of the D/A converter of Fig.
8.2-14a. It may be desirable to connect the bottom tap to ground, so that a well-
defined output (ground) is available when the digital word is all Os.

Example 8.2-1. Find the accuracy requirement for a resistor string consisting of
N equal segments as a function of the number of bits N. If the relative resistor
accuracy is 2%, what is the largest number of bits than can be resolved to within
+ 0.5 LSB?
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Solution. The ideal voltage to ground across k resistors can be expressed as

kR
Vi ==V
k = ZNR Y REF
The worst case variation in this voltage can be found by assuming that all resistors
above this point in the string are maximum and below this point are minimum.
Therefore, the worst case lowest voltage to ground across k resistors is

kR min VREF

Vi=
¢ (2N - k)Rmax + kRmin

The difference between the ideal and worst case voltages can be expressed as

Vi Vi kR kRuin

Veer Veer 2YR (2Y — K)Rmax + kRpin

Since this difference must be less that 0.5 LSB, then the desired relationship can
be obtained as

ko R L 05

28 (2N = k)Rmax + kRumin 2N

The relative accuracy of the resistor R can be expressed as AR/R, which gives
Rmax = R + 0.5AR and R, = R — 0.5AR. Normally, the worst case occurs when
k is midway in the resistor string or k = 0.5(2V). Assuming a relative accuracy of
2% and substituting the above values gives

|0.01] <27V

Solving this equation for N gives N = 6 as the largest integer.

It is seen that the voltage-scaling D/A structure is very regular and thus well
suited for MOS technology. An advantage of this architecture is that it guarantees
monotonicity, since the voltage at each tap cannot be greater than the tap below
it. The area required for the voltage-scaling D/A converter is large if the number
of bits is 8 or more. The converter will be sensitive to parasitic capacitances at
each of the floating nodes resulting in signal delays.

8.2.3 Charge-Scaling D/A Converters

Charge-scaling D/A converters operate by dividing the total charge applied to
a capacitor array. Typically, all capacitors are discharged first. Figure 8.2-15a
shows an illustration of a charge-scaling D/A converter. A nonoverlapping, two-
phase clock is used. ¢, indicates that a switch is closed during phase 1, and
similarly for ¢,. During ¢,, all capacitors in the array are discharged. Next,
during ¢, the capacitors associated with bits that are 1 are connected to Vs and
those with bits that are 0 are connected to ground. The resulting situation can be
described by equating the charge on the capacitors connected to Vs (Ceq) to the
charge in the total capacitors (Cio). This is expressed as

b2C bC by C

refCeq = Vier 1C + —— 2 22 4o+ o

= GotVour = 2CVour
(8.2-12)
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FIGURE 8.2-15 _
(a) Charge-scaling D/A converter, switches designated as ¢, b;( ¢ b;) close if both ¢, and b;(B;)
are true during ¢,, (b) Equivalent circuit of a.

From Eq. 8.2-12 we may solve for Voyr as
Vour = (01271 + 5272 + 53273 + - + by 2 VWV (8.2-13)

Another approach to understanding the circuit of Fig. 8.2-154 is to consider
the capacitor array as a capacitive attenuator, illustrated in Fig. 8.2-15b. As
before, Ceq consists of the sum of all capacitances connected to Viets and Ciy is
the sum of all the capacitors in the array.

The D/A of Fig. 8.2-15a can be extended to have both + and — analog
outputs if the bottom plates of all capacitors are connected to Vs during the ¢,
phase period. During the ¢, phase period, the capcitance associated with b;, C;
is connected to ground if b; is 1 or to Vi if b; is 0. The resulting output voltage
is

Vour = —(0127" + 52272 + 55273 4 - + by 2V Ve (8.2-14)

The decision to select the + or — output will require an additional sign bit. If
Vet is also bipolar, then a four-quadrant D/A converter results.

The accuracy of the capacitors and the area required are both factors that
limit the number of bits used. The accuracy of the D/A converter is seen to
depend totally on the capacitor ratios and any parasitics. The accuracy of the
equal-valued capacitor ratios for an MOS technology can be as low as 0.1% or
better. If all of the capacitor ratios have this accuracy, then the D/A converter
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of Fig. 8.2-15a should be capable of a 10-bit resolution. However, this implies
that the ratio between the MSB and LSB capacitors will be 1024:1 which is
undesirable from an area viewpoint. Also, the 0.1% capacitor ratio accuracy is
applicable only for ratios in the neighborhood of unity.

Example 8.2-2. Assume that unit capacitors of 50 x X 50 p are used in the charge-
scaling D/A converters of Fig. 8.2-15a and that the relative accuracy is 0.1%. Find
the number of bits possible using a worst case approach assuming that the worst
conditions occur at midscale (1 MSB). Next, assume that the relative accuracy of
the unit capacitors deteriorates with N as given by

A—; = 0.001 + 0.0001N
and find the number of bits possible using-a worst case approach.

Solution. From Fig. 8.2-15b the ideal output voltage of the charge-scaling D/A
. converter can be expressed as

Vour _ Ceq

Veer  2C
Assume the worst-case output voltage is given as

V bur _ Ceq(min)
VREF [2C — Ceql(max) + Ceq(min)

The difference between the ideal and the worst case output can be written as

Vour _Vour _ Ce Ceq(min)

Veer  Veer  2C  [2C — Cegl(max) + Cog(min)

If we assume that the worst-case condition occurs at midscale, then G, is equal to
C. Therefore the difference between the ideal output and the worst-case output is

VOUT _ Vém _ 1 C(mm)

Ve Veer 2 C(max) + C(min)

Replacing C(max) by C + 0.5AC and C(min) by C — 0.5AC and setting the
difference between the ideal and worst-case output voltage equal to 0.5 LSB
results in the following equation

AC _ 1

2 N
Using a value of 0.001 for AC/C gives approximately 11 bits. Using the
approximation for AC/C of

écg = 0.001 + 0.0001IN

shows that a 9-bit D/A converter should be realizable.
The cascade configuration of Fig. 8.2-13a can also be applied to the

charge-scaling configuration. Figure 8.2-16a shows a 13-bit D/A converter with
bipolar capability for V. The 1.016 pF capacitor acts as a 64:1 divider,
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which scales up the last 6 bits by a factor of 64. An equivalent circuit to the
13-bit D/A converter is shown in Fig. 8.2-16b. Two voltage sources are shown
that depend on the state of each of the switches. The right-hand voltage source
is given as

,
+b,GV;
Ve = > 22Vt (8.2-15)

where C; = C/2/~1 and the polarity of Vs depends on the polarity of the digital
word. The left-hand voltage source is given as

i3
b, GV
VL=§}—%fﬁ (8.2-16)
k=8

whete C, = C/(2%77). The overall output of the D/A converter of Fig. 8.2-16a
can be written as

1.016 pF
1¢

LA
I J¢
1pF| 1pF| 2pF| 4pF] 8pF[16 pli_3'2 PH_1pF| 2pF| 4pF| 8pF|16 pF| 32 pF| 64 J_
~ 3 T —

) _)I_@

Ve Vet

ol ol ol O
T e

I |
|
! 2| “biy] “byo ¢ 6 by | within the
|'— |-a— dashed box
: L - 77 )_b_ )_— )_— - )_— - - )__ )_— - | are ANDed
| Dia| biz| by} bigf bg| bg| b7 | bg| bs| by| by| by| b _: with 6.
B S G O N o N

1

ISR Pe!

u
!

64 pF 1.016 pF 127 pF

FIGURE 8.2-16
(a) A 13-bit, cascaded, charge-scaling D/A converter where C = 64 pF. Note that whether or not
the switches in the dashed box close depends on the state of the binary variables, (b) An equivalent

circuit of a.
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*+V
1% — ref
ouT 128

8.2-17)

ZbC +Zbk64

i=1

The charge-scaling D/A converters are sensitive to capacitive loading at
the summing node. If this capacitance is designated as Ci, then Eq. 8.2-17 is
modified as
CL )

128 (8.2-18)

Vour = (1

We see that G has caused an error of [1 - (G 128)]. If C. is 1% of the total
ladder capacitance, then a 1% error is introduced by the capacitance Cy.

The accuracy of the capacitor attenuator must also be good enough for the
cascade approach to work. A deviation of the 1.016 pF divider capacitance from
the desired ratio of 1.016:1 introduces both gain and linearity errors. Assuming
a variation of =AC in the 1.016 pF capacitor modifies the output given in Eq.
8.2-17 to

_ ‘_'—-Vref
Vour _( 128 )( 128)

If we assume that AC/C = +0.016 (1.6% error), then the gain term has an error of
AC) _
128)

Zbc +(l+AC)Zbk

i=1

(8.2-19)

1
|t 0am

which is negligible. The linearity error term is given by

Gain error term = 1 — (

% biG
Linearity error term = AC z %ﬁ

k=8

(8.2-21)

The worst-case error occurs for all b; = 1 and is essentially AC. It is also important
to keep + Vier and — Vs stable and equal in amplitude. This influences the long-
term stability and gain tracking of the D/A converter.

A different, charge redistribution, two-stage, 8-bit D/A converter is shown
in Fig. 8.2-17. An op amp is connected in its inverting configuration with the 2C
capacitor fed back from the output to the inverting input of the op amp. Because
the input node is a virtual ground during operation, the capacitive parasitics
associated with the input node to the op amp are eliminated. The converter of
Fig. 8.2-17 should give better transient response and less error because of the
removal of the influence of the capacitive parasitic at the op amp input.

8.2.4 D/A Converters Using Combinations of
Scaling Approaches

The voltage-scaling and charge-scaling approaches to implementing D/A convert-
ers can be combined, resulting in converters having a resolution that exceeds the
number of bits of the separate approaches. An M-bit resistor string and a K-bit
binary-weighted capacitor array can be used to achieve an N = (M + K)-bit
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conversion. Figure 8.2-18 gives an example of such a converter, where M = 4
and K = 8. The resistor string, R; through R, , provides inherently monotonic
Vet for 2 nominally identical voltage segments. The binary-weighted capacitor
array, C; through Cg, is used to subdivide any one of these voltage segments into
2K levels. This is accomplished by the following sequence of events. First, the
switches Sk, Sg, and Sy + 1 through Sk 4y g are closed, connecting the top and
bottom plates of the capacitors C; through Cy to ground. If the output of the D/A
converter is applied to any circuit having an offset, switch Sg could be connected
to this circuit rather than ground to cancel this offset. After opening switch Sg,
the buses A and B are connected across one of the resistors of the resistor string
as determined by the M MSBs. The upper and lower voltages across this resistor
will be Vier + 27 M V¢ and V[, respectively, where

Vit = Viet (01271 + 5272 + o + by 27M 7D 4 27M)

. (8.2-22)
Vref
Ry
Ry Sk
N Vour
—_— O
A3
] Cxl ~ Crkr | Ca| Cil .
I . |y C - C ~cee G~ C ~ C ~
=4: . : : oK-1 F oK-1 2 oK -1
K=8
i A
N\ N N
> >
SkeMA Sk+M-1,A Sme1,A Sme1A
| | S -
/9K+M,B /SK+M—1,B /SMn,B /SM+1B

) ] |
Rom B

FIGURE 8.2-18
A D/A converter using a combination of voltage-scaling and charge-scaling techniques. The 4 MSBs
are accomplished by voltage-scaling, and the 8 LSBs are accomplished by charge-scaling.
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Although the resistor string could take the form of Fig. 8.2-14a, the configura-
tion used in Fig. 8.2-18 switches both buses A and B. This causes any switch
imperfections, such as clock feedthrough, to be canceled. The proper switch clo-
sures including S5 and S will require decoding of the M bits. After 2~ Vet 18
applied between the buses A and B, we have the equivalent circuit of Fig. 8.2-
19a. The final step is to decide whether or not to connect the bottom plates of
the capacitors to bus A or bus B. This is determined by the bits of the digital
word being converted. The equivalent circuit for the analog output voltage of the
D/A converter of Fig. 8.2-18 is shown in Fig. 8.2-19b. The output of the D/A

converter of fig. 8.2-18 is given as

by +1
oM +1

Vour = Vier + Vier

by +2
M2

by +x
oM +K

(8.2-23)

by +k +1
Tt ok T

1+

CJ- C_L C‘L CJ_ c
SRINS AN sz—-f*

* /ISKWIE‘ /ISK*M“‘ A /Slmzl;: /S M1 A Vour
2- MVref C) /
- Sk.mp Skim-1,8 Swms2p Sm.1B
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— M |
2" Weer 2KC— Ceq, ey Vour
+ l
’ref -

FIGURE 8.2-19

(a) Equivalent circuit of Fig. 8.2-18 for the voltage scaling part, (b) Equivalent circuit of the entire
Fig. 8.2-18. C,, is the sum of all the capacitors whose bit is 1.
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The D/A converter of Fig. 8.2-18 has the advantage that, because the resistor
string is inherently monotonic, the M MSB bits will be monotonic regardless of
any resistor mismatch. This implies that the capacitor array has to be ratio-
accurate to only K bits and still be able to provide (M + K )-bit monotonic
conversion. The conversion speed for the resistors is faster than for the capacitors
because no precharging is necessary. Therefore, some interesting tradeoffs can be
made between area and speed of conversion. Techniques such as trimming the
resistor string using polysilicon fuses can help to improve the integral linearity
of this approach.

Other combinations of voltage scaling and charge scaling techniques are also
possible. Instead of using resistive string techniques for the MSBs and binary-
weighted capdcitors for the LSBs, one can use binary-weighted capacitors for the
MSBs and the resistor string for the LSBs. It is necessary to trim the resistors
to maintain sufficient integral and differential nonlinearity for this case. Figure
8.2-20 illustrates how such a D/A converter could be implemented. The 3 to 4
MSBs will probably have to be trimmed, using a technique such as polysilicon
fuses. The trimmed components are indicated by the dashed arrows through the
appropriate capacitors in Fig. 8.2-20.

The combination of the voltage scaling and charge scaling allows for opti-
mizing the performance. The choices are whether the MSBs will be resistors or
capacitors and how the total number of bits will be divided into MSBs and LSBs.

Vour
—— . — O
/ / / i y
A A A L L ref
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FIGURE 8.2-20
An illustration of a D/A converter using charge-scaling for MSBs and voltage-scaling for LSBs
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For example, knowing the area of a unit resistor and a unit capacitor and their
relative accuracies allows a tradeoff to be made in decreasing the area required
and decreasing the nonlinearity of the D/A converter.

8.2.5 Serial D/A Converters

The last category of D/A converters to be considered in this section is the serial
D/A converter. A serial D/A converter is one in which the conversion is done
sequentially. In the best case, one clock cycle is required to convert one bit.
Thus, N clock pulses would be required for the typical serial N-bit D/A converter.
The two types of serial converters that will be examined here are the charge
redistribution and the algorithmic D/A converters.

Figure 8.2-21 shows the simplified schematic of a serial charge redistribution
D/A converter. We see that this converter consists of four switches, two equal-
valued capacitors, and a reference voltage. The function of the switches is as
follows. S1 is called the redistribution switch and places C; in parallel with C,
causing their voltages to become identical through charge redistribution. Switch
S2 is used to precharge C) to V., if the ith bit, b;, is a 1, and switch S3 is used
to precharge C to 0 V if the ith bit is 0. Switch S4 is used at the beginning of
the conversion process to initially discharge C,. An example is used to illustrate
the operation of this D/A converter.

Example 8.2-3. Operation of the serial D/A converter. Assume that C, = C,
and that the digital word to be converted is given as b; = 1,b, = 1,b3 = 0, and
b, = 1. Find the final voltage across C; and G, in terms of V.

Solution. The conversion starts with the closing and opening of switch S4, so that
V2= 0. Since by = 1, then switch S2 is closed causing V¢ = Vs Next, switch S1
is closed, after switch S2 is opened, causing V¢ = V¢ = 0.5V s This completes
the conversion of the LSB. Figure 8.2-22 illustrates the waveforms across C; and
C, in this example. Going to the next LSB, b3, switch S3 is closed, discharging
C, to ground. When switch S3 opens and switch S1 closes, the voltage across both
C, and G, is 0.25V . Because the remaining bits are both 1, C; will be connected
to Vs and then connected to G, two times in succession. The final voltage across
Ci and G, will be (13/16) V,s. This sequence of events will require nine sequential
switch closures to complete the conversion.

52 S1 +

Vet S3 C1 Vo1 C2 2 Ve S4 Ve

[} +
[

+

+

FIGURE 8.2-21
Simplified schematic of a serial charge redistribution D/A converter.
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FIGURE 8.2-22 :
Waveforms of Fig. 8.2-21 for the conversion of 1101: (a) Voltage across Cl1, (b) Voltage across C2.

From this example, it can be seen that the serial D/A converter requires
considerable supporting external circuitry to make the decision of which switch
to close during the conversion process. Although the circuit for the conversion
is extremely simple, several sources of error will limit the performance of this
type of D/A converter. These sources of error include the capacitor parasitic
capacitances, the switch parasitic capacitances, and the clock feedthrough errors.
The capacitors C; and C, must be matched to within £0.5 LSB accuracy. This
converter has the advantage of monotonicity and requires very little area for the
portion shown in Fig. 8.2-21. An 8-bit converter using this technique has been
fabricated and has demonstrated a conversion time of 13.5 us.*

A second approach to serial D/A conversion is called algorithmic.’> Figure
8.2-23 illustrates the pipeline approach to implementing an algorithmic D/A
converter, consisting of unit delays and weighted summers. It can be shown that
the output of this circuit is

Vou(z) = (dlz_l + 27zt 4 e 4 27NV T hg TN
+27Vdy 1127 W DY (8.2-24)

where d; is a modified binary variable with a high state of +1 and a low state
of —1 and z 7! is defined as the unit delay operator. Figure 8.2-23 shows that it
takes n clock cycles for the digital word to be converted to an analog signal, even
though a new digital word can be converted on every clock cycle. An advantage

FIGURE 8.2-23
Pipeline approach to implementing an algorithmic D/A converter.
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of the pipeline converter is that it can consist of similar stages. If a zero is input
to the first amplifier, then the first stage is similar to the remaining stages.

The complexity of Fig. 8.2-23 can be reduced using the techniques of
replication and iteration. Here we shall consider only the iteration approach.
Equation 8.2-23 can be rewritten as

diz _lvref

o (8.2-25)

Vou(z) =

where the d; are either +1 or —1, determined as follows. Figure 8.2-24 shows
a block diagram realization of Eq. 8.2-24. It consists of two switches, A and B.
Switch A is closed when the ith bit is 1, and switch B is closed when the ith bit
is 0. d;Vy is summed with one-half of the previous output and applied to the
sample-and-hold circuit, which outputs the results for the ith-bit conversion. The
following example illustrates the conversion process.

Example 8.2-4. D/A conversion using the algorithmic method. Assume that the
digital word to be converted is 11001 in the order of MSB to LSB and find the
analog value of this digital word in terms of V.

Solution. The conversion starts by zeroing the output (not shown in Fig. 8.2-24).
Figure 8.2-25 is a plot of the output of this example. T is the period for the
conversion of one bit. The process starts with the LSB, which in this case is 1.
Switch A is closed and V¢ is summed with zero to give an output of + V.. On the
second conversion, the bit is 0 so that switch B is closed. Thus, — V. is summed
with (1/2) V¢ giving —(1/2) V¢ as the output. On the third conversion, the bit is
also 0, so that — Vs is summed with —(1/4) Vs to give an output of —(5/4)V .
On the fourth conversion, the bit is 1; thus, Vi is summed with —(5/8) Ve,
giving +(3/8)V s at the output. Finally, the MSB is unity, which causes V¢
to be summed with (3/16)V ¢, giving the final analog output of +(19/16)V .
Because the actual FSR of this example is +V ¢ or 2V ¢, the analog value of the
digital word 11001 is (19/32) X 2V ¢, or (19/16) Ves.

The algorithmic converter has the primary advantage of being independent
of capacitor ratios; thus, it is ofteri called the ratio-independent algorithmic D/A
converter. However, the amplifier with a gain of 1/2 will still depend on capacitor

+ Vit O—/A
+1 Sample
and »—0 VOUT
hold
+1
~ Veer °—/B

A
g

FIGURE 8.2-24
Equivalent realization of Fig. 8.2-23 using iterative techniques.
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FIGURE 8.2-25
Output waveform for Fig. 8.2-24 for the conditions of Example 8.2-2.

ratios or other ratios and must have an accuracy better than =0.5 LSB. The
algorithmic converter will be presented again under the subject of serial A/D
converters. The serial D/A converter is very simple but requires a longer time for
conversion. In some applications, these characteristics are advantageous.

D/A converter techniques compatible with BJT and MOS technology have
been presented in this section. Table 8.2-1 gives a summary of these D/A

TABLE 8.2-1
Comparison of the D/A conversion techniques compatible with BJT and

MOS technology

D/A converters Figure Advantage Disadvantage
Current:scaling, 8.2-10 Fast; insensitive to switch Large element spread;
binary-weighted parasitics nonmonotonic
Current-scaling, 8.2-11 Fast; small element spread Nonmonotonic; sensitive to
R-2R ladder switch parasitics

(continued)
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TABLE 8.2-1

(Continued)

D/A converters Figure Advantage Disadvantage

Current-scaling, 8.2-13a Minimum area; monotonic R must be accurate

cascade

Current-scaling, 8.2-13b Minimum area; monotonic 1, must be accurate

master-slave

Voltage-scaling 8.2-14a Monotonic Large area; sensitive to
parasitic capacitances

Charge-scaling 8.2-15a Fast Large element spread;
nonmonotonic

Charge-scaling, 8.2-16a Minimum area Nonmonotonic; divider must

cascade be accurate

Voltage-scaling, 8.2-18 Monotonic in MSBs Must trim for absolute

charge-scaling accuracy

Charge scaling, 8.2-20 Monotonic in LSBs Must trim for absolute

voltage-scaling accuracy

Serial, charge 8.2-21 Simple; minimum area Slow; requires complex

redistribution external circuits

Serial, algorithmic 8.2-24 Simple; minimum area Slow; requires complex

external circuits

converters. In the following sections, we shall examine the complementary subject
of A/D converters. Many of the A/D converters that will be discussed use the
D/A converters developed and illustrated in this section.

8.3 ANALOG-TO-DIGITAL CONVERTERS

The principles and characteristics of analog-to-digital converters are examined
in this section. The objective of an A/D converter is to determine the output
digital word corresponding to an analog input signal. The A/D converter usually
requires a sample-and-hold circuit at the input because it is not possible to convert
a changing analog input signal. We shall see that A/D converters often make use
of D/A converters, which is why this section follows the last. The types of A/D
converters that will be considered include the serial, successive approximation,
parallel (flash), and high performance A/D converters.

Figure §8.3-1 shows the block diagram of a basic parallel A/D converter. The
input to the A/D is from a sample-and-hold circuit and is designated as Vi*n. The
voltages V through Vy —; represent reference voltages that are all proportional
to a single reference voltage, V,¢. The input, along with a reference voltage,
Veet» i used to determine the digital word that best represents the sampled analog
input signal. The comparator outputs, X;, are then encoded into an output digital
word. The means by which the conversion is accomplished may be different from
that suggested in Fig. 8.3-1. Regardless of how the conversion is made, the A/D
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FIGURE 8.3-1
Block diagram of a general analog-to-digital converter.

converter is a device that converts a continuous range of input amplitude levels
into a discrete, finite set of digital words.

The characterization of the A/D converter is almost identical to that of
the D/A converter in the last section if the input and output definitions are
interchanged. The static A/D converter properties will be considered first. Figure
8.3-2 shows the transfer characteristic of an ideal 3-bit A/D converter. This
characteristic is analogous to Fig. 8.2-6 for the D/A converter. The analog input

Ideal transfer characteristic I
11 \J ,
I
110 }
o Nominal // : :
S 101 F quantized | l
o v1a|ue \ | : |
£ (£1LSB) | !
2 1or 2 T deal | !
= / | transition | I
2o | | ! |
=
o // : : : : |
! |
010 [ | 1 | |
= B LSB I | | Ideally
001 F /] | | | | | | quantized
- ()i 1->|<-1->I<-3->|<-1->g<-§->:<-§->|<-z—1—> analog
814,78 12,8 /4,8 input
000 ] N T R I 1 P

1 1 3 1 5 3 7
iFs jFs §Fs JFs 3Fs jFS §Fs Fs

Normalized analog input

FIGURE 8.3-2
Ideal input-output characteristics for a 3-bit A/D converter.
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voltage normalized to full scale (FS) is shown on the horizontal axis. The digital
output code is given on the vertical axis.

The A/D converter has been designed so that the output digital word changes
when the analog input is at odd multiples of FS/16. The LSB of the digital output
code changes each time the analog input changes by FS/2" where n is equal to
the number of digital bits. A change of FS/2" in the analog input is called an
LSB in the same manner as defined for the D/A converter. In Fig. 8.3-2, an LSB
is the length of the horizontal part of the stairstep, or FS/8. The ideally quantized
ranges of the analog input are shown just above the horizontal axis on Fig. 8.3-2.
These ranges are centered about even multiples of FS/16 except for the rightmost
and leftmost, which have no right or left limits, respectively.

The definitions of resolution and quantization noise were given in Sec. 8.2
for both the A/D and D/A converter. The straight line on Fig. 8.3-2 through
the midpoint of each step represents the ideal transfer characteristic of the A/D
converter as the resolution approaches infinity. The full scale range, dynamic
range, and the signal-to-noise ratio defined in Sec. 8.2 in terms of the analog
axis of the characteristic also apply to the A/D converter.

The remaining static characteristics include offset error, gain error, nonlin-
earity, and monotonicity. Figure 8.3-3 illustrates each one of these characteristics
for a 3-bit A/D converter. In each case, the ideal characteristic is shown by
dashed lines for comparison. Because these characteristics are usually referred to
the analog signal, the definitions given in Sec. 8.2 are also applicable for the
A/D converter. Figure 8.3-3a illustrates the offset error in a 3-bit A/D converter.
Figure 8.3-3b shows the gain error for the A/D converter and is similar to that of
Fig. 8.2-7b. Figure 8.3-3¢ shows the nonlinearity characteristics of a 3-bit A/D
converter. Integral and differential nonlinearity have the same definition as for the
D/A converter. The maximum deviation from ideal occurs at the transition from
110 to 111 and is 1.5 LSB or 18.75% of FS. Figure 8.3-3d illustrates excessive
differential nonlinearity, which causes nonmonotonic behavior in D/A converters.
However, in A/D converters, nonmonotonicity typically manifests itself as missed
codes. In Fig. 8.3-3d the digital codes 010, 011, and 110 are skipped.

The dynamic characteristics of an A/D converter have to do primarily with
the speed of operation. Because either the input or the output of a converter is
a digital word, sampling or discrete time signals are inherent. Therefore, the
rate at which the converter can operate is of interest. The conversion time is the
time from the application of the signal to start conversion to the availability of
the completed output signal (digital or analog). Typically, a D/A converter can
provide an analog output signal very soon after the digital word is applied (except
for the serial converters). On the other hand, A/D converters may require one or
more clock cycles following the application of the analog input signal before the
output digital word is available.

Because a sample-and-hold circuit is a key aspect of the A/D converter,
it is worthwhile to examine it in more detail than that of Fig. 8.2-3. Figure
8.3-4 shows the waveforms of a practical sample-and-hold circuit. The acquisition
time, indicated by t,, is the time during which the sample-and-hold circuit must
remain in the sample mode to ensure that the subsequent hold mode output will
be within a specified error band of the input level that existed at the instant of
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Chardcterization of a 3-bit A/D converter: (a) Offset error, (b) Scale factor (gain) error, (c) Integral
linearity, (d) Differential linearity.

the sample-and-hold conversion. The acquisition time assumes that the gain and
offset effects have been removed. The settling time, indicated by ¢, is the time
initerval between the sample-and-hold transition command and the time when the
output transient and subsequent ringing have settled to within a specified error
band. Thus, the minimum sample-and-hold time is equal to the sum of 7, and ¢;.
The minimum conversion time for an A/D converter is equal to Tsample, and the
maximum sample rate is

11
Tsample ts + 1q

fsample = (8.3-1)
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FIGURE 8.3-4
Waveforms for a sample-and-hold circuit.

The dynamic performance of the converter will depend largely on the dynamic
characteristics of the op amps and comparators. Therefore, the slew rate, settling
time, and overload recovery time of these circuits are of importance. It should be
remembered that f sampie is the maximum sample rate and the effective bandwidth
will be at least two times lower than f gmple to satisfy Nyquist criterion.

An important aspect of the conversion time is the aperture uncertainty. The
aperture uncertainty is the time jitter in the sample point and is caused by short-
term stability errors in the timebase generating the sample command to the A/D
converter. The time jitter causes an amplitude uncertainty, which depends on the
rate of rise of the signal at the sample point.

In addition to the dynamic characteristics of converters, there are char-
acteristics having to do with stability of operation. These characteristics
define the immunity of the converter to time, temperature, power supplies,
and component aging. These characteristics are typically expressed in terms
of the change of the converter performance parameter per unit change in
the quantity affecting influence. Examples include the temperature coefficient
of linearity, temperature coefficient of gain, and the temperature coefficient
of differential nonlinearity. Also of importance to the stability of a con-
verter is the voltage reference, which was presented in Chapter 5. The volt-
age reference can be supplied externally or internally to the integrated circuit
converter. It is important that the reference provide the stability necessary for
the proper operation of the converter.

It is of interest to consider how one can test converters. Testing is divided
into static and dynamic tests for D/A and A/D converters. Most test configurations
require the ability to resolve the analog signal to within +0.5 LSB, which can be
very demanding if the number of bits is large. Techniques for testing both types
of converters can be found in more detail in the literature.® Often, a computer
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(a) A method of testing A/D and D/A converters, (b) Typical output for the error voltage of a.

is used to perform the tests on the converter. One simple means of testing both the
D/A and A/D converters is shown in Fig. 8.3-54. In this configuration, the output
of an A/D converter is connected to the input of the D/A converter, resulting
in an error voltage that can be plotted on an X-Y recorder as a function of the
amplitude of the analog input signal. A typical portion of the error voltage for
a 12-bit converter is shown in Fig. 8.3-5b. In this test either the A/D or. D/A
converter will be the device under test (DUT). The other converter must have
higher performance and resolution than the DUT in order to be able to measure
its performance without error. The order of the A/D and D/A converters in Fig.
8.3-5a can be interchanged so that the input and output are digital words that can
be compared. '

Several other approaches to testing the performance of an A/D converter
will be briefly described. A high-quality sinusoid whose peak-to-peak amplitude
is equal to the full scale value of the analog input can be used to test the A/D
converter. Two such tests are called the histogram test and the Fast Fourier Trans-
form (FFT) test. In the histogram test, a sinusoid of FS peak-to-peak amplitude
is applied to the input of the A/D converter. The frequency is selected to avoid
coherence with the sample rate of the A/D converter. A large number of samples
of the digital output code are taken and expressed in the form of a histogram. A
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perfect A/D converter would produce a cusp-shaped probability density function
given by

—1
p(V) = [vr(A2 - Vz)”] 8.3-2)

where A is the peak amplitude of the sine wave (FS/2) and p(V ) is the probability
of an occurrence at a voltage V. Nonlinear behavior will show up as spikes rising
above the ideal probability density function, and missing codes will be gaps in
the probability density function. The frequency of the sinusoid can be increased
to determine the upper frequency limits for the A/D converter performance. The
histogram test can also detect offset and gain errors. Offset errors cause the
histogram to be asymmetrical about the A/D converter output code corresponding
to midscale. Gain errors can be determined from the width of the histogram.

The FFT test can also be used to evaluate the A/D converter performance.
First, a spectrally pure sinusoid of amplitude 0.5 FS is applied to the input of
the A/D converter. A 2V point record sampled at the maximum sampling rate
is taken and converted to the frequency domain using an FFT algorithm. The
harmonics of the input sinusoid caused by the nonlinearity of the A/D converter
are aliased into the baseband spectrum and can be used to identify the nonlinear
performance of the A/D converter. The frequency of the input sine wave must
be selected so that harmonics aliased into the baseband do not coincide with the
fundamental. If the ratio of the fundamental to the highest amplitude harmonic
on an N-bit A/D converter is greater than 6N dB, the error contribution of the
nonlinearity is insignificant compared with the quantization noise. Unfortunately,
even very low levels of harmonics may be sufficient to create encoding errors by
causing a voltage near a threshold level to go to the next quantization level.

The above tests are typical of those applied to complex A/D converters.
Further details and other types of testing procedures can be found in the
references.®~® We next consider the various architectures for realizing A/D con-
verters in MOS and/or bipolar technologies.

8.3.1 Serial A/D Converters

The serial A/D converter is similar to the serial D/A converter in that it performs
serial operations until the conversion is complete. We shall examine two archi-
tectures, called the single-slope and the dual-slope. Figure 8.3-6 gives the block
diagram of a single-slope serial A/D converter. This type of converter consists of
a ramp generator, an interval counter, a comparator, an AND gate, and a counter
that generates the output digital word. At the beginning of a conversion cycle,
the analog input is sampled and held and applied to the positive terminal of the
comparator. The counters are reset, and a clock is applied to both the time interval
counter and the AND gate. On the first clock pulse, the ramp generator begins
to integrate the reference voltage, V. If VIN is greater than the initial output of
the ramp generator, then the output of the ramp generator, which is applied to
the negative terminal of the comparator, begins to rise. Because VIN is greater
than the output of the ramp generator, the output of the comparator is high and
each clock pulse applied to the AND gate causes the counter at the output to



ANALOG SYSTEMS 649

*

Vin

Ramp Va Comparator D—> Output
Viet 0o—1 generator = T counter

VR
A « L
Reset VN ‘
. | M
Time 0 NT t Output
interval
counter
=1 '}
f=7 BITTATINIVTTIIET
Clock o
FIGURE 8.3-6

Block diagram of a single-slope serial A/D converter.

count. Finally, when the output of the ramp generator is equal to V;N, the output
of the comparator goes low, and the output counter is now inhibited. The binary
number representing the state of the output counter can now be converted to the
desired digital word format.

The single-slope A/D converter can have many different implementations.
For example, the interval counter can be replaced by logic to detect the state of
the comparator output and reset the ramp generator when its output has exceeded
VfN. The serial A/D converter has the advantage of simplicity of operation.
Disadvantages of the single-slope A/D converter are that it is subject to error
in the ramp generator and it is unipolar. Another disadvantage of the single-slope
A/D converter is that a long conversion time (2¥7T in the worst case) is required
if the input voltage is near the value of V..

A block diagram of a dual-slope A/D converter is shown in Fig. 8.3-7. The
basic advantage of this architecture is the elimination of the dependence of the
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control
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FIGURE 8.3-7
Block diagram of a dual-slope A/D converter.




650 visi DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

conversion process on the linearity and accuracy of the ramp generator. Initially,
V nt is zero, and the input is sampled and held. In this scheme, it is necessary
for V;N to be positive. The conversion process begins by resetting the positive
integrator until the output of the integrator is equal to the threshold, Vy,, of the
comparator. Next, S1 is closed, and Vg is integrated for N s number of clock
cycles. Figure 8.3-8 illustrates the conversion process. It is seen that the slope of
the voltage at Vyr is proportional to the amplitude of V ;‘N. The voltage, Vin(?),
during this time is given as

N et T
Viu(t) = K L Vindt + Vig(0) = KN TV + Vir  (8.3-3)

where T is the clock period. At the end of N, counts, the carry output of the
counter is applied to switch S2 and causes — Vs to be applied to the integrator.
Now the integrator integrates negatively with a constant slope because Vi is
constant. When V(1) becomes less than the value of V,, the counter is stopped,
and its binary count can be converted into the digital word. This is demonstrated
by considering Vi (#) during the time designated as #, in Fig. 8.3-8. This voltage
is given as

NouT
Vine(t) = Vin(0) + K JO (= Veer)dt (8.3-4)
Vit
{ -
T
|
0 ! -
0 —>‘ Reset i<— g
1y (start) |
e &
t=NouT
FIGURE 8.3-8

Waveforms illustrative of the dual-slope A/D converter of Fig. 8.3-7.
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However, when t = Ny, T, then Eq. 8.3-4 becomes

Vin N ouT) = (KN TV iy + Vip) = K VeV oucT (8.3-5)
Because Vi (NowtT) = Vy, then Eq. 8.3-5 can be solved for N oy, giving
Vi
Nout = Neet "7— (8.3-6)
ref

It is seen that N o, will be some fraction of N .y, where that fraction corresponds
to the ratio of V;N t0 Viet-

The output of the serial dual-slope D/A converter (N o) is not a function
of the threshold of the comparator, the slope of the integrator, or the clock rate.
Therefore, it is a very accurate method of conversion. The only disadvantage
is that it takes a worst-case time of 2(2V)T for a conversion, where N is the
number of bits of the A/D converter. The positive integrator of this scheme can
be replaced by a switched capacitor integrator, which will be discussed in Sec.
8.5.

The preceding two examples are representative of the architecture and result-
ing performance of serial A/D converters. Other forms of serial conversion exist
in the literature.® 1% The serial A/D converter can be expected to be slow but to
provide a high resolution. Typical values for serial A/D converters are conversion
frequencies of less than 100 Hz and greater than 12 bits of resolution.

8.3.2 Successive Approximation A/D Converters

A second category of A/D converters is called successive approximation A/D
converters. This class of A/D converters converts an analog input into an N-bit
digital word in N clock cycles. Consequently, the conversion time is less than
for the serial converters without much increase in the complexity of the circuit.
We will examine successive approximation converters that use a combination of
voltage-scaling and charge-scaling D/A converters, serial D/A converters, and
algorithmic D/A converters.

Figure 8.3-9 illustrates the architecture of a successive approximation A/D
converter. This converter consists of a comparator, a D/A converter, and digital
control logic. The function of the digital control logic is to determine the value
of each bit in a sequential manner based upon the output of the comparator.
To illustrate the conversion process, assume that the converter is unipolar (only
positive analog signals can be applied). The conversion cycle begins by sampling
the analog input signal to be converted. Next, the digital control circuit assumes
that the MSB is 1 and all other bits are 0. This digital word is applied to the
D/A converter, which generates an analog signal of 0.5V ¢, which is compared
to the sampled analog input, V ;N. If the comparator output is high, then the
digital control logic makes the MSB 1. If the comparator output is low, the digital
control logic makes the MSB 0. This completes the first step in the approximation
sequence. At this point, the value of the MSB is known. The approximation
process continues by once more applying a digital word to the D/A converter,
with the MSB having its proven value, the second bit guessed at 1, and all
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Example of a successive approximation A/D converter architecture.

remaining bits having a value of 0. Again, the sampled input is compared to
the output of the D/A converter with this digital word applied. If the output of
the comparator is high, the second bit is proven to be 1. If the output of the
comparator is low, the second bit is 0. The process continues in this manner until
all bits of the digital word have been decided by the successive approximation
process.

Figure 8.3-10 shows how the successive approximation sequence works in
converting the analog output of the D/A converter to the sampled analog input.
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0.5 Vet ———
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|

FIGURE 8.3-10
The successive approximation process.
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It is seen that the number of cycles required for the conversion to an N-bit word
is N. It is also observed that as N becomes large, the requirement of the compa-
rator to distinguish between almost identical signals must increase. Bipolar A/D
conversion can be achieved by using a sign bit to choose either — V¢ or V.

The digital control logic of Fig. 8.3-9 is often called a successive approx-
imation register (SAR). An example of a 5-bit successive approximation A/D
converter using a SAR is shown in Fig. 8.3-11. This SAR has the advantage of
compatibility with a bit-slice approach, which makes it attractive for integrated
circuit implementation. The bit-slice consists of a shift register (SR), an AND
gate (G), a SR flip-flops (FF) with direct reset capability, and an analog switch
(AS).

Figure 8.3-12 shows an example of a successive approximation A/D con-
verter that uses the voltage-scaling and charge-scaling D/A converter of Fig.
8.2-18. The extra components, in addition to the D/A converter, include a com-
parator and a SAR. From the concepts of Sec. 6.6, we know that the comparator
should have a gain greater than (Vi2M +K V), where V| is the minimum output
swing of the comparator required by the logic circuit it drives. For example, if
M + K = 12 and Vi = V,, then the comparator must have a voltage gain of
at least 4096.

5-bit D/A converter

LSB _|Reference
voltage
AS AS AS AS
- | 2 - | 3 - | 4 - | 5
: " - - Digital
MSB ] LSB  outputs
01 01 01 01
FF1 FF2 FF3 FF4 FF5
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more time for T T 1 T | T ] |
circuit transients ] ] |
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-I'I-rl-ﬂ}l- L L [ - L]
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o 1 : 1 : 1 : 1 : 1
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o | | |
Start pulse 1 ] ! 1
Shift resister
FIGURE 8.3-11

Five-bit successive approximation A/D converter with shift register control.




654  vLsi DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

Cx Cx, c,
S
c J_ Cc C. J_ J_ c _L F
P k2 5 F‘t ~
Comparator
+
s, TUIL TULT |7
Rom-1 o A
| S B Outputof _ |
. : - comparator
2
Capacitor switches
K_H Clock
= N B R B
-
-] .
Resistor : Successive approximation
. switches . register and switch control logic
Vin -
-

R

~ N —/ Start

(M + K) - bit output of A/D

FIGURE 8.3-12
A voltage-scaling, charge-scaling, successive approximation A/D converter.

The conversion operates as follows. With Sg closed, the bottom plates of
C; through Ck are connected through switch Sg to VIN The voltage stored on
the capacitor array at the end of the sampling period is actually VIN minus the
threshold voltage of the comparator, which removes the threshold as a source of
offset error. Because the comparator has unity feedback, it must be compensated
in order to remain stable in this step. After switch Sg is opened, a successive
approximation search among the resistor string taps is performed to find the
segment in which the stored sample lies. Next, buses A and B are switched to
the ends of the resistor defining this segment. Finally, the capacitor bottom plates
are switched in a successive approximation sequence until the comparator input
voltage converges back to the threshold voltage. The sequence of comparator.
outputs is a digital code corresponding to the unknown analog input signal. The
A/D converter in Fig. 8.3-12 is capable of 12-bit monotonic conversion with a
differential linearity of less than * LSB and a conversion time of 50 ms.!!

A successive approximation A/D converter using the serial D/A converter
of Fig. 8.2-21 is shown in Fig. 8.3-13. This converter works by converting the
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FIGURE 8.3-13
A serial A/D converter using the serial D/A converter of Fig. 8.2-21.

MSB, a;, first. (The ith bit is denoted as d; for D/A conversion and ith LSB
is denoted as a; for A/D conversion.) The control logic takes a very simple
form because the D/A input string at any given point in the conversion is just
the previously encoded word taken LSB first. For example, consider the point
during the A/D conversion where the first ¥ MSBs have been decided. To decide
the (K + 1)th MSB, a (K + 1)-bit word is formed in the D/A control register
by adding a 1 as the LSB to the K-bit word already encoded in the data storage
register. A (K + 1)-bit D/A conversion then establishes the value of ay—g by
comparison with the unknown voltage V’fN. The bit is then stored in the data
storage register, and the next serial D/A conversion is initiated. The conversion
sequence is shown in detail in Table 8.3-1. Altogether, N(N + 1) clock cycles
are required for an N-bit A/D converter using the configuration of Fig. 8.3-13.

TABLE 8.3-1
Conversion sequence for the serial D/A converter of Fig. 8.3-13.

D/A ' D/A input word Number of
conversion Comparator charging
number dy dy-1 dy -2 tee ds d, output steps
1 1 — — . it - ap 2

1 aj — - —_ as 4
3 1 ar a) — - d3 6
N-1 1 an—» an—3 as as ay—1 2N -1
N 1 an—1 an-2 U ajz a any 2N

Total number of charging steps = N(N + 1)
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An algorithmic A/D converter patterned after the algorithmic D/A converter

of the preceding section is shown in Fig. 8.3-14. This N-bit A/D converter consists
of N stages and N comparators for determining the signs of the N outputs. Each
stage takes its input, multiplies it by 2, and adds or subtracts the reference voltage
depending on the sign of the previous output. The comparator outputs form an
N-bit digital representation of the bipolar analog input to the first stage. The
operation of the algorithmic A/D converter can be demonstrated by the following
example.

Example 8.3-1. Hlustration of the operation of the algorithmic A/D
converter. Assume that the sampled analog input to a 4-bit algorithmic A/D con-
verter is 1.5 V. If V¢ is equal to 5 V, then the conversion proceeds as follows.
Since V;N = 1.5 V is positive, the output of the comparator of stage 1 is high,
which corresponds to a digital 1. Stage 1 then multiplies this value by 2 to get
3 V and subtracts V¢, obtaining an output of —2 V. Stage 2 input sees a negative
value, which causes the comparator of this stage to be low, equivalent to a digital
0. Stage 2 then multiplies —2 V by 2 and adds the 5 V reference to output a value
of 1 V. Because the output of stage 2 is positive, the comparator of stage 3 is high.
The 1 V signal is then multiplied by 2 and 5 V is subtracted, giving a stage 3 output
of —3 V. The conversion ends when the comparator of the fourth stage goes low
because of the negative input voltage from stage 3.

The digital output word is 1010 for this example. To determine whether this
is correct, we use the following formula.

VANALOG = Viefl0127! + 52272 + 5327 + -+ + by 27")

where b; is +1 if the ith bit is 1 and —1 if the ith bit is 0. In this example, we see
that

1

1 1
VANALOG = 5(2 27 3

li6 = 5(0.3125) = 1.5625

It is seen that the value of Vsnar 0 Will eventually converge to the value 1.5.

MSB LSB

- -1

*
Vin o— z > = |

+1 +1

Viet 0

FIGURE 8.3-14
Pipeline implementation of the algorithmic A/D converter.
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The algorithmic A/D converter of Fig. 8.3-14 has the disadvantage that the
time to convert a sample is N clock cycles, although one complete conversion
can be obtained at each clock cycle. The algorithmic A/D converter is considered
to be ratio-independent because the performance does not depend on the ratio
accuracy of a capacitor or resistor array. The multiplication by 2 of the first stage
must be accurate to within 1 LSB, which is a distinct disadvantage of the pipeline
configuration of the algorithmic A/D converter.

The iterative reduction of Fig. 8.2-23 resulting in Fig. 8.2-24 can be applied
to the A/D converter of Fig. 8.3-14 in a manner similar to what was done for
the algorithmic pipeline D/A converter. The analog output of the ith stage can be
expressed as

Voi = [2Vo,i—1 = biVieflz ™! (8.3-7)

where b; is +1 if the ith bit is 1 and —1 if the ith bit is 0. This equation can
be implemented with the circuit in Fig. 8.3-15a. The next step is to incorporate
the ability to sample the analog input voltage at the start of the conversion.
This step is shown in Fig. 8.3-15b. In this implementation, —V,s has been

Voi

Sample +Viet
and
hold I _T_
Vin B
(b)

FIGURE 8.3-15
(a) Implementation of Eq. 8.3-7, (b) Implementation of the iterative algorithmic A/D converter.
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replaced with ground for simplicity. The iterative version of the algorithmic
A/D converter consists of a sample-and-hold circuit, a gain-of-2 amplifier, a
comparator, and a reference subtraction circuit.

The operation of the converter involves first sampling the input signal by

connecting switch S1 to V. VIN is then applied to the gain-of-2 amplifier.
To extract the digital information from the input signal, the resultant signal,
denoted as V4, is compared to the reference voltage. If V4 is larger than Vs, the
corresponding bit is set to 1 and the reference voltage is then subtracted from V4.
If V4 is less than V¢, the corresponding bit is set to 0 and V4 is unchanged. The
resultant signal, denoted by Vg, is then transferred by means of switch S1 back
into the analog loop for another iteration. This process occurs until the desired
number of bits have been obtained, whereupon a new sampled value of the input
signal will be processed. The digital word is processed in a serial manner with
the MSB first. An example illustrates the process.

Example 8.3-2. Conversion process of an iterative algorithmic A/D
converter. The iterative algorithmic A/D converter of Fig. 8.3-15b is to be used
to convert an analog signal of 0.8V . Figure 8.3-16 shows the waveforms for
V4 and Vg during the process. T is the time for one iteration cycle. In the first
iteration, the analog input of 0.8V ¢ is applied by switch S1 and results in a value
for V4 of 1.6V, which corresponds to a Vg value of 0.6V ¢ and a MSB of
1. During the next iteration, Vp is multiplied by 2 to give a V4 of 1.2V . Thus,
the next bit is also 1, and Vp is 0.2V, V4 during the third iteration is 0.4V s,
resulting in the assignment of O for the next bit and a value of 0.4V, for Vp.
The fourth iteration gives V4 as 0.8V ¢, which gives Vz = 0.8V, and the fourth
bit as 0. The fifth iteration gives V4 = 1.6V o, Vg = 0.6V, and the fifth bit
as 1. This procedure continues as long as desired. The digital word after the fifth
iteration is 11001 and is equivalent to an analog voltage of 0.78125V .

78

ref

FIGURE 8.3-16
Waveforms for Example 8.3-2 and Fig. 8.3-15b: (a) V4, (b) Vp.
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The iterative algorithmic A/D converter can be constructed from very little
precision hardware. Its implementation in a monolithic technology can therefore
be area-efficient. A distinct advantage over the pipeline configuration is that all
of the gain-of-2 amplifiers are identical because only one is used in an iterative
manner. Sources of error for this A/D converter include low operational amplifier
gain, finite input offset voltage in the operational amplifier, charge injection from
the MOS switches, and capacitance voltage dependence. An integrated 12-bit A/D
converter using the approach of Fig. 8.3-15b has exhibited an experimental per-
formance having a differential linearity and integral linearity of 0.019% (0.8LSB)
and 0.034% (1.5LSB), respectively, for a sample rate of 4 kHz. These values
increased to 0.022% (0.9LSB) and 0.081% (3.2LSB) for a sample rate of 8 kHz.

The successive approximation A/D architecture is a very general one, as has
been shown. It can make use of any of the D/A converters we have illustrated.
If serial D/A converters are used, the conversion time is increased and the area
required is decreased. In general, successive approximation A/D converters can
have conversion times that fall within the range of 10* to 10° conversions/second.
They are capable of 8 to 12 bits of untrimmed accuracy. The number of bits can
be increased if trimming is permitted.

8.3.3 Parallel A/D Converters

In many applications, it is necessary to have a smaller conversion time than is
possible with the previously defined A/D converter architectures. This has led
to the development of high-speed A/D converters that use parallel techniques
to achieve short conversion times. The ultimate conversion speed is one clock
cycle, which typically consists of a set-up and a convert phase. Some of the high-
speed architectures trade off speed with area and require more than one clock
cycle but less than the N clock cycles required for the successive approximation
A/D architecture. Another method of improving the speed of the converter is
to increase the speed of the individual components. Typically, the comparator
sample time, Tyample (Se€ Eq. 8.3-1), is the limiting factor for the speed. In this
presentation, we shall consider the parallel, the time-interleaved, the two-step,
and the ripple approaches to implementing a high-speed A/D converter.

Figure 8.3-1 is a general block diagram of a high-speed A/D converter
known as the parallel or flash A/D converter. An example of how this converter
works is illustrated in Fig. 8.3-17. Figure 8.3-17 shows a 3-bit parallel A/D
converter. Vo is divided into eight values, as indicated in the figure. Each of
these values is applied to the positive terminal of a comparator. The outputs of
the comparators are taken to a digital encoding network, which determines the
digital output word from the comparator outputs. For example, if VfN is 0.6V,
then the top three comparator outputs are 1s and the bottom four are Os. The
digital encoding network would identify 100 as the corresponding digital word.
Many versions of this basic concept exist. For example, the voltage at the taps
may be in multiples of V¢/16 with V,/8 voltage differences between the taps.
Also, the resistor string can be connected between +V s and — Vs to achieve
bipolar conversion (positive and negative analog output voltages).
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FIGURE 8.3-17
A 3-bit parallel A/D converter.

The parallel A/D converter of Fig. 8.3-17 converts the analog signal to a
digital word in one clock cycle, which has two phase periods. During the first
phase period, the analog input voltage is sampled and applied to the comparator
inputs. During the second phase period, the digital encoding network determines
the correct output digital word and stores it in a register/buffer. Thus, the conver-
sion is limited by how fast this sequence of events can occur. Typical clock fre-
quencies can be as high as 20 MHz for CMOS and 100 MHz for BJT technologies.
This gives a theoretical conversion time of 50 ns and 10 ns, respectively. The
sample-and-hold time may be larger than these values and could prevent these
conversion times from being realized. Another problem is that as N increases, the
number of comparators required is 2¥ — 1. For N greater than 8, too much area is
required. Other methods we shall discuss give almost the same conversion times
with much more efficient utilization of chip area.

One method of achieving small system conversion times is to use slower
A/D converters in parallel, which is called time-interleaving and is shown in Fig.
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A time-interleaved A/D converter array.

8.3-18. Here M successive approximation A/D converters are used in parallel to
complete the N-bit conversion of one analog signal per clock cycle. The sample-
and-hold circuits consecutively sample and apply the input analog signal to their
respective A/D converters. N clock cycles later, the A/D converter provides a
digital word output. If M = N, then a digital word is output at every cycle. If
one examines the chip area for an N bit A/D converter using the parallel A/D
converter architecture (M = 1) compared with the time-interleaved architecture
for M = N, the minimum area will occur for a value of M between 1 and N.
Combining the parallel approach with a series approach results in an A/D
converter architecture with high speed and reasonable area. This approach is often
called a pipeline A/D converter, particularly if the number of series stages is
greater than two. Figure 8.3-19 shows a 2M-bit A/D converter using two M-bit
parallel A/D converters. The method first converts the M MSBs and then converts
the M LSBs. Consequently, only 2¥ *1 — 2 comparators are required to convert
a 2M-bit digital word. For the configuration of Fig. 8.3-19, the analog input
is applied to the left-hand string of 2M — 1 comparators during the first clock
phase, and the M MSBs are encoded during the second clock phase. During the
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FIGURE 8.3-19

A 2M-bit parallel-series A/D converter configuration.

third clock phase, the M MSBs are converted to an analog equivalent, which is
subtracted from V¢, multiplied by a gain of 2™, and applied to the right-hand
string of 2 — 1 comparators. Finally, during the fourth clock phase, the M LSBs
are encoded. Thus, if the clock has two phases, then in two clock cycles a 2M-
bit digital word will be converted.

It is possible to make this conversion in three phases if necessary because
the second and third phases can be combined into a single phase. Figure 8.3-20
shows the microphotograph of a parallel-series 8-bit A/D converter using the
architecture of Fig. 8.3-19 implemented with MOS technology. The conversion
time for this converter is in the range of 2 us and is limited by the sampling time
of the comparators and the settling times for the logic encoding network.

Up to this point analog-to-digital conversion techniques compatible with
BJT and CMOS technology have been presented. The major categories include
serial, successive approximation, and parallel A/D converters and are compared
in Table 8.3-2 along with high performance A/D converters discussed next.
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Microphotograph of the implementation of Fig. 8.3-19 for M = 4.

TABLE 8.3-2

Comparison of the performance of the various types of A/D converters

A/D converter
type

Performance characteristics

Serial

Successive
approximation

Parallel
High performance

1-100 conversions/second; 12—14-bit accuracy; requires no element-
matching; a stable reference voltage is necessary

10,000-100,000 conversions/second; 8—10 bits of untrimmed accuracy;
12-14 bits monotonicity; 12-14 bits trimmed accuracy

106 — 2 X 107 conversions/second; 7-8 bits of accuracy; requires large area

8000-10° conversion/second; 12-18 bits of accuracy
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8.3.4 High-Performance A/D Converters

Recent advances in A/D converters have resulted in converters with significant
improvement in performance over those considered in the previous categories.
The performance improvement is typically in the areas of resolution or speed.
Converters whose resolution is approaching 18 bits or sample rates of several
hundred megasamples per second are now feasible. This discussion will examine
three A/D converters that offer improved performance. These A/D converters
include selfcalibrating A/D converters, pipeline A/D converters, and oversampled
A/D converters.

A self-calibrating A/D converter is one that includes a calibration cycle to
adjust its transfer characteristic to approach the ideal transfer characteristic. A
block diagram of a self-calibrating A/D converter using the basic architecture of
Fig. 8.3-12 is shown in Fig. 8.3-21. This circuit consists of an N-bit charge-scaling
array called the main D/A converter, an M-bit voltage scaling array called the
sub—D/A converter, and a voltage-scaling array called a calibration D/A converter.
The calibration D/A converter must have several more bits of resolution than the
sub-D/A converter. Digital control circuits govern capacitor switching during the

Voltage
comparator
Main DAC To sucgess_ive
approximation
J-EN _IEN -1 J_C1 A C1B JSCAL register
~ ~
- — -
VRer ? ? T
] ] -
GND ] § L
*ee % Register
é Sub DAC ,
4 Calibration ?
DAC Adder Data register
Successive
approximation
register Control —— .
logic
: ——>
Data output Vin T Vor
FIGURE 8.3-21

Block diagram of a self-calibrating A/D converter.
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calibration cycle and store the nonlinearity correction terms in data registers. The
ratio errors of the sub-D/A converter and overall quantization errors accumulate
during digital computation of error voltages. To overcome these errors, at least
one bit of additional resolution is needed during the calibration cycle. This extra
bit is used to achieve final linearity within 1 LSB of an ideal straight line or
within 0.5 LSB of an ideal staircase converter response. In practice, two extra
bits are used in order to have a margin of safety. Typical performance of a self-
calibrating A/D converter is 15-16 bits of resolution, an offset error of less than
1 LSB, a dynamic range of over 90 dB, a nonlinearity of less than 0.25 LSB,
and a conversion time of less than 50 us.

A pipeline converter is different from the A/D converter of Fig. 8.3-19 in
that more stages are used with fewer bits per stage. This allows the designer
to make tradeoffs between area and conversion time. A typical pipeline con-
verter might have four stages with 3—4 bits per stage. A 2-bit implementation
of a pipeline stage is shown in Fig. 8.3-22a. The input is sampled and held
and applied to the comparators Cp through C;, where the 2-bit digital output
is encoded. The digital output controls the switches on the resistor string to
obtain an analog output equivalent to the 2-bit digital word. This analog volt-
age is subtracted from the original input and multiplied by 4, which results in
the residue voltage passed on to the next stage. Figure 8.3-22b shows the plot
of the amplified residue voltage versus the analog input voltage of the A/D
converter of Fig. 8.3-22a.

The errors that can occur in the pipeline converter are shown in Table
8.3-3 along with their effects and possible solutions. Auto-zeroing, trimming,
and calibration have been discussed previously. Digital error correcting tech-
niques solve the problem of where one stage makes a conversion that the fol-
lowing stage cannot resolve. For example, consider two 2-bit cascaded stages
forming a 4-bit pipeline converter. Assume that V;kn = (3/8) Vs, Which corre-
sponds to a digital output code of D = 0110. Because (3/8)V s is greater than
(2/8) V., the first stage gives a digital output of D; = Converting D to
an analog voltage gives (4/8) V¢, which is subtracted from (3/8) Vs to give
—(1/8) Vyer. Multiplying by 4 gives an amplified residue of —(4/8)V s applied
to the second stage. The second stage will output a digital code of D, = 00.
When D and D, are combined, the digital output code is 1000, which is in error.
This error could be removed by increasing the number of bits by one at the
second stage and using this extra bit to achieve the proper output. Unfortunately,
the extra bit does not extend the resolution of the A/D converter. An alter-
native correction technique is to introduce an intentional offset to all the
comparators so that the direction of the A/D decision error is always known.
For example, if the intentional offsets are negative when the A/D subconverter
makes its decision, then the residue voltage is always negative. The sign of
the residue can be used to temporarily correct (decrement) the digital output
code without using an extra bit.

One of the sources of nonlinearity in the pipeline A/D converter is the
reference scaling nonlinearity and is illustrated in Fig. 8.3-23. When the peak
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(@) Two-bit implementation of a pipeline stage, (b) Ideal plot of the amplifier residue versus the
analog input.
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TABLE 8.3-3

Static error analysis for a pipeline A/D converter

Element Error(s) Effect(s) Solution(s)

S/H Offset Offset Auto-zeroing
Nonlinearity Digital error correction

A/D converter Offset Offset Auto-zeroing
Nonlinearity Digital error correction

Nonlinearity Nonlinearity Digital error correction

D/A converter Nonlinearity Nonlinearity Trim/calibrate

Interstage Offset Nonlinearity Auto-zeroing

amplifier Gain error Nonlinearity Trim/calibrate

of the amplified residual voltage is not equal to Vi, plus and minus differential
nonlinearity errors will be produced. For converters up to 10 bits, these errors can
be sufficiently reduced by adjusting the residue so that it is always equal to the
reference. Feedforward reference correction techniques have been used to extend
this error minimization approach to 13 bits.!2

Pipeline A/D converters offer a flexible approach to achieving high
performance. A subranging technique has been used to further enhance the per-

Amplitude of the residue

Vin

FIGURE 8.3-23
Illustration of feedforward reference correction.
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formance of the pipeline A/D converter.!? In the subranging A/D converter, the
conversion is done in several cycles. In each successive cycle, the gain of the
residue amplifier is increased until the full scale of the amplified residue voltage is
reached. In this manner, errors can be corrected and removed on each successive
cycle.

The performance of the pipeline A/D converters depends on the technology
used. CMOS converters typically have 13-14 bits of resolution, 5-10 us con-
version times, and 10-30 mW of power dissipation. Bipolar pipeline converters
typically have 10 bits of resolution, 200 ns conversion times, and 100-500 mW
of power dissipation. The summary of this section will compare these converters
with others, including those using BiCMOS technology.

Oversampled A/D converters offer a means of exchanging resolution in time
for resolution in amplitude in order to circumvent the need for complex precision
analog circuits. A basic oversampled A/D converter architecture is shown in Fig.
8.3-24. This architecture includes a clocked feedback loop, which produces a
coarse estimate that oscillates about the true value of the input, and a digital
filter, which averages this coarse estimate to obtain a finer approximation. This
approximation is accurate to more bits at a lower (decimated) sampling rate.
Although trading resolution in time for resolution in amplitude is a simple
concept, the key to usefulness of oversampling systems based on the architecture
of Fig. 8.3-24 is that the amplitude resolution is enhanced faster than the time
resolution is reduced.

The feedback loop with the integrating filter H(z) in Fig. 8.3-24 forces the
quantization error in the N-bit estimate to have a high-frequency spectrum. When
the low-pass digital filter subsequently reduces the bandwidth of the spectrum,
it excludes a more-than-linear proportion of the quantization noise. Typical the-
oretical signal-to-noise ratio enhancement from the initial N-bit estimate is

f, fy

Sampling CkiCk
Analog » ( ) Digital § Digital 2 N+M
- T H > — > -
input + @ estimator Iow. pass = bits
1 filter
e.g. N-bitA/D
~— Nbits

D/A S ———

converter

FIGURE 8.3-24
A basic oversampled A/D converter block diagram; H(z) is an integrating filter.
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AS/N =9L —5.2dB (8.3-8)

where L is the number of octaves of oversampling when H(z) is first-order. If
H(z) is second-order, then the estimate is

AS/N = 15L —13dB 8.3-9)

If we assume an oversampling factor of 128, the S/N enhancements for a first-order
and second-order oversampling converter are 57.8 dB and 92 dB, respectively.

Of special interest is the case where N = 1. In this case, the coarse estimate
and the D/A converter have a 1-bit resolution. When N = 1, the circuit of
Fig. 8.2-24 is called a delta-sigma modulator. One advantage of delta-sigma
A/D, oversampling converters is that because they obtain resolution by linearly
interpolating between two states, they do not require an array of precision binary
scaling elements for the D/A converter. This means that nonlinearity errors will
not exist. Figure 8.3-25 shows a practical delta-sigma oversampling A/D converter
with both one and two integrators in the loop [H(z) first- and second-order].

The output of the delta-sigma modulator is applied to a low-pass digital
filter whose function is to operate on the 1-bit signal to remove frequencies and
quantization noise above the desired signal bandwidth. The output of the filter
is a multibit digital representation at a lower (decimated) sampling rate. Basic
delta-sigma modulatot systems generate severe noise components for certain input
values. In order to remove this noise, a square wave dither frequency within the
stopband of the decimating filter randomizes the delta-sigma noise. The square
wave dither frequency does not appear at the output of the filter or prevent
arbitrary dc inputs from being passed through the filter.

The output of the delta-sigma modulator can be downsampled by a finite-
impulse response digital low-pass filter. One possible architecture of the digital

—» To low-pass
filter
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- + 21 — + filter
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FIGURE 8.3-25
Typical delta-sigma modulators using (a) one and (b) two integrators in z-domain notation.
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filter is shown in Fig. 8.3-26. This architecture uses a 256:1 decimation factor and
a 1-bit digital input signal. A 1024-point impulse response, of which the sym-
metric half is stored in a read-only memory, is distributed to four accumulators.
No explicit multiplications are necessary because of the 1-bit input signal. The
impulse-response coefficients were designed to satisfy the dual objectives of quan-
tization-noise removal and anti-alias filtering. Because the finite-impulse response
low-pass filters are relatively insensitive to coefficient roundoff, 6-bit coefficients
are adequate to define the impulse response.

l Clock (2MHz)

l_C;!F‘—-—l Up/down counter (7 bits)

Read only memory
— 128 X 4N

2 O O
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FIGURE 8.3-26
Architecture of a 1024-point finite-impulse response low-pass digital filter with values of N = 6
and M = 15.
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Typical performance for a CMOS delta-sigma oversampled A/D converter
is 14-16 bits at a sampling rate of 1-20 kHz, and a power dissipation of 10-30
mW. Dynamic ranges of up to 96 dB are possible, with noise being the limiting
factor. The oversampling A/D converter is very suitable to applications such as
digital audio.

8.3.5 Summary

A/D conversion techniques compatible with bipolar and CMOS technologies have
been presented in this section. The major categories included serial, successive
approximation, and parallel A/D converters. Table 8.3-2 provides a summary of
these A/D converters. High-performance A/D converters offer improved accuracy
(resolution) or speed (conversion time). Examples of high-performance A/D
converters include self-calibration methods, pipeline converters with error cor-
recting methods, and delta-sigma oversampled A/D converters. Some of the
high-speed A/D converters are beginning to offer capabilities in the video range
of frequencies.

The performance of A/D converters is steadily increasing with improvements
in technology. Figure 8.3-27 shows the performance of monolithic A/D converters
as of 1988.1% This graph plots converter sampling rate on the horizontal axis and
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FIGURE 8.3-27

1988 monolithic A/D converter performance in terms of dynamic range versus sampling frequency.
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converter dynamic range (signal-to-noise plus distortion) on the vertical axis. Each
point on the graph represents the performance of the best monolithic converters.
These points fall close to the line drawn on the figure. If such a figure were
drawn for each year back to the mid-1970s when monolithic A/D converters first
appeared, the movement of the line would be just over 2 dB per year in the
vertical direction. The slope of the line is —0.6, supporting the conjecture that it
is more difficult to be accurate than fast.

Flash or parallel architectures dominate at and below the 60 dB level. Self-
calibrated, successive approximation architectures dominate above the 60 dB line.
Self-calibrated delta-sigma oversampled A/D converters will probably provide
increasing dynamic ranges.

Figure 8.3-28 is similar to Fig. 8.3-27 except that the various types of
converters and types of technology are identified.!>~25 This graph shows how
combined technologies such as BiMOS can be used to achieve performance
beyond that obtainable with single technologies.
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FIGURE 8.3-28

Comparison of high-performance, monolithic A/D converters in terms of resolution versus sam-
pling frequency. Circles, squares, and triangles are CMOS, bipolar, and BiMOS technologies,
respectively. The architecture and reference is indicated in the figure (Courtesy of J. P. Hwang).
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8.4 CONTINUOUS-TIME FILTERS

One of the largest applications of analog signal processing circuits is in the area
of frequency-domain filters. However, until the recent development of switched
capacitor circuit techniques,?S integrated circuit technology was not practical for
the implementation of analog filters. The primary reasons were that RC time
constants could not be defined with the accuracy necessary for filters and the area
requirements for audio filters were unacceptably large. With switched capacitor
circuit techniques, the time constants are proportional to capacitor ratios. In
integrated circuit technology, it is possible to achieve capacitor ratios sufficiently
accurate for filter requirements. In order to design switched capacitor filters, it
is necessary to understand the design of continuous-time filters. The objective
of this section is to prepare the reader for the following section, which concerns
switched capacitor filter design.

For simplicity, we will initially consider linear filters that are classified
into four different groups according to the type of gain characteristic. We will
assume that the desired gain of the filter is unity in the passband, where frequen-
cies are transmitted, and zero in the stopband, where frequencies are rejected.
Furthermore, we shall assume that under ideal conditions, the passband and stop-
band are adjacent to each other and that wr is the frequency where the transition
is made from one band to the other.

The magnitudes of the frequency-dependent gain of the four types of filters
that will be considered are shown in Fig. 8.4-1. Figure 8.4-1a shows the frequency
response of a low-pass filter, which has the ideal magnitude response of

. 1 0=w=owr
|Hip(jw)| = {0 wr < @< ® (8.4-1)
A
1 1 fommmm
c £
= &
0] O}
0 = 0 0! = ©
0 O 0 O
(a) (b)
A
11— 1
(] £
& ]
(0] (O]
0 > 0 > )
0 g 4 vl 0 og @y
(c) (d)
FIGURE 8.4-1

Types of filters: (a) Low-pass, (b) High-pass, (c) Bandpass, (d) Band-elimination.
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Figure 8.4-1b illustrates the magnitude frequency response of a high-pass filter,
described mathematically as

. 0 I=w<
|Hup(jw)| = {1 wr = o <woro (8.4-2)
The magnitude frequency response of a bandpass filter is shown in Fig. 8.4-1c.
The ideal frequency response of this type of filter is

0 OSCI)<(A)T]
|Hep(jw)| = {1 w11 = 0= 0 (8.4-3)
0 op <w<x

Finally, the frequency response of a band-elimination filter is shown in Fig. 8.4-1d.
The ideal magnitude frequency response of this filter is given mathematically by

|Hpe(jw)| = {0  on <o=op (8.4-4)

The phase shift of each of the filters of Fig. 8.4-1 can be expressed as
ArgH(jo) = —wly, O0=w=x (8.4-5)

where Ty is the time delay of the filter. Because 7y is equal to the negative of
the derivative of the phase shift, Eq. 8.4-5 defines a system that has a constant
time delay of T, seconds for each frequency transmitted through the filter.

In practice, the ideal filter characteristics of Fig. 8.4-1 cannot be realized.
It is not possible to have discontinuous changes in transmission as a function
of frequency or to have zero transmission over a region or band of frequencies.
Consequently, we can only approximate these ideal filter characteristics. Let us
consider how we can modify the ideal filter specifications of Fig. 8.4-1 so that they
can be realized in practice. Our efforts will be focused on the low-pass filter. The
resulting considerations can be easily extended to the other three types of filters.

8.4.1 Low-Pass Filters

Consider the low-pass filter frequency response of Fig. 8.4-2. The frequency
range has been divided into three parts. From zero to the passband frequency,
wpg, the gain must be between Gpg and unity. From the stopband frequency, wsg,
to infinity, the gain must be between Ggsp and zero. The frequency range between
wpp and wsp is called the transition region. The gain of the filter is unspecified in
this region, although a good approximation would be expected to follow closely
a straight line drawn from point A to point B. Another way of interpreting Fig.
8.4-2is to say that the filter response must fall in the shaded regions. The reasons for
the transition region and a nonzero value of Gsp are clear from the concepts of
circuit theory. However, it may not be clear why Gpg cannot be unity. The answer
is that there is a tradeoff between how close Gpg is to unity and the width of the
transition region. We shall see that permitting Gpp to be less than unity allows
the value of wsp/wpp to approach unity and, thus, a smaller transition region.
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Gain

FIGURE 8.4-2
Practical specifications for a low-pass filter.

All transfer functions of active and/or passive filters with a finite number
of lumped components are rational functions in s. With this observation, the
filter design problem is generally partitioned into two parts: approximation and
synthesis. In the approximation problem, a rational function (with real coeffi-
cients), often termed an approximating function, is derived to meet the filter
requirements. The synthesis problem concerns the design of a circuit that has the
approximating function as its transfer function.

There are several types of filter approximation functions that satisfy the
requirements of Fig. 8.4-2. These filter types can all be expressed by the rational
polynomial transfer function given as

bo + bis + bys? + - + by— 15"V + b,s”
ap +ais +axs? + - +a,—15"" 4+ apst

H(s) = (8.4-6)
The order of this transfer function is n. The types of filter approximations are
generally classified by some aspect of their frequency response. For example,
the Butterworth filter approximation has a magnitude response that is maximally
flat in the passband and monotonically decreasing in the transition and passband
regions. For the Butterworth low-pass filter approximation, by = 1 and b; = 0 for
alli = 1 in Eq. 8.4-6. An example of some Butterworth filter approximations for
various values of n is given in Fig. 8.4-3. It is customary to normalize the pass-
band frequency wpp to 1 rps when using the approximation. The normalized wpp
is transformed to the desired transition frequency during the synthesis phase of the

A
1.0
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E 0.707
c
()]
s}
=
0 > )

0 1 2

FIGURE 8.4-3

Magnitude characteristics of a Butterworth approximation for orders of n = 2,5, and 10.
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problem. Figure 8.4-3 shows only the magnitude characteristics of the Butterworth
approximation. All approximating functions are characterized by both a magnitude
and phase response although many filter specifications are based solely on the
magnitude response. The phase shift of the Butterworth filter approximation may
be found in other sources.?’

Several other filter approximations are often used in filter design. One
of these is called the Chebyshev filter approximation and is illustrated in Fig.
8.4-4 for various values of n. It is seen that the magnitude of the Chebyshev
filter approximation ripples in the passband and is monotonically decreasing
in the transition and stopband regions. The advantage of the Chebyshev filter
approximation is that for a given n, the slope of the magnitude response in the
vicinity of wpg is steeper than that of a Butterworth filter approximation, resulting
in a smaller transition region if Gpg and Ggg are identical.

A third popular filter approximation is called the elliptic filter approximation
and is shown in Fig. 8.4-5. This approximation ripples both in the stopband
and the passband, but is monotonically decreasing in the transition region. The
elliptic filter approximation has the narrowest transition region of any type of
filter characteristics considered here, given the same values of n, Gpg, and
Gsp. Other filter approximations have been tabulated and feature other frequency
characteristics such as linear phase shift.

Fortunately, there is considerable tabulated information available on stan-
dard filter approximations.?’->* The objective of the filter designer in using this
tabulated information is to obtain a polynomial such as Eq. 8.4-6, its roots, or
a passive RLC ladder network. Any of these three form the starting point for
the design using one of many methods to arrive at an active filter realization of
the filter approximation. Switched capacitor filter design can start from the active
filter realization, the approximating function, or from the original information
used to characterize the filter requirements.

To use the tabulated information, it is necessary to determine the order n
from the filter specification. Because n determines the number of components and
complexity of a filter, the minimum value of n is generally selected. Although
the filter specification can be given as shown in Fig. 8.4-2, it is more customary to

Magnitude

gl (]

FIGURE 8.4-4
Magnitude characteristics of a Chebyshev approximation for an arbitrary € and for orders n =
2,5, and 10.
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Magnitude

FIGURE 8.4-5 _
Magnitude characteristics of an elliptic approximation with arbitrary € and for orders of n =
3,4, and 5.

convert the vertical axis to a decibel range. Figure 8.4-6a shows the gain speci-
fications, G, of a low-pass filter with the vertical axis specified in decibels and
the frequency axis normalized to wpg. () is defined as wsp/wpg and Gq (dB)
=20log;o Gsp. Because the gains of most filters are less than unity, attenuation
rather than gain is often used to describe their characteristics. Figure 8.4-6b shows
the equivalent specification of Fig. 8.4-6a in terms of attenuation, A = 1/G,
where Apg = 1/Gpp [Apg (dB) =~—Gpp (dB)], and Ag = 1/Gq [Aq (dB) =
—Ggq (dB)].

Normalized gain (dB)

Normalized attenuation (dB)

(b)

FIGURE 8.4-6
(a) Specifications for a low-pass filter in terms of gain, (b) Specifications for a low-pass filter in
terms of attenuation.
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From the parameters A, App, and £}, the order of the filter can be quickly
determined using a set of nomographs.*> Figure 8.4-7 is a nomograph for deter-
mining the order of the Butterworth filter approximation. The use of nomographs
is illustrated in Fig. 8.4-8. A straight line is drawn through the specified values
of Apg and Ag, shown as points 1 and 2 in Fig. 8.4-8. The intersection with the
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FIGURE 8.4-7
A nomograph for determining the order of a Butterworth magnitude function (Kawakami).
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FIGURE 8.4-8
A Aq Q The method for using the nomograph of Fig. 8.4-7.

left side of the graph (point 3) is then extended horizontally until it meets a line
drawn vertically from point 4, corresponding to the desired normalized stopband
frequency, ). The resulting intersection at point 5 establishes the required order
of the filter. If point 5 is between two of the order loci, the higher one must be
used.

Example 8.4-1. Determination of the order of a low-pass Butterworth filter.
Find the order of a Butterworth filter approximation to Fig. 8.4-6b where Aq = 40
dB, APB =3 dB, and () = 2.

Solution. Using the nomograph of Fig. 8.4-7, we find that point 5 lies between
n = 6 and n = 7. Therefore, the order of the filter approximation must be 7.

Figures 8.4-9 and 8.4-10 give the corresponding nomographs for determin-
ing the order or degree of Chebyshev and elliptic filter approximations, res-
pectively. These nomographs are used in the same manner as the one in Fig. 8.4-
7. An example will illustrate how the Chebyshev and elliptic filter approximations
require lower order than the Butterworth filter approximation for the same design
parameters.

Example 8.4-2. Determination of low-pass Chebyshev and elliptic filter ap-
proximations. Repeat the preceding example to find the order of the Chebyshev
and elliptic filter approximations that will meet the same specifications.

Solution. From Fig. 8.4-9 we obtain n = 4 for the Chebyhev filter approximation,
and from Fig. 8.4-10 we see that n = 3 is sufficient for the elliptic filter approxi-
mation to satisfy the specifications.

Once the order of the filter approximation is known, the designer must
then decide how the filter is to be realized. Two approaches will be considered.
The first approach starts with Eq. 8.4-6 in which the numerator and denominator
polynomials are factored in the form of second-order products with real coeffi-
cients (a first-order product will be necessary if » is odd). This information can
be found from the tabulations in the literature. For example, Table 8.4-1 shows
the denominator coefficients of Eq. 8.4-6 with by = 1 and gives the pole locations
and quadratic functions of the denominator of Eq. 8.4-6 for the Butterworth filter
approximations. The numerator polynomial of Eq. 8.4-6 for the Butterworth filter
approximation is a constant. In this case the function H(s) can be expressed as
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TABLE 8.4-1a

Denominator coefficients of maximally flat magnitude (Butterworth)
functions of the form: s* + b,_; 5" + b,_, 5" 2 + ++* b,s* + b;s + 1 with
passband 0 - 1 rad/s

n b1 bz b3 b,‘ bs

2 1.414214

3 2.000000

4 2.613126 3.414214

5 3.236068 5.236068

6 3.863703 7.464102 9.141620

7 4.493959 10.097835 14.591794

8 5.125831 13.137071 21.846151 25.688356

9 5.758770 16.581719 31.163437 41.986386

10 6.392453 20.431729 42.802061 64.882396 74.233429

(By permission from L. P. Huelsman and P. E. Allen, Introduction to the Theory and Design of Active Filters,
McGraw-Hill Book Co., New York, 1980.)
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TABLE 8.4-1b

Pole locations and quadratic factors (s* +

b,s + 1) of maximally flat magnitude (Butter-
worth) functions with passband 0 — 1 rad/s
(Note: All odd-order functions also have a

poleats = 1)
n Poles I
2 —0.70711 *= j0.70711 1.41421
3 —0.50000 x j0.86603 1.00000
4 —0.38268 + j0.92388 0.76536
—0.92388 + j0.38268 1.84776
5 —0.30902 *= j0.95106 0.61804
—0.80902 * j0.58779 1.61804
6 —0.25882 £ j0.96593 0.51764
—0.70711 £ j0.70711 1.41421
—0.96593 + j0.25882 1.93186
7 —0.22252 + j0.97493 0.44504
—0.62349 + j0.78183 1.24698
—0.90097 = j0.43388 1.80194
8 —0.19509 * j0.98079 0.39018
—0.55557 + j0.83147 1.11114
—0.83147 + j0.55557 1.66294
—0.98079 + j0.19509 1.96158
9 —0.17365 = j0.98481 0.34730
—0.50000 = j0.86603 1.00000
—0.76604 * j0.64279 1.53208
—0.93969 + j0.34202 1.87938
10 —0.15643 * j0.98769 0.31286
—0.45399 + j0.89101 0.90798
—-0.70711 + j0.70711 1.41421
—0.89101 * j0.45399 1.78202
—0.98769 = j0.15643 1.97538

(By permission from L. P. Huelsman and P. E. Allen, Introduction
to the Theory and Design of Active Filters, McGraw-Hill Book Co.,
New York, 1980.)

a product of biquadratic functions, H;(s), where the general form of the second-
order (quadratic) function will be
2

= Hoiwy; _ __ *Houpipa
52 + (wpi/Qi)s + wf,,- (s + p1)(s + pa)
where Hy; is the gain at @ = 0, wp; is the undamped natural frequency, and Q;

is the quality factor of the pole p; and p,; is the complex conjugate of py; if py;
is not real.

H(s) = (8.4-7)




ANALOG SYSTEMs 083

Typically, the information tabulated on filter design is normalized so that
wpg is unity. However, the actual filter specifications are usually in the neigh-
borhood of thousands of cycles per second. To convert the normalized frequency
values of the design tables to the actual filter frequency requires a frequency
denormalization. This denormalization involves a change of the complex fre-
quency variable. If we consider p as the normalized complex frequency variable
and s as the denormalized (actual) one, then the frequency denormalization is
defined as

s =Qup (8.4-8)

where (), is a dimensionless frequency denormalization constant. This denormal-
ization is generally used at the synthesis stage of the design. Following this
approach, a filter is initially synthesized to realize the normalized transfer function.
The denormalization then entails a subsequent scaling of the component values
in the filter. Table 8.4-2 shows how this denormalization acts on the normalized
values of R, L, and C.

A second type of denormalization that is often used is called impedance
denormalization. It permits an arbitrary scaling to be applied simultaneously to
all the passive elements of a filter in order to get more practical component values.
A normalized impedance Z,(s) can be denormalized to the impedance Z (s) by
the relation

Z(s) = zaZu(s) (8.4-9)

where z, is a dimensionless impedance denormalization constant. Table 8.4-
2 shows how this denormalization affects the passive elements. The combined
effects of the denormalizations of Eqgs. 8.4-8 and 8.4-9 are illustrated in this table.
This impedance denormalization does not affect the voltage or current gain of the
filter.

Figure 8.4-11 shows three possible active filter realizations of Eq. 8.4-7.
Figure 8.4-11a uses a finite-gain amplifier and an RC feedback network. This
circuit was originally proposed by Sallen and Key in 1955% and was one
of the first active RC filter structures. This circuit does not have flexibility in
realizing Eq. 8.4-7 if H,; is also specified because H,; is fixed and equal to

3-(/Q).

TABLE 8.4-2
Effect of frequency and impedance

denormalization on network elements

Denormalized R C L
(o L
= R — il
§ =P Q Q,
C
Z =2.Z, Z.R z— Zol
C Za

Z(s) = z.Zu(p) R L

nzn Qn

(=]
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FIGURE 8.4-11
Three possible realizations of Eq. 8.4-7 (second-order, low-pass): (a) Sallen and Key (finite-gain)
structure, (b) Infinite-gain structure, (c¢) Tow-Thomas (resonator) structure.
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This is not considered a major limitation because the overall gain can be realized
by adding a cascaded gain stage. In Fig. 8.4-11a, one may choose a suitable value
for R; w,; and Q; define the rest of the elements. Alternatively, one may choose
a suitable value for the capacitors; then the resistors are defined as (wp,C)
The circuit of Figure 8.4-11a realizes Eq. 8.4-7 with a positive sign.

The circuit of Figure 8.4-11b is called an infinite-gain realization. It has
the ability to reahze simultaneously H,;, wp;, and Q; and realizes Eq. 8.4-7
with a negative sign. The circuit of Figure 8.4-11c is called the Tow-Thomas
circuit®”-3® and consists of the cascade of a damped inverting integrator, an
inverting integrator, and an inverter. This circuit has a great deal of flexibility and
is very easy to tune. If the output is taken at V,, then it realizes Eq. 8.4-7
with a negative sign. If the output is taken at V3, then the circuit of Fig. 8.4-11c
realizes Eq. 8.4-7 with a positive sign. In these circuits, a suitable value for
either R or C is chosen and the remaining component values are calculated from
the equations given in the figure. Many other realizations of Eq. 8.4-7 exist;
however, the circuits of Fig. 8.4-11 are representative.

Example 8.4-3. Design of a low-pass Butterworth filter. A low-pass Butterworth
filter is to be designed for the specifications of Aq = 30 dB, wpg = 20007, and
wsg = 40007,

Solution. If we normalize wpp to unity, we get { = 2. From Fig. 8.4-7 we see
that n = 5 will satisfy the filter specification. From Table 8.4-1, we conclude that
this function can be realized with two second-order stages cascaded with one first-
order stage. The realization is shown in Fig. 8.4-12a. The stage order is arbitrary,
although one typically chooses the high-Q stages as the last stages. The normalized
transfer function for each of the stages is shown, as well as Q; and w,;. Note that
stage 1 is a simple, first-order circuit so that Q is not defined. Stage 1 may be
realized by a simple damped integrator, whereas one of the circuits in Fig. 8.4-11
can be used for stages 2 and 3. Selecting the circuit of Fig. 8.4-11b results in the
realization of Fig. 8.4-12b, where the formulas of Fig. 8.4-12a have been used
with w,; = 1 fori = 1,2 and 3, Q> = 0.61804, and Q3 = 1.61804. The last step
is to frequency-denormalize the realization using Eq. 8.4-8. To denormalize from a
frequency of 1 rad/s to 20007 rad/s requires Q, = 20007r. To avoid 1 ) resistors,
an impedance normalization of z, = 10* will also be used. The resulting realization
is shown in Fig. 8.4-12¢. If a Butterworth filter approximation had been used for
any value of Apg other than —3 dB, then the normalized passband would not be
unity. This must be taken into account when finding the proper ().

Note that the same circuit structure used in Fig. 8.4-12 could also be used
to realize the Chebyshev function. In this case the quadratic functions would be
obtained from tabulated data in the literature. Only the component values in Fig.
8.4-12b and ¢ would vary in changing this realization from a Butterworth to a
Chebyshev filter.

8.4.2 High-Pass Filters

Filters other than the low-pass type can be designed through the use of frequency
transformations. These allow one to take the tabulated low-pass filter information
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Realization for Example 8.4-3: (@) Stage ordering, (b) Normalized realization (all values in ohms
or farads), (¢) Frequency and impedance denormalized realization (all values in kilohms and
microfarads). '

and transform it to apply to high-pass, bandpass, or band-elimination filters. The
transformed filter information can then be realized in a cascaded manner using
the appropriate RC active stages. A low-pass to. high-pass transformation can be
defined as

(8.4-10)

S| -

S=

where s is the low-pass complex frequency variable. Figure 8.4-13 illustrates how
Eq. 8.4-10 transforms an-ideal low-pass filter to an ideal high-pass filter. The
poles of a high-pass filter can be found by substituting the low-pass.poles for s
in Eq. 8.4-10. Oné must also remember that a high-pass realization of order n
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has n zeros at the origin. Alternatively, one can use Eq. 8.4-10 to replace s in
expressions such as Eq. 8.4-7 to get

* oiPz
P2 + (wpi/Qi)P + wf;i

which is a high-pass quadratic form of Eq. 8.4-7. Second-order RC active real-
izations of Eq. 8.4-11 similar to those shown in Fig. 8.4-11 can be found in the
literature on RC active filters. Figure 8.4-14 gives three realizations using the
same types of structures as were used in Fig. 8.4-11.

Hupi(p) = (8.4-11)

8.4.3 Bandpass Filters

A low-pass to bandpass transformation can be defined as

w2

=p+— 8.4-1
s=pt 5 (8.4-12)
where s is the low-frequency complex variable, p is the bandpass complex
variable, and w; is defined in Fig. 8.4-13 as the geometric center frequency of
the bandpass filter, given as

@ = /onon (8.4-13)

where wr; and wr, are defined in Fig. 8.4-13. The bandwidth is defined as
w12 — or; and is equal to the original passband of the low-pass filter, wrp
(or wpg). The transformation of Eq. 8.4-12 is used in the same manner as the
transformation of Eq. 8.4-10 to get either the new bandpass roots or the bandpass
transfer function. The transformation of Eq. 8.4-12 doubles the order of the low-
pass filter. For example, if a low-pass filter is given as

Hoi(w1/Q)
s + (01/Q)
then application of the low-pass to bandpass transformation of Eq. 8.4-12 gives

*Hoi(0/Q)p
p* + (0/Q)p + ?

HLPi(s) = (84-14)

Hpp;(p) = (8.4-15)

It is seen that the second-order bandpass structure has two poles which are often
complex and a zero at the origin and at infinity in the complex frequency plane.
A more general form of the second-order bandpass transfer function is

* Hoi(wpi/ Qi)s
52 + (wp/Qi)s + wgi

Hgp;(s) = (8.4-16)

where we have reverted to the notation of s for the complex frequency variable.
Figure 8.4-15 shows three realizations of Eq. 8.4-16 using the same basic struc-
tures illustrated in Figs. 8.4-11 and 8.4-14.
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[ 1€ ———o0

+ (AN 1 +
C= copiFi

Vi Vs

ol

_(2H;+1)Q;

CQ; (2+ )

CZ= HOI mpf c
I By, :
v A AN -
2 1
o

FIGURE 8.4-14
Three realizations of Eq. 8.4-11 (second-order, high-pass): (a) Finite-gain or Sallen and Key
structure, (b) Infinite-gain structure, (c) Tow-Thomas or resonator structure.

A second major approach to active filter design, once the order of the filter
is known, is to go directly to a passive realization. Passive RLC realizations for
normalized low-pass filter approximations have also been tabulated and can be
found in the literature.?6-27-28:34.3% To jllustrate this approach, we repeat Example
8.4-3.
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FIGURE 8.4-15
Three realizations of Eq. 8.4-16 (second-order, bandpass structure): (a) Finite-gain or Sallen and
Key structure, (b) Infinite-gain, (c) Tow-Thomas or resonator structure.
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Example 8.4-4. Realization of a passive RLC filter. Design a passive RLC filter
that will satisfy the specifications of Example 8.4-3. This filter is to be driven from
a voltage source having zero resistance and will be terminated in a 1000 {2 load.

Solution. From Example 8.4-3, we know that n = 5. From the tabulation found
in the literature, we obtain the realization shown in Fig. 8.4-16. This realization
has been normalized so that wpg = 1 rps and R = 1 ). It is now necessary
to denormalize using Eqs. 8.4-8 and 8.4-9. Because wpg of Fig. 8.4-16a is unity
and we desire wpg of 2000, then €, = 20007. Because Ry of Fig. 8.4-16a
is 1 Q) and we want R = 1000 Q, then z, = 1000. Applying the equations
of Table 8.4-2 to the components of Fig. 8.4-16a resuits in the final realiza-
tion shown in Fig. 8.4-16b, which has a transfer function equivalent to that of
Fig. 8.4-12c.

The passive RLC low-pass realizations may be easily converted to high-

pass, bandpass, or band-elimination using the transformations of Fig. 8.4-13.
The passive RLC realizations are also used as the starting point in certain types
of active filter design.

Figure 8.4-17 summarizes this section. The design of active RC filters

starts with the filter specification, which is converted into a filter approximation.
Sometimes, the classical approximations presented here are not adequate, and
computer-generated approximations are used instead. The filter approximation
will take the form of a rational polynomial transfer function. If the roots of
the rational polynomial are factored into first- and second-order products, then
the cascade realization approach illustrated here can be used. Methods also exist

Lg=1.5451 L3=1.3820 L{=0.3090
Yy Y'Y\

vy Cy=1.6944 . C,=0.8949
(@
0.2459 0.2199 0.04918
Y'Y Y\ Y'Y Y\
Vi 0.02697 1~ 0.01423 ~~
(All values in kilohms, henrys, and microfarads)
(b)
FIGURE 8.4-16

(@) Passive RLC normalized prototype for Example 8.4-4, (b) Denormalized realization of a.
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Filter specifications
in the frequency domain

'

Filter approximation

'

H(s)
\ A
Roots of H(s) Passive RLC prototype
\ \i
Cascade RLC simulation
approach approach

FIGURE 8.4-17
Summary of continuous-time filter design approaches.

for synthesizing a circuit directly from the rational polynomial without obtaining
the roots, but they have not been discussed here. Tabulations of a passive RLC
prototype circuit that implement the standard approximating functions are also
widely available in the literature. The switched capacitor filters, which will be
presented in the next section, start from the roots of the rational function, the
rational function, or the passive RLC prototype.

8.5 SWITCHED CAPACITOR FILTERS

The use of switched capacitor methodology to design and implement analog filters
using integrated circuit technology is illustrated in this section. It is necessary that
the technology be capable of providing a good switch, a well-defined capacitor,
and an op amp. Because all of these aspects are found in MOS technology, it
has become the predominant technology for switched capacitor filters. Switched
capacitor methods are not new and, in fact, were employed by James Clerk
Maxwell in his discussion on the equivalent resistance of a periodically switched
capacitor.*’ The key development that led to the rapid evolution of practical
switched capacitor methods was the realization that switched capacitor concepts
could be implemented in MOS technology.#! This realization was followed by a
rapid development and implementation of analog signal processing techniques in
MOS technology. Today, many switched capacitor circuits, including filters, are
found in various products, including telecommunications products.42
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The material presented in this section is a brief description of how to design
switched capacitor filters. Three basic methods will be described. The first is
resistor substitution and replaces the resistors in an RC active circuit with a
switched capacitor realization. The second uses switched capacitor integrators
to simulate the passive RLC prototype circuit for a desired filter realization. The
last uses a direct building block approach in the z-domain. The filter requirements
are transformed from the continuous-time frequency domain to the discrete-time
frequency domain (z-domain). These approaches are representative of the methods
used in switched capacitor filter design. More information can be found in the
references.

8.5.1 Resistor Realization

One of the simplest approaches in switched capacitor design is to replace the resis-
tors of a continuous-time, active RC filter realization with a switched capacitor
realization of each resistor. Resistor realizations contain capacitors and switches
and simulate the continuous-time resistor very well as long as the rate at which
the switches are opened and closed is much higher than the frequencies of inter-
est in the analog signal. Figure 8.5-1a shows the configuration of a parallel
switched capacitor realization of a resistor, R, connected between two voltage
sources, Vi and Vj, illustrated in Fig. 8.5-1b. The switches, ¢; and ¢,, are
controlled by the nonoverlapping clocks of period T., as shown in Fig. 8.5-1c.

| |
hde % %2 4L I — - b
[l | A M
| |
Vi | _L | V.V R Vs
| c |
| T |
| |
| |
(@ (b)
by
| | ] ] ) i .
o
o2 ] ] | I I |
| | | | | |
| | | | | |
| | | | | |
1 L L i » !
0 Te T 3T, 2T, b57; 37,
2 2 2
(c)
FIGURE 8.5-1

(@) Parallel switched capacitor realization of a resistor, (b) A continuous resistor, (c) Clock wave-
forms for the switched capacitor realization.
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When the clock waveform in Fig. 8.5-1c is high, the switch designated by that
waveform is closed.

To demonstrate the equivalence between the switched capacitor circuit in
Fig. 8.5-1a and the resistor in Fig. 8.5-1b, assume that V1(t) and V,(t) are
unchanged for several clock cycles. We shall designate these constant voltages as
V, and V,, respectively. During the time between 0 and T./2, switch ¢, closes.
If the switch resistance is small or the clock period large enough, the capacitor C
will be charged to V. At t = T./2, we can define the total charge flow between
0 and T,/2 past the left-hand vertical dashed line as Q;(7./2), which is given as

Qi(T./2) = CV, (8.5-1)

where C is initially uncharged. Next, consider the time interval between T,/2 and
T,. Switch ¢, closes and connects the charged capacitor to V,. At time T, we
can define the charge flow past the right-hand vertical dashed line as Q»(T) for
0 <t < T,, which is given as

Ox(Tc) = C(V2— V) (8.5-2)

Note that the flow of charge past the left-hand vertical dashed line during this
period is ‘

Qu(Te) =0 (8.5-3)

During the interval from T, to 3T./2, switch ¢; closes again, resulting in the
following charge flow during this interval.

3T,
Ql(_z' =C(V, = V2) (8.5-4)
and
Qz(%) =0 | 855)

As long as V() and V,(7) remain constant, these equations hold for the charge
flow into the capacitor C during the various switch closures.

The charge flows, Q; and Q,, can be expressed in terms of the current that
flows during the switch closure. This expression for Q; during the period from
T./2 to 3T./2 can be written as

3T : 3T,/2
01 = Qu(T.) + Qs T°) =0+ C(Vi—Vy) = L , Iy dr 3.56)

c

If we divide Eq. 8.5-6 by T, then the integral over the period 7. (in this case,
from 7,/2 to 3T./2) is equal to the average value of I(¢), designated as I(aver).
Thus, from Eq. 8.5-6 we may write the following expression.

I(aver) = %(Vl - Vi) 8.5-7)
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The average current flowing through the resistor R in the same time interval of
length T, is proportional to V; — V; and is expressed as

-V
Iz(aver) = ﬂR—Z (8.5-8)

If V| and V, remain constant, then we can equate 7 ;(aver) and / jg(aver) to obtain
the equivalent resistance of the switched capacitor circuit. From Eq. 8.5-7 and
Eq. 8.5-8 this is

L _ 1
- C  fC

Equation 8.5-9 is a key result! It states that as long as V; and V; are approximately
constant, the switched capacitor circuit of Flg 8.5-1a realizes the resistor of Fig.
8.5-1b.

In reality, V,(¢) and V,(z) are not constants but time-varying voltages.
However, if the clock period is small enough, the values of V(¢ + T.) and
V(t + T.) are not much different from V(¢) and V(). This can be stated in
a different manner, assuming that the V() and V,(¢) waveforms are sinusoidal
with a frequency of f. If f is much less than f., then T is much greater than ¢
and Eq. 8.5-9 is valid. This condition is called the high sampling approximation.

Three other configurations of switched capacitor realizations of resistance
along with the parallel switched capacitor configuration are shown in Fig. 8.5-2.
The parallel switched capacitor resistance realization we have just discussed
is shown in the first row. A second configuration, called the series switched
capacitor realization, consists of two switches and one capacitor. If one repeats
the preceding charge flow analysis, it can be shown that the equivalent resistance
of the series switched capacitor realization is also given by Eq. 8.5-9. A third
configuration, called the series-parallel switched capacitor realization, is shown
in the third row of Fig. 8.5-2. The value of the resistor realization is shown in
the last column and can be found in exactly the same manner as was done for the
previous two configurations. Finally, the bilinear switched capacitor realization
is shown. It uses four switches and one capacitor. If the high sampling frequency
approximation is valid, all resistors of continuous-time RC active networks can
be replaced on a one-for-one basis to obtain a switched capacitor realization.

The advantage of the switched capacitor methodology can be illustrated by
comparing the RC product of a resistance designated as R; and a capacitance
designated as C,. Let us assume that the product of R, and G, forms the time
constant 7, given as

(8.5-9)

7= R (8.5-10)
The dependence of the accuracy of 7 on R; and C, can be written as

dr _dRy , dG

= 8.5-11
T R1 C2 ( )
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FIGURE 8.5-2
Summary of switchied capacitor resistor simulations where f << f,.

where dx/x is interpreted as the accuracy of x. The worst-case accuracy of 7 will
be the sum of the absolute accuracies of R; and C,, which will be very poor if
R, and G, are directly implemented by integrated circuit technology.

If R, is replaced by a switched capacitor resistarice realization with a
capacitor of value C; having an equivalent resistance given by Eq. 8.5-9, the
time constant 7 now becomes

1G G
T=——"=T—= 8.5-12)
feCt ccl
The accuracy of the time constant, 7, in Eq. 8.5-12 can be expressed as
d dT, dcC C v
dr _dl.  dG 4G (8.5-13)

T Tc C2 Cl

If the clock frequency is assumed to be constant, then Eq. 8.5-13 reduces to

S ) (8.5-14)
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We know from our previous studies that the relative accuracy of two capacitors
fabricated on the same integrated circuit can be quite good. As a result, the value
of Eq. 8.5-14 can be as low as 0.1%, which represents a tremendous improvement
over Eq. 8.5-11 and is one of the key factors contributing to the success of
integrated switch capacitor filters.

Unfortunately, the concept of a one-for-one replacement of resistors by
switched capacitor resistor realizations breaks down if the high sampling fre-
quency assumption is not valid. Although this does impact how switched capac-
itor circuits must be designed, it does not affect the accuracy or the small area
achievable with switched capacitor circuits. The degree to which f. must be
larger than f for Eq. 8.5-9 to be valid depends on both the realization chosen
and the circuit in which it is used. For a demonstration of some of these ideas,
consider the first-order continuous-time RC circuit of Fig. 8.5-3. The continuous-
time frequency-domain voltage transfer function can be written as

1 1

H(s) = = 51
) =1 Say +1 8.5-15)

where 7, = 1/wy = R;C,. The frequency response can be found by replacing s
by jw to get
1
H 7 - —_— 8 -
(o) jw/w) +1 (8.5-16)

The magnitude of Eq. 8.5-16 is
1
[1+ (wR ()22

|H(jw) | = (8.5-17)

and the argument, or phase shift, is
Arg H(jw) = —tan” (@R |Cy) (8.5-18)

The frequency response of the circuit of Fig. 8.5-3 is shown in Fig. 8.5-4a and
b. It is seen that this circuit is a first-order low-pass filter. The root of this filter
is given in Fig. 8.5-4c.

A realization of the filter of Fig. 8.5-3 can be obtained by replacing the
resistor, R, with any of the switched capacitor resistor realizations of Fig. 8.5-2.
Figure 8.5-5a shows a switched capacitor realization using the parallel switched
capacitor resistor realization. To analyze this circuit, the clock sequence must
be specified. Figure 8.5-5b shows a shorthand method of illustrating the clock
sequence for this circuit. ¢; and ¢, specify the phase periods during which the
switches ¢; and ¢, close and will be denoted as the odd and even phase clocks,
respectively. The odd phase periods (¢;) will be designated by a superscript o,
and the even phase periods (¢;) will be designated by a superscript €.

—AAA— -
R 1T
Vi G, 1’23
T FIGURE 8.5-3
—  Continuous-time RC network.
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IH{jo)l
]

(c)

FIGURE 8.5-4
Frequency response of Fig. 8.5-3: (a) Magnitude, (b) Phase response, (c) Root locations of Fig.
8.5-3.

In the analysis of the circuit of Fig. 8.5-5a we assume that V(#) is constant
during the phase periods (which can be achieved by a sample-and-hold circuit).
T will be used to denote 7, when there is no possible confusion. Consider the
first odd phase period, where (n — 1) = (¢/T) < (n — %), when switch ¢,
is closed. In this analysis, we assume that switch ¢; closes immediately after
t =(n — 1T and that C; is charged instantaneously to V{[(n — 1)T]. In practice,
the time required for V; to charge C; to this value should be small compared with
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o n—g n1 n-2 n n+g FIGURE 8.5-5
(a) Switched capacitor realization of
(b) Fig. 8.5-3, (b) Clock phasing.

T/2. During the odd phase period, we may redraw the circuit of Fig. 8.5-5a as
shown in Fig. 8.5-6a. From this figure, we see that

Vai(t) = Vl(n — DT] = V§(n — 1) (8.5-19)
and
Ver(t) = Vil(n — DT] = Vi(n — 1) (8.5-20)

The clock period T in Eqs. 8.5-19 and 8.5-20 has been dropped because it adds
no useful information, thus simplifying the notation. This convention will be
followed where no misinterpretation is likely.

In the next even phase period, (n — %) = (t/T) < n, switch ¢, is open
and switch ¢, closes. Figure 8.5-6b represents Fig. 8.5-5a during this phase
period. During this time, C; and C, are paralleled, resulting in a new value of
V,. The circuit of Fig. 8.5-6b may be converted to the equivalent circuit of Fig.
8.5-6¢ with uncharged capacitors. The voltage sources representing the initial
voltages on the capacitors are assumed to be multiplied by a unit step function
that starts at t = (n — %)T but whose value was established atz = (n — 1)T . After
closing switch ¢,, the charges on C; and C, must be redistributed to reestablish
equilibrium. Using superposition techniques, V, can be expressed as

C

G
t) = Vi(in—1) + (n -1 5-2
V(1) C+ G i(n —1) Ci+ G 2(n — 1) (8.5-21)
Evaluating V,(¢) att = (n — %)T, we obtain
1 C1 C2
n—2)=—Vn—-1) + 5(n — 8.5-22
e R e A A U Voo £ Rl N CER2

At the beginning of the next phase period n = ¢t/T < (n + %) , the voltage at V,
can be written as

V(n) = Vi(n — %) (8.5-23)
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1 2
- s
1 L+
Vilin-1T] Vea(t) ANCy CormVeolt)  VEIN-1)T]

(a)

vSl(n-1)T]
Vl(n—-3)T] C C,

~ VSIn-1T] Vy(t)

|/I+

Hh__-w

(b)

+6

2
vslin-37]

VSIl(n-1)T 1 T v3l(n-1)T] -

FIGURE 8.5-6
(a) Equivalent circuit of Fig. 8.5-5a when switch ¢, is closed, (b) Equivalent circuit of Fig. 8.5-5a
when switch ¢, is closed, (¢) Alternate form of b.

because the voltage V, has not changed from its value at ¢t = (n — %)T. Using
Eq. 8.5-23 allows us to write

o G
Von — 1) + Vn — 1 8.5-24
G+ in - revaln=h )

Equation 8.5-24 recursively defines a sequence that can be transformed from the
discrete-time domain to the z-domain by taking the z-transform characterized by

Vin) =

V(n) =z "V(2) (8.5-25)
Using this transformation on Eq. 8.5-24 results in
Ciz”! Gz 7!
Vi(z) = ———=V(2) + =——V) 8.5-26
2(2) Cl + C2 l(z) C] + C2 2(2) ( )

Solving for V§(z)/V{(z) results in the z-domain transfer function of the circuit
of Fig. 8.5-5a sampled at the odd output phase.

Vi@ [ 1
Vo) \1+a

z—l

1-[a/(1 + )]z}

H®(z) = (8.5-27)
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where a = C,/C;. Applying Eq. 8.5-25 to Eq. 8.5-23 results in V3(z) =
272V §(z). Thus, Eq. 8.5-27 can be written as

er o V5(2) 3 1 712
H™2) = Voz) \l+all-[a/(l+ a))! (8.5-28)
Thus,
H®(z) = z7 2 H*(z) (8.5-29)

The basic concepts of the z-transform have been used in an algorithmic manner
in order to keep the presentation simple. The z-transform is rigorously developed
elsewhere.®

The discrete-time frequency response can be found by replacing z by
¢/*T which is analogous to replacing s by jw in the continuous-time frequency
domain. Making this replacement in Eq. 8.5-27 gives the following expression,
which is equivalent to the discrete-time frequency response of the circuit of
Fig. 8.5-5a.

vileT) 1
VoeioT) (1 + a)cosol —a + j(l + &) sinwT
(8.5-30)

where Euler’s formula (e/“T = coswT + j sinwT) has been used to remove
¢/T | The magnitude of Eq. 8.5-30 is

He/oT) =

. i
oo, , joT — _ 231
| H(™) | [1 + 2a(1 + &)(1 — cos wl)]"2 (8.5-31)
and the phase shift is
Arg [H*(e/*T)] = —tan™" sin T (8.5-32)

coswl — a/(l + @)

In order to compare the performance of the circuit of Fig. 8.5-5 with the
circuit of Fig. 8.5-3, we must appropriately choose the values of a and T.. One
of several methods used for making this comparison is to assume that @, of Eq.
8.5-15 is much less than w, = 1/(277T.). In this case, z of Eq. 8.5-27 can be
replaced by

=6 =1+ joT (8.5-33)

to get
; 1
HOO joTy ~ o= 4
S jo(l+ )T +1 (8.5-34)

Comparing Eq. 8.5-16 with Eq. 8.5-34 gives

-1— =T + o (8.5-35)
W)
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The frequency response of Eq. 8.5-30 is plotted in Fig. 8.5-7 for the
value of w./w, = 10, which from Eq. 8.5-35 corresponds to a = 0.5915. Also
plotted is the frequency response of Eq. 8.5-16 from the circuit of Fig.
8.5-3. For frequencies of  less than 0.02wc, the switched capacitor circuit of
Fig. 8.5-5a is a good approximation of the frequency response of the circuit of
Fig. 8.5-3. However, as the frequency increases, the switched capacitor circuit
is a very poor approximation. At w/w. = 0.5, the greatest attenuation of the
switched capacitor circuit occurs; and at w = @, the magnitude is at the starting
value, with a phase shift of —360°. The roots of the circuit of as determined from
Eq. 8.5-27 are shown in Fig. 8.5-8 and consist of a pole located at /(1 + @) on
the positive real axis. To improve the switched capacitor realization of the circuit
of Fig. 8.5-3, it is necessary to increase w or, alternatively, reduce ®;.

At this point, one can begin to use the resistor realization method to replace
the resistances of an RC active network. This method has been applied to the filters
of Figs. 8.4-11, 8.4-14, and 8.4-15. The disadvantages of this method are that
the circuits are very difficult to analyze and they contain floating nodes. Floating

Switched
capacitor
. 1 (Fig. 8.5-5a) 7]
H(e j mT)
H(1)
1/2 N
A ~
Q) ~
0 1 ] | Bl
0.01 0.1 1.0 o
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0° T T T T

-20° T

—40° . RS 7

Switched ~ . Analog (Fig. 8.5-3) -

Arg H(el®Ty-60° | capacitor S |

gHEe™) i (Fig. 8.5-5a) ]

— 80 ° S ~ano - -

10
| | 1 i
0.01 - 041 1.0 o
(DC
FIGURE 8.5-7

Frequency response of Fig. 8.5-5a compared with the frequency response of Fig. 8.5-3.
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Roots of Fig. 8.5-5a.

nodes are nodes that are not connected to a voltage source or a virtual ground.
Floating nodes cause a susceptibility to parasitic capacitance as well as complicate
the analysis. Examples of floating nodes are nodes A and B in Fig. 8.4-11a
and node A in Fig. 8.4-11b. Figure 8.4-11c has no floating nodes and . thus
is suitable for the resistor simulation approach. Because of these reasons, the
resistor simulation method is restricted to simple configurations. The following
two methods provide better and easier methods of realizing switched capacitor
filters.

8.5.2 Passive RLC Prototype Swntched
Capacitor Filters

One of the more useful methods of synthesizing filters using switched éapacitor
networks is based on the realization of RLC ladder networks. Since the integrator
is an important part of this method, we shall consider the implementation of
switched capacitor integrators first. An inverting analog integrator is shown in
Fig. 8.5-9. The transfer function can be found as
Vy(s) -1 -1 —w,
H(s) = = = — = 8.5-36
(5) Vi(s) sR1C, 51, K ( )
where 7, is the time constant of the integrator. The transfer function magnitude
of the inverting integrator is given as

4
1\
G,
R1
P >
+ Lo
+
7 v,
_ ~  FIGURE 8.5-9

o— o  An inverting continuous-time integrator.
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| H(jw) | =% (8.5-37)
and the phase shift is
Arg H(jw) = —723 (8.5-38)

A noninverting integrator has the same magnitude as the inverting integrator. The
phase shift of the noninverting integrator is equal to — /2.

A logical approach to a switched capacitor integrator realization is to replace
the resistor R; of Fig. 8.5-9 by the parallel switched capacitor realization of Fig.
8.5-1a. The result is shown in Fig. 8.5-10a and is called the parallel switched
capacitor integrator. Figure 8.5-10b shows the clock sequence for the switched
capacitor integrator. During the odd phase periods, the charge on C, is constant.
An equivalent circuit to Fig. 8.5-10a is shown in Fig. 8.5-10c for the even phase
period. The charge left on C; at ¢t = (n — %)T, 0L, is

(9 l [ 1
Or(n — 5) = GViy(n — 5) (8.5-39)

The charge on C, during the odd period, Qy, is
Ou(n — 1) = GVi(n — 1) (8.5-40)
The charge that will be contributed to C, from C; during the even phase period,

QC9 is

Q°C(n -1 = —CIV‘I’(n -1) (8.5-41)
A 1L
o 0 AN 3
Cx
V, -
! ~ V2 o
G +
— s G,
(a) Ver A< V2
even odd even odd
KRR .
T | )
n—§ n-1 n-—_1_ n n+.1_
2 2

(b) ()

FIGURE 8.5-10

(@) Parallel switched capacitor inverting integrator, (b) Clock sequence, (c) Equivalent circuit during
the ¢, phase period.
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Charge conservation techniques applied to node A of Fig. 8.5-10c result in
1
Of(n — 5) =0n(n —1) + Q2(n — 1) (8.5-42)
Making the substitutions of Eqs. 8.5-39 through 8.5-41 into Eq. 8.5-42 results in
1
GVs(n — 5) =GQVin -1 ~-CVn -1 (8.5-43)
During the odd phase, the charge on C, does not change, so that
1
Vi(n) = V§(n - 5) (8.5-44)

Combining Egs. 8.5-43 and 8.5-44 results in
GVi(n) = GV (n —1) = CV8(n — 1) (8.5-45)

Applying the transformation of Eq. 8.5-25 to Eq. 8.5-45 results in the desired
z-domain transfer function

GVa(z) = Cz7'Viz) — Ciz7Ve(2) (8.5-46)

This can be expressed as

HOO(Z) —

0 -1
1410 —CI( z ) (8.5-47)

Viz)  Gll-z

H%(z) can be found by multiplying Eq. 8.5-47 by z =2, H%°(z) of Eq. 8.5-47
and the corresponding H °(z) are sometimes called the type I direct-transform
discrete integrator and the type I lossless integrator, respectively.43~45

The frequency response of the circuit of Fig. 8.5-10a can be found by
replacing z by ¢/“T in Eq. 8.5-47 to get

. C e—ij/2
ofy . _=1f_ €~
Hoo(el ) = Cz(eij/Z — e_j"’T/2) (8.5-48)
If we define w, = C,/(TC,), then Eq. 8.5-48 can be expressed as
: T/2
Ho(eoT) = ~&{—“’ —jwT/2 5-4
[e*) jolsin (o1/2) [P (7/@T/2) (8.5-49)

Thus, the magnitude and phase response of Eq. 8.5-49 can be expressed as

oo/, jwT =& L/Q'J -
[H™(e) [ =22 — (wT12) (8:3-30)
and
Arg HOO(eij) - % _ [%T] (8.5-51)

We observe from Egs. 8.5-50 and 8.5-51 that as wT approaches zero, these
equations approach Eqgs. 8.5-37 and 8.5-38, respectively. Consequently, the terms
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TABLE 8.5-1
Magnitude and phase (delay) errors in

switched capacitor integrators versus
normalized frequency

Normalized Error in Error in
frequency gain constant phase from
fif. magnitude ideal 90°
0.00 0.00% 0°

0.05 0.41% 9°

0.10 1.66% 18°

0.15 3.80% 27°

0.20 6.90% 36°

0.25 11.07% 45°

0.30 16.50% 54°

0.35 23.41% 63°

0.40 32.13% 72°

0.45 43.13% 81°

0.50 57.08% 90°

in the bracketed portions of Eqs. 8.5-50 and 8.5-51 can be considered magnitude
and phase error terms. The effects of these error terms are shown in Table 8.5-1.

A noninverting switched capacitor integrator is shown in Fig. 8.5-11. It can
be observed that C; is charged by V; in one direction and then reversed before
it is discharged into C,. The result is exactly the same transfer function as Eq.
8.5-47 except there is no minus sign. The phase shift is given as

Arg H(e/eT) = - L _ [“’—T] (8.5-52)
2 2
Consequently, the magnitude and phase errors given in Table 8.5-1 are also
appropriate for the noninverting switched capacitor integrator.

Figure 8.5-11 has a very important property not found in any of the switched
capacitor circuits previously considered in this section. This property is called
stray insensitivity. In reality, every node in a circuit has some stray capacitance to
ground. These capacitances are represented by C, and Cg in Fig. 8.5-11. During
the ¢; phase, Cp is discharged and C, is charged by the voltage source, V.

| L 1L
° > IT< AN °
+ 04 e c, N 0o c, +
/ \
/ \
[ 1
Vi Ca -~ o2 & -~ Cpg Vo
\ !
\ /
N /
N 7
~ e
e O

FIGURE 8.5-11
A stray-insensitive, noninverting switched capacitor integrator.
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During the ¢; phase, an uncharged Cg is paralleled with a virtual ground, and Ca
is discharged to ground. Neither Ca nor Cg has any direct influence on the charge
on Cj, which is transferred to C, during the ¢, phase period. Consequently,
Fig. 8.5-11 is insensitive to stray capacitances. Repeating this procedure with
a stray capacitance in Fig. 8.5-10a will show that the charge transferred from
C; to C; during the ¢, phase period will be influenced by stray capacitances.
Most commercial switched capacitor circuits use building blocks that are stray
insensitive.

The stray-insensitive, inverting switched capacitor integrator of Fig. 8.5-12
will complete our repertoire of switched capacitor integrators. Although there
are many other possible integrators, these will be sufficient for our purposes in
this section. The transfer function of this integrator can be found by writing the
expressions for the various charges that are being transferred. The clock phasing
of Fig. 8.5-10b will be used for Fig. 8.5-12. The charge left on C, at the end of
the even phase period is

1
Oi|n - %) = GVin - 5) (8.5-53)
The charge on C, during the previous odd phase is
Ou(n —1) = GVi(n —1) (8.5-54)

The charge transferred to C, by the charging of C; to V(n — %) during the even
phase is

1
QE n — —) = —C1VT

2

Using charge conservation techniques gives

n - %) (8.5-55)

1 ' 1
Qfjn — 5) = QOu(n — 1) + Qg(n -3 (8.5-56)
Substituting Eqs. 8.5-53 through 8.5-55 into Eq. 8.5-56 results in
' 1
GViln —=| =GVi(n —1) — ClVﬁ(n - 5) (8.5-57)

If we assume the input is from a sample-and-hold circuit, then Vi(n ——5) =Vn).

4 ¥4
O -0
> AN < BLAY
+ (0% 7 c, AN [ C, +
/ \
! \
- 4
Vi Ca -~ oy o1 -~ Cg Vo
\ !
\ /
\ /
- \\ // -
o= —0
FIGURE 8.5-12

A stray-insensitive, inverting switched capacitor integrator.
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During ¢;, V5(n — %) = V3(n). Substituting these relations into Eq. 8.5-57 gives

GVi(n) = QVi(n — 1) — GiVi(n) © o (8.5-58)

Using Eq. 8.5-25 we obtain the desired transfer function for the circuit of
Fig. 8.5-12 as

HOO(Z) —

V‘l’(z) AV

We see that for the inverting, stray-insensitive switched capacitor integrator, there
is no delay in the forward path from the input to the output.

The frequency response of the circuit of Fig. 8.5-12 can be found by replac-
ing z by e/¢T . Making this replacement and multiplying through the numerator
and denomlnator by /T gives

HOO(eij) - -

f JwT /2
G g ) (8.5-60)

Cy| efoT/2 — g=jol 2

We note that Eq. 8.5-60 is identical to Eq. 8.5-48 except for the minus sign in
the numerator exponential. This means that the magnitude response of the circuit
of Fig. 8.5-12 is given by Eq. 8.5-50 and the phase shift by Eq. 8.5-51, except
that the phase error term is positive. The integrator error terms given in Table
8.5-1 are also applicable to the integrator of Fig. 8.5-12. The frequency response
of various types of integrators is illustrated in Fig. 8.5-13 for a ratio of w, to
w, of 0.1. The integrators we have just discussed are sufficient to implement
practical switched capacitor filters. A more complete presentation, concerning
other realizations and details, can be found in the literature.

Next we shall use the switched capacitor integrator to realize the passive
RLC prototype ladder filter. Consider the fifth-order low-pass filter shown in
Fig. 8.5-14. This filter is similar to the type that was considered in Sec. 8.4. The
subscript 7 on the components indicates prototype or normalized values. The first
step is to select the electrical variables that will be used to describe the circuit.
Each component is characterized by a current, /;, and a voltage, V;, one of which
can be expressed as the integration of the other variable. The integrand variable
is current for an inductor and voltage for a capacitor. The integrand variables
I1,,V2,15,V4, and I5 are shown in Fig. 8.5-14.

The next step is to use these integrand variables to write a set of s-domain
equations that describe the circuit. The selection of the integrand variables allows
the realization using integrators. For the variable 7,, we may write the loop
equation:

Vion = I1(Ron + sL1y)— V2 =0 (8.5-61)
Using the concept of a “voltage analog” of current, we express Eq. 8.5-61 as
Vi (

Vin = & (Ron + sLi,) =V, =0 (8.5-62)
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Phase Shift
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FIGURE 8.5-13

(@) Magnitude response of various switched capacitor integrators compared with a continuous-time
integrator when wo/@; = 1/10, (b) Phase response of various switched capacitor and continuous-
time integrators.

o—AAN
+ ROn
Vin

o

FIGURE 8.5-14 ,
A fifth-order, low-pass, passive prototype filter.
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where the voltage analog of I, is designated as V'{ and is defined as
Vi =RI, (8.5-63)

where R is an arbitrary scaling resistance (normally unity). Solving for V' of Eq.

8.5-62 results in
, R R
Vi= [Vin‘Vz—(%

Vi} (8.5-64)

This expression can be implemented by an integrator that sums Vi,, —V>, and
—(Ro,/R)V]. The fact that the output is in part equal to the integral of itself
indicates nothing more than a damped integrator. Moving on to the next variable,
V>, we sum currents to get

11 - 13 - SC2,,V2 =0 ‘ (85-65)
Solving for the variable V, using voltage analogs of /; and I, we get
' 1
V, = ——[V]— V3 8.5-6
2= RG (Vi—-Vil ( 6)

The equation describing the variable /3 can be written from the loop consisting
of Copy L3y, and Cy, as

Vs — sLagls — V4 = 0 (8.5-67)
Solving for the voltage analog of I3 gives
, R _ .
Vi=——(Vy— V) (8.5-68)
sL3p

Next, the equation involving V4 can be found by a nodal equation written as

I3 —5CyuVs—15=0 (8.5-69)
Again using voltage analogs for /3 and /5 gives,
! .
Vo= Vi — Vs 8.5-70
4= 1R C4n( %) ( )

Finally, a loop equation involving Cyy,, Ls,, and R¢, will be used to describe the
variable [ s:

V4 - SL5,,15 —I5R6,, =0 (85-71)
which can be expressed in terms of voltage analogs as
R R :
Vs = Vg4 — Vs 8.5-72
5= LSn( 47 g 5) ( )

However, we would prefer to have the variable Vo rather than V5. Because
Vour = (RG,,/R)Vg, we express Eq. 8.5-72 as

R6n

(V4 - Vout) (8.5-73)
sLs,

Vou =




ANALOG sysTems 711

The method of generating these equations should be obvious. Starting
with Eq. 8.5-61, the equations are a succession of loop equations followed by a
node equation. The substitution of Vo, for V5 was simply by application
of Ohm’s law. This method can be used for practically all low-pass ladder RLC
filters. ,

The next step is the realization of Eqgs. 8.5-64, 8.5-66, 8.5-68, 8.5-70, and
8.5-73. Equation 8.5-64 represents a summing integrator with inputs of Vi,, V7,
and V{ and output Vi. It can be realized by switched capacitor circuits by
combining the ideas of Figs. 8.5-11 and 8.5-12. The circuit of Fig. 8.5-154
results as a proposed realization of Eq. 8.5-64. Note that the right-hand switches
have been combined to reduce the number of switches. Using the results of Eqs.
8.5-47 and 8.5-59, we write

1 -
Vi) = (1_—Z_1 [z~ Vin(2) — anVa(2) — anVi(@)] (8.574)

Next the high sampling approximation is made so that 1 — z~ 1 is approximately
sT and z ! is approximately 1 — sT = 1. Thus, Eq. 8.5-74 becomes

1
Vi(s) = —rlanVin(s) = anVa(s) = a3 Vi(s)] - (8.5-75)

Before Eq. 8.5-75 can be equated with Eq. 8.5-64, it must be frequency-
denormalized. This is because Eq. 8.5-64 is based on a low-pass normalized pro-
totype, having a cutoff frequency of 1 rps. This denormalization is accomplished
by replacing the clock period, T, in Eq. 8.5-75 by

Ty
T =— 5.
Q, (8.5-76)
where T, is the normalized clock period and (), is defined as
Actual cutoff frequency in rps
n = : S k4 8.5-77)
Normalized cutoff frequency rps
Therefore, Eq. 8.5-75 can be written as ‘
1
Vi(s) = 'ST[auVin(S) — a1 Va(s) — s Vi(s)] - - (8.5-78)
n .

Equating Eq. 8.5-78 and Eq. 8.5-64 results in the design of the first integrator of
Fig. 8.5-15. These results are ‘ ‘ ’

RT, RO, T RQ,
— —_— ——— T = 8. _7
T T T L Luf (8.579)
and _
Ro,T. RonQ.T  Ro, Q)
ay = —non - SOt et (8.5-80)

Lln Lln B Llnfc



712 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS
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FIGURE 8.5-15
Stage-by-stage realization of Fig. 8.5-14: (a) Input stage, (b) Second stage, (c) Third stage,
(d) Fourth stage, (¢) Output stage.
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Next we repeat this process for the variable V, of Eq. 8.5-66. Figure
8.5-15b is a realization of Eq. 8.5-66. Using the high sampling approximation
allows us to write the output of this circuit as

1
Va(s) = F[alei(S) — anVi(s)] (8.5-81)

employing the same approach that was used to get Eq. 8.5-78. Equating Eq.
8.5-66 with Eq. 8.5-81 results in

o T T O
2 R C2n R C2n R Can c

o) = (8.5-82)
The realizations for Eqs. 8.5-68, 8.5-70, and 8.5-73 are identical in concept to
that of Eq. 8.5-66. Figure 8.5-15 shows the switched capacitor realizations of
these equations. Using the same approach as before, we may express the design
equations of Fig. 8.5-15c as

RT, _ RO,T _ RO,

a3 = om = L3, Ls, B ch?m (8.5_83)
and Fig. 8.5-15d as
_ T T
Y4 = 0% T RCy T RCan | RCunfe 8559
and Fig. 8.5-15¢ as
2Tn  Ren€)
o5 = g5 = Rn o = (8.5-85)

L5n LSnfc

Equations 8.5-79, 8.5-80, and 8.5-82 through 8.5-85 permit the design of
the filter in Fig. 8.5-14 according to a given set of specifications. When the
various integrators of Fig. 8.5-15 are combined, the filter realization is that shown
in Fig. 8.5-16. The filter structure consists of coupled internal feedback loops
containing two integrators each. In order to achieve minimum delay around each
loop, it is necessary that each integrator be sampled by the next integrator as
soon as the new sample is available. Therefore, in one clock period, the signal
circulates around the internal feedback loop. The clock scheme indicated will
avoid a T/2 delay, which would create a difference between the actual realization
and that desired. The following example illustrates the application of the preceding
approach to the switched capacitor realization of a low-pass filter.

Example 8.5-1. A switched capacitor realization of a fifth-order low-pass
Chebyshev filter. A fifth-order low-pass Chebyshev filter with a 1 dB ripple in
the passband is to be designed for a cutoff frequency of 1000 Hz. The structure of
Fig. 8.5-16 based upon the passive prototype of Fig. 8.5-14 is to be used. Find the
switched capacitor realization for this filter if the clock frequency is 100 kHz.

Solution. The normalized values of the RLC passive prototype that satisfies the
specifications are Ry, = 1 Q,L,, = 2.1349 H, G, = 1.0911 F, L3, = 3.009 H,
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FIGURE 8.5-16

Switched capacitor realization of Fig. 8.5-14.

Csn = 1.0911 F, Ls, = 2.1349 H, and R¢, = 1 ). These values are found from
tabulations in the literature.?-3! Using the preceding equations with Q, = 20007,

we get

One item of concern in switched

= 0y < a3 = 0.02943

= ap = 0.05759
= ap3 = 0.02094
= ayq = 0.05759
= aps = 0.2943

capacitor filters is the total capacitance

required in the realization. Large capacitor ratios are undesirable because of the loss
of relative accuracy and increased area. If a;; of the jth stage is less than unity,
then aijCj will be less than G . If we equate the smallest capacitor, a; G,
to a unity capacitance C,; , then we may find the total relative capacitance of a
stage by summing C,; with all other capacitors being divided by «;;. In the
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preceding example if we let Cy; = Gy = C3 = Cus = Gys = G, then the total
capacitance is 155.596C,. If C, is selected as 1 pF, then 155.596 pF of capacitance
is required for the filter. It is important to keep this number as small as possible if
the filter is to be integrated. Reduction of the clock frequency will always reduce
this number, but at the expense of not satisfying the high sampling approximation
at the higher signal frequencies.

This design method starting from the low-pass, passive RLC prototype is
general and can be applied to all types of symmetrical filters. Elliptic filters
can also be synthesized by replacing the L cutsets or C loops with controlled
sources.28 The result requires a nonintegrated input to the integrator, which can
be accomplished by an unswitched capacitor. Bandpass, high-pass, and band-
elimination filters can be synthesized using the transformations of Fig. 8.4-13
applied to the low-pass, passive RLC prototype. The bandpass is realized by a
second-order bandpass structure with the ability to sum multiple inputs. Such a
structure could be derived from the circuit of Fig. 8.4-15¢ if the integrators are
replaced by the appropriate combinations of the integrators of Fig. 8.5-11 and
Fig. 8.5-12 with summing inputs.

The high-pass switched capacitor filter realizations present more of a chal-
lenge, although they use the same approach as that used for low-pass switched
capacitor filters. The reason for the additional complexity is that the low-pass
to high-pass transformation applied to the low-pass, passive RLC prototype will
result in differentiators if the same integrand variables used for low-pass filters
are selected. It is necessary to reselect the variables so that the equations can be
realized with integrators.

Band-elimination filters are also possible using this approach. One first
transforms the low-pass, passive RLC prototype to a band-elimination form. The
switched capacitor realization will require a second-order structure with the ability
to sum both integrated and nonintegrated inputs. For more information on the
design of switched capacitor circuits from general symmetrical filters, the reader
should consult Chapter 4 of the text Switched Capacitor Circuits.?®

8.5.3 Z-Domain Synthesis Techniques

In many cases, the designer is given the filter approximation in the z-domain
rather than the s-domain. In this case, the realization of the filter takes place
directly in the z-domain. Various methods of arriving at H(z) given H(s) are well
developed and can be found elsewhere. Irrespective of how the tranformation is
made, the starting point of z-domain synthesis techniques is

ap+ a1z + a2t + .o+ am—12" 1 + ap™
by + b1z + b222 + ...+ bn—lz’"l + b,7"

H(z) = (8.5-86)

One approach is to convert Eq. 8.5-86 into a signal flow diagram consisting
of amplifiers, delays, and summers.** Another approach is to break Eq. 8.5-
86 into products of first- and second-order terms. An example of how the first
approach works is illustrated by Fig. 8.5-17a. This is a general building block
that consists of a combination of a stray-insensitive noninverting and inverting
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FIGURE 8.5-17
General building block: (a) SC circuit, (b) z-domain block diagram, (c) Z-domain block diagram.
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integrators and an inverting amplifier. Note that V;, V,, and V3 can be con-
nected at arbitrarily different points or to the same node to provide more flexi-
bility for different structures. This general building block can provide different
paths, including local feedback, overall feedback, and feedforward. Figure 8.5-
17b shows the flow diagram of Fig. 8.5-17a in terms of z ! delay elements.
A change of the z-domain variable is introduced, which simplifies the flow dia-
gram and improves the sensitivity performance of the various realizations.* This
transformation is

z=2z-1 (8.5-87)

Figure 8.5-17¢ gives the z flow diagram of the circuit of Fig. 8.5-17a. The output
of the circuit of Fig. 8.5-17¢c, V,(z), is given by

Vo(3) = a2 'Wa(3) — ayVi(2) —a3(1 + 2 HV3(3)  (8.5-88)

The transformation used in Eq. 8.5-87 is arbitrary. The design procedure
outlined in the following could equally well be applied to H(z). Note that Eq.
8.5-88 may be simplified if V,(zZ) = V3(Z). Combinations of this general build-
ing block can be used to realize various z-domain transfer functions when the
transformation of Eq. 8.5-87 is made to Eq. 8.5-86 to get H(z). When H(Z)
is converted to a signal flow diagram, then the synthesis becomes a straightfor-
ward procedure. These ideas will be demonstrated for second- and third-order
structures, which can be cascaded to obtain a filter of any order in the z-domain.

One popular method of designing higher-order filters is the cascade of
first-, second-, and third-order sections.*’*® Because Fig. 8.5-17a represents a
first-order filter, we will consider only the second-order (biquad) and third-

order (triquad) realizations. The biquad is a fundamental building block for

higher-order switched capacitor filters. The biquad flow diagram shown in Fig.
8.5-18 is a versatile structure and is one of many that could be considered.
The properties of this structure are (1) the capability of realizing all stable z-
domain biquadratic transfer functions, (2) sufficient flexibility to permit small total
capacitance with low sensitivity, and (3) freedom from parasitic capacitances.

The general biquad structure is formed by the interconnection of the general
building block of Fig. 8.5-17a. The biquadratic transfer function of the circuit of
Fig. 8.5-18 is given as

HGp = Vel Aot A+ At (8.5-89)
Vi) 1+ g7
where
Ao = DoB3 — D3
A, =D, — D3 + D3By — DoB, — D,B3 + DB (8.5-90)
Ay = D3Bo + DB, — D2B3 — DB
Ci = B,B3 — By

C; = BoB3 — BB,



ANALOG SYSTEMs 717

ouC c
4 I{
Vi e AN 1€
opC
V2 0——/ I/ —_
4 1% o2 o,
02 & )
= o =
V3 0-—/¢

-1

Va (E) o— 02

Y

Vs (2) o—] - z Vo(2)

Y

Vs(2)o—— 1+2

VX

(b)

FIGURE 8.5-17
General building block: (a) SC circuit, (b) z-domain block diagram, (c) £-domain block diagram.
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integrators and an inverting amplifier. Note that V;, V5, and V3 can be con-
nected at arbitrarily different points or to the same node to provide more flexi-
bility for different structures. This general building block can provide different
paths, including local feedback, overall feedback, and feedforward. Figure 8.5-
17b shows the flow diagram of Fig. 8.5-17a in terms of z ! delay elements.
A change of the z-domain variable is introduced, which simplifies the flow dia-
gram and improves the sensitivity performance of the various realizations.*6 This
transformation is

z2=2z-1 (8.5-87)

Figure 8.5-17¢ gives the Z flow diagram of the circuit of Fig. 8.5-17a. The output
of the circuit of Fig. 8.5-17¢c, V,(2), is given by

Vo(2) = a2 'Va(8) — aqVi(2) —as(1 + 2~ H)V3(2)  (8.5-88)

The transformation used in Eq. 8.5-87 is arbitrary. The design procedure
outlined in the following could equally well be applied to H(z). Note that Eq.
8.5-88 may be simplified if V,(z) = V3(Z). Combinations of this general build-
ing block can be used to realize various z-domain transfer functions when the
transformation of Eq. 8.5-87 is made to Eq. 8.5-86 to get H(z). When H(Z)
is converted to a signal flow diagram, then the synthesis becomes a straightfor-
ward procedure. These ideas will be demonstrated for second- and third-order
structures, which can be cascaded to obtain a filter of any order in the z-domain.

One popular method of designing higher-order filters is the cascade of
first-, second-, and third-order sections.*’*® Because Fig. 8.5-17a represents a
first-order filter, we will consider only the second-order (biquad) and third-
order (triquad) realizations. The biquad is a fundamental building block for
higher-order switched capacitor filters. The biquad flow diagram shown in Fig.
8.5-18 is a versatile structure and is one of many that could be considered.
The properties of this structure are (1) the capability of realizing all stable z-
domain biquadratic transfer functions, (2) sufficient flexibility to permit small total
capacitance with low sensitivity, and (3) freedom from parasitic capacitances.

The general biquad structure is formed by the interconnection of the general
building block of Fig. 8.5-17a. The biquadratic transfer function of the circuit of
Fig. 8.5-18 is given as

Vou(2) _ Aot AZ7 4 A2

H(z) = V.(3) - Cli—l N C22_2 (8.5-89)
where
Ao = DoB3 — D3
Ay =D{ — D3 + D3By — DoB; — D3B3 + DyB3 (8.5-90)
A, = D3By + D,B; — D3B3 — DBy
Ci = B,B3; — By

C, = BBz — B1B;
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Stage 1

Stage 2

o Vo2

FIGURE 8.5-18
Signal flow diagram of a biquad.

It is observed in Fig. 8.5-18 that B, and B are positive-feedback components. If
By and B are zero, the filter will be stable from an ideal viewpoint. For nonzero
values of By and B, the filter will remain stable if Bj is greater than B, and B,
is less than B,Bj. o

Figure 8.5-19a shows a switched capacitor implementation of the flow
diagram of Fig. 8.5-18. The two outputs are designated as V,; and V. The
most general output of this realization is at V, because each coefficient can be
realized independently of the other. The transfer function at V,, is

Voa(2) _ Do + (D3B; — D,)i ™" + (D3B, — DB, >
Vi(2) 1 + (ByB3 — Bo)i ' + (ByB3 — BBy 2
(8.5-91)

Note that the individual Bs and Ds represent a ratio of two capacitors. The circuit
can be simplified in a number of ways depending on the actual transfer function
required. For instance, if there is a zero at z = —2 (i.e., z = 1), the “bilinearly”
equivalent analog-domain zero frequency is at s = o; and if the zero is neglected,
then Do becomes zero. The switched capacitor implementation of Fig. 8.5-19a
with the minimum number of switches is shown in Fig. 8.5-195.

H(z) =
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FIGURE 8.5-19
(a) Switched capacitor implementation of Fig. 8.5-18, (b) Switched capacitor biquad with a minimum
number of switches.
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Generally, the second-order z-domain transfer function is given in terms of
its z-domain roots. A general expression for Eq. 8.5-91 in terms of the roots is

HE) 1+ (2—2rocos 08" + (1 + r2 —2rycos B2
Z) = - -
1+02-2rcosff '+ (1+r2—2rcosf?
(8.5-92)

where the locations of the poles and zeros in the z-plane are at re™/ ® and
i—‘o . . . .
roe™/ 9, respectively. Expressions for the root locations in terms of the co-

efficients are

r =[1— BB, + Bg]"? (8.5-93)

— B,B
cos§ =2 B2B3 * Bo (8.5-94)

2r
ro =[1 + (Dy — D1B,)/Dg]"? (8.5-95)

and
2 + (D, — D3B,)/Dy
cos @, = 5 (8.5-96)
o

A possible set of design equations is developed next. The root locations
described by r, r,, 6, and 6, are assumed to be given. Because there are
several extra degrees of freedom, we can arbitrarily choose B;, B3, D3, and Dj3.
Therefore, the rest of the components can be calculated from

By =2rcos6 —2 + B,B; (8.5-97)
B; =0.5[2 — B,B3 + By] (8.5-98)
D, — D3B

Dy =—2—22 (8.5-99)

2rocos 6, — 1)
and

D, + (1 —r2Dy

D, = (8.5-100)

B,

It is observed that the general biquad can be simplified by choosing as many
of the capacitor values as possible to be equal to zero. The coefficients of Eq.
8.5-91 are a result of the multiplication and subtraction of several individual
capacitor ratios. Thus, the biquad is capable of realizing very small coefficients.
However, we must keep in mind that the sensitivity might be inversely propor-
tional to that small difference. Typically, a tradeoff between sensitivities and total
capacitance is possible and will be illustrated shortly.

Next, a third-order realization is developed. This structure is useful when
the filter has an odd order. Figure 8.5-20a shows a general third-order structure
in its signal flow diagram form. The transfer function of this structure is
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Stage 2

° 1+2-1

Vi(2)

NI>
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<
N>

b)

FIGURE 8.5-20
(a) General third-order block diagram, (b) Simplified third-order block diagram (signal flow graph).

~ a1 a2 ~—3
Vo(2) ) + a2 + @z + a3z

H(z) = V) T 1481 g s B (8.5-101)
where
ay = —As (8.5-102)
o) = A1BsBg — AyBg + Ay — As (8.5-103)
ay = 2A1BsBg — AgBsBg + A3Bg — ABg (8.5-104)
a3 = BsBg(A| — Ay) (8.5-105)
B1 = B2Bs — B1BsBs — By (8.5-106)
B2 = BoBsBg — 2B1BsBg — B3Bg + B,Bg (8.5-107)
and

B3 = BsB¢(Bo — By) (8.5-108)
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Besides the transfer function of Eq. 8.5-101, two other transfer functions for each
op amp output can be obtained. Equation 8.5-101 is chosen for its flexibility. A
simplified yet versatile structure is considered next.

IfB, =B, =A; = A4 =0, and if we omit the 1 + 77! following As, then
the flow diagram Fig. 8.5-20b results. The coefficients of Eq. 8.5-101 become

—ap = As (8.5-109)
—a; = AsBs (8.5-110)
—ay = Bg(AoBs — A3 + A2) (8.5-111)
—a3 = ApBsBg (8.5-112)
B1 = B2Bs (8.5-113)
B2 = Bs(BoBs — B3 + B3) (8.5-114)
and
Bs = BoBsBs (8.5-115)

A switched capacitor implementation of Fig. 8.5-20b is shown in Fig.
8.5-21. Table 8.5-2 shows the generality of the third-order building block in
designing the transmission zeros. This table gives the values of the a coefficients
and the capacitor ratios required for several conventional types of filters. In addi-
tion to the tradeoff between sensitivity and total capacitance mentioned before,
we have added the constraint that the largest-to-smallest capacitor ratio be less
than 10. More details regarding the tradeoff between sensitivity, output voltage
swing, and total capacitance are given elsewhere.*

If the third-order specifications are given in terms of root locations, then
it is necessary to relate the coefficients to the root locations. The root locations
include one real pole at 7, two complex poles at r e*/?, and two complex zeros
at roe™/%, These expressions are

a =0 (8.5-116)
o =1 (8.5-117)
ay =2 —2rycos B, (8.5-118)
a3 =1+r2—2r,cos6, (8.5-119)
Bi=3—r; —2rcosf (8.5-120)
By =3—2ry +r%—4rcos@ + 2rr cos 6 (8.5-121)
and
Bi=1-r +r2—rir—2rcosf + 2rrycos®  (8.5-122)
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To illustrate the synthesis procedure, the second-order and third-order blocks
are used to design a fifth-order low-pass filter. The specifications of the filter are
a 0.125 dB passband ripple, a cutoff frequency of 3.4 kHz, a stopband minimum
attenuation of 32 dB above 4.6 kHz and a clock frequency of 128 kHz. The design
begins with the roots of the s-domain rational polynomial approximation, H(s).
These roots are mapped to the Z-domain through the bilinear transformation.26

AsCs
4
I\
o C2 g,
_/ N
92\ ¢4
o1 ACe O

Ci

a— /T

0
FIGURE 8.5-21

Switched capacitor implementation of Fig. 8.5-20b.
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FIGURE 8.5-22
) Root locations in the s-plane of the fifth-
ek ing order filter: O= zeros, X = poles; w; =
8, 405792 x 103, wy = 28.367 X 10, w3 = 22.604 X
5 103, wg = 17.83 X 103,83 = 1.938 X 103, 8, =
o 05 = 8.514 X 103, 85 = 15.474 x 10%.
The s-domain zero at infinity that maps to z = —2 is ignored. The location

of the roots in the s-domain are illustrated in Fig. 8.5-22. The second-order
realization has two zeros and two poles, *jw; and 8; * jw,, respectively. The
corresponding root locations in the 7-domain are r = 0.92838, § = +£7.722°, and
ro = 1.0,8, = £12.928° for the poles and zeros, respectively. The third-order
stage realizes two zeros and three poles: *jw;, 85, and 83 = jws, respectively.
The corresponding root locations in the z-domain are r = 0.938,6 = +9.88°,
r, = 0.878,r, = 1.0, and 0, = *18.9° for the poles and zeros, respectively.
It should be noted that in obtaining the coefficients in both filters, the dc
gain of each stage was adjusted to be near unity. For the specified values of
r and 0, the capacitor ratios of the biquad can be calculated by setting B, =
0.1,B3=1.6,D,=0.0, and D3 = 0.22. The final results are summarized in Table
8.5-3. The total capacitance for the biquad is 28.172 C,. The capacitor ratios for
the third-order building block are given in Table 8.5-4. The total capacitance
for the third-order building block is 39.481C,. After simplifications,* the total
capacitance is 33.28C,. The total filter capacitance is Ct = 61.452C,. It has been
shown that there is a tradeoff between sensitivity, total capacitance, and dynamic
range.?% Figure 8.5-23 shows the resulting fifth-order low-pass filter realization.

TABLE 8.5-3 ,

Capacitor values in units of ¢, for the biquad circuit

Capacitor B,C, B\C, BoyG D;Cy DG DG C G
B3C, D,

Value 1 6.2863 0 1 4.3336 0 45517 10
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TABLE 8.5-4

Capacitor values in units of ¢, for the triquad circuit

Capacitor A()Cl Cl 36C3 A3C2 BzCz B3C2 C2 B5C2
BoC) G AG

Value 1 10 1 1 5.684 4.657 3.057 1.083

The performance of this filter is shown in Fig. 8.5-24. The simulated results and
the experimental results agree -quite closely.”

A brief overview of the methods of designing switched capacitor filters
has been shown. The three approaches selected were resistor replacement or
simulation by switched capacitor equivalents, the use of integrators to realize
passive RLC prototype ladder filters, and the direct synthesis of the z-domain
transfer function. Many more approaches exist, and they should be considered if
the above approaches do not provide the required performance.

Because of the lack of space, topics such as the prewarping of the s-domain
specifications to account for the (sin x)/x effect of the sample-and-hold circuit on
the filter performance have not been discussed. Also, the influence of the switches
and the op amp performance (gain and bandwidth) have not been considered.
Another problem the designer is faced with when designing switched capacitor
circuits is a method of analysis. Because the switched capacitor circuit is an
analog sampled-data system, aliasing can occur, and it is often necessary to use
an antialiasing filter, which must be a continuous-time filter. Fortunately, the
accuracy requirement of the continuous-time, antialiasing filter is not severe, and
RC active filter techniques can be used.

1

T

-©
LN

535

e 4.:|;34
10 3.057 10 4.552
o 1 ) ¢,1.083 ¢, 1 9 —-I
i ¢1 1 ¢T 1
B T e e s L
J_ J_ J_ _L ﬁ_ ¢:L 0N 0 L%
= - = - = - T T - J_ J_
ags7 - T T T T J'_ _l":
I/
IN
037 ¢ 1
- \L €
1{ . 5.286
—I\ ' o C L2
L 1
FIGURE 8.5-23

SC circuit diagram of the fifth-order filter, capacitor values in C, units.
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FIGURE 8.5-24

Experimental and theoretical frequency response of the filter of Fig. 8.5-23: O= experiment, — =
theory.

The success of switched capacitor filters has created the demand for
increased performance in the area of dynamic range and frequency. The influence
of the feedthrough of the switches has been found to be a serious factor in Limit-
ing dynamic range. Besides using small switches and other methods previously
discussed to reduce feedthrough, it is important to keep the summing nodes of
switched capacitor circuits physically away from the clock lines. In fact, any
analog input line should be isolated from lines that carry digital signals. Another
factor limiting the dynamic range is noise. The noisé can come from the op amp
or from switched capacitors (k7/C noise). Of particular concern is the folding of
high-frequency noise into the baseband of the switched capacitor circuit.

The frequency limits of switched capacitor circuits are primarily due to
the op amp frequency limitations. Design methods exist that allow the signal
bandwidth to approach half the sampling frequency. One of the benefits of these
methods is that the capacitor ratios are reduced and the area required for capacitors
is minimum. The finite gain bandwidth of the op amp will cause the actual
switched capacitor filter performance to deviate from the desired performance.

Careful layout, the use of high-frequency op amps, and a fully differential
signal path have resulted in switched capacitor filters with very good dynamic
range and with high-frequency performance. Of the three approaches presented,
the RLC ladder approach using fully differential integrators or the cascaded biquad
are typically used. The designer generally tries to minimize the area and power
dissipation in addition to achieving the filter performance requirements.

Switched capacitor techniques are also useful for nonfilter applications.
Many of the circuits covered in the next section can be implemented using
switched capacitor circuit methods. The full application of switched capacitor cir-
cuit techniques has yet to be investigated with respect to analog signal processing
circuits.
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8.6 ANALOG SIGNAL PROCESSING
CIRCUITS

One of the largest areas of application of analog signal processing circuits is
filtering. This has been the subject of the last two sections. In this section,
we consider nonfilter applications of analog signal processing circuits. These
applications include precision breakpoint circuits, multipliers and modulators,
oscillators, and phase-locked loops. Many other circuits and systems could be
included, but these are representative of the concepts and principles.

8.6.1 Precision Breakpoint Circuits

In many applications it is necessary to realize a voltage transfer characteristic
similar to those given in Fig. 8.6-1. In these transfer characteristics, the breakpoint
is the point where two straight-line segments join, which is at the origin for each

Vour Vour

| A
R,
R
1
Vin » VIN
Ry
R,
1

(@ (b)

Vour Vour
3 A

R,
R
3
- Vin > Vin
R,
R,
1

(o) (@

FIGURE 8.6-1
Four possible types of nonlinear voltage transfer characteristics having the breakpoint at Vg = 0.
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of these cases. If the technology used can implement a diode, a resistor, and an op
amp, then Fig. 8.6-2 shows a realization of each of the respective voltage transfer
characteristics of Fig. 8.6-1. The slopes of the realizations will be determined by
the ratio of R, and R;. Because the diodes are in the feedback path, they behave
as ideal diodes. This permits the drain-gate connected MOSFET to function in
place of the diodes in Fig. 8.6-2.

In every diode circuit, it is necessary to first find the breakpoints of the
circuits related to either the input or output variable. In Fig. 8.6-2, the current

Ip2

;_Dl,___

M °
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M A AAY
R, R,
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YN Vour Vin 1>' Vour
° ° o o
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o2 | ] D1
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()
o— AN A AT AAA————o
+ R R o, ? j& R R +
[l
2 [ | D1
D2
Vin Vour
> °
(@
FIGURE 8.6-2

Realizations of the characteristics of Fig. 8.6-1: (a) Fig. 8.6-1a with slope —R,/R;, (b) Fig. 8.6-1b

with slope —Ry/R;, (c) Fig. 8.6-1c with slope R,/R;, (d) Fig. 8.6-1d with slope R,/R;.
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flow in or out of the op amp can flow only through D1 or D2 but not both at the
same time. Therefore, the only possible states of D1 and D2 are D1 on-D2 off or
D1 off-D2 on. The breakpoint in the circuits of Fig. 8.6-2 will occur when both
diode currents are zero. The direction of Ip; and Ip, is not important because
they will be equated to zero to find the breakpoint. For example, consider Fig.
8.6-2a. The currents Ip; and Ip, can be expressed as

Vin |, Vour Vour

Ip; = R, + R, Ipy = R, 8.6-1)
Setting Ip; and Ip, to zero gives the breakpoints as Vour(BP) = 0 and
Vin(BP) = 0.

In many cases, the breakpoint is to be shifted away from zero. This can
be accomplished for the circuit of Fig. 8.6-2b as illustrated in Fig. 8.6-3a. A dc
voltage, E,, has been connected to the inverting input through a resistor, R3.
Using the principles just explained, we solve for /p; and I'p, as

Vin | Er | Your Vour
Ipp = —2 + =L + =2 Iy = 6-2
o= % TR R, D2 = "p (8.6-2)
Setting I'p; and Ip; to zero in Eq. 8.6-2 gives the breakpoint as
E,R
Vin(BP) = —===  Vour(BP) =0 (8.6-3)
3

Figure 8.6-3b shows the voltage transfer characteristics of the circuit of Fig.
8.6-3a.
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E >0 E =0 E <0 FIGURE 8.6-3

(a) Method of shifting the breakpoint of Fig.
(b) 8.6-1b, (b) Transfer characteristics of (a).
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Mathematically, we may express the output voltage of Fig. 8.6-3a as

-— > —
Vour = { Rovw/Ry + RoE,/Ry V= -RE,/Ry o0,

0 Vin < —R1E,/R;3

We note that Ey can be positive or negative, which will shift the breakpoint to
the left or right, respectively. The same principle can be applied to the other
circuits of Fig. 8.6-2 to develop a general capability of establishing a breakpoint
at any value of V.

These concepts can be extended to synthesize a voltage transfer function by
using piecewise linear segments. Figure 8.6-4a shows a number of circuits similar
to the circuit of Fig. 8.6-3a¢ summed into a summing amplifier. The resulting

—————— A= ===~
/
/7 Ro N
Vin.,” R R R R Vour
o—~—MWV A A My MV )
D2 D1
_ Re
E; oA
R, R R | ~
MV A
D4 D3
Rea
~ B oMW Vour
|
Ry R R R.R.R
AT A —— AN Slope = (2 +7,* R)
BB\
D6 D5 Slope = R1+ Rz) ) L7
Rea _R -
~ E; oA Slope = R,
[
' - Vin
: : EiRey ExRep  E3Rg3
t - 1 Ry Ry A3
@ (b)
FIGURE 8.6-4

(@) Summation of individual segments to form a piecewise linear approximation, (b) Voltage transfer
characteristics of (a).
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transfer characteristic is shown in Fig. 8.6-4b. Each of the individual outputs
implements one line segment. We note that all E;s can be identical, and the Rg;
resistors can be used to design the breakpoints. On the other hand, all Rg;s can be
identical and the E; voltage sources used to design the breakpoints. The slopes of
the line segments become increasingly larger and are indicated on the curve. If the
diodes are all reversed and the polarities of E; changed, the piecewise linear curve
moves to the third quadrant. Ry shown in Fig. 8.6-4a can be added to allow a line
segment with a nonzero slope to go through the origin of Fig. 8.6-4b.

The curve of Fig. 8.6-4b is monotonically increasing in slope. If the slope
is to decrease, then one could place an inverter in with each breakpoint circuit of
Fig. 8.6-4a before summing its output. All possible monotonically increasing and
decreasing slopes are realizable in any of the four quadrants using these ideas.

Although the diodes and op amps of the above circuits can easily be imple-
mented in BJT or MOS technology, the resistors are not practical. Resistors
are not sufficiently accurate for most applications and require too much area. A
method of eliminating the resistors in MOS technology using switched capacitor
methods will be presented next.

Consider the switched capacitor implementation of a noninverting amplifier
shown in Fig. 8.6-5. This circuit is similar to the noninverting stray-insensitive
integrator of Fig. 8.5-11 except for the switch added to discharge C; during the
¢, phase. This switch essentially removes the memory of the integrator, resulting
in an amplifier. It can be shown that the z-domain transfer function of the circuit
of Fig. 8.6-5 is

Vour() _ Gi_—112
Vn(z) G

Equation 8.6-5 represents a noninverting gain function that is valid during the
¢, phase and is delayed by a half clock period from the input. A sample and
hold circuit can be added to hold the output for the entire clock period. If the
output is sampled and held, then Eq. 8.6-5 is multiplied by z ™12 to get a full
delay of H°°(z). One of the disadvantages of the circuit of Fig. 8.6-5 is that the
op amp output is slewed to zero during each ¢; phase and back to the desired
output during each ¢, phase. This is unnecessary and can be prevented by the
introduction of more capacitors and switches as will be shown later.

H%(z) = (8.6-5)

L _
VIN ¢1 C1 ¢2 VOUT

L
el
.

FIGURE 8.6-5
Noninverting switched capacitor amplifier realization.
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If the leftmost pair of switches has the phasing reversed, then the amplifier
is inverting, and the transfer function is given as

Vour(z) _ _ G
Vin(z) G

where the output is valid only at the ¢, phase. If we assume that the high sampling
approximation is valid, then Fig. 8.6-5 can be considered as a simple noninverting
or inverting amplifier depending upon the phasing of the leftmost switch pair.

The voltage transfer characteristics of Fig. 8.6-1 can be realized using MOS
technology if we combine a comparator with the amplifier of Fig. 8.6-5, as shown
in Fig. 8.6-6a. Note that the comparator output controls the switch that couples
C, into the inverting input of the op amp (called the transfer switch). If this switch
is open during the ¢, phase period, the output of the op amp will be zero. If the
transfer switch is closed during the ¢, phase period, the output will be given by
Eq. 8.6-5 or 8.6-6, depending on the phasing of the leftmost switch pair. To see
how the circuit works, consider the circuit of Fig. 8.6-6a with a positive value of
Vin. The comparator output will be high, causing the transfer switch to be closed.
Thus, the output is given by Eq. 8.6-5. If Vyy is less than zero, the comparator
output is low, causing the transfer switch to be open. Therefore, the circuit of
Fig. 8.6-6a realizes the voltage transfer curve of Fig. 8.6-1c with outputs valid
during the ¢, clock phase. If the comparator inputs are reversed, Fig. 8.6-6a
realizes the voltage transfer curve of Fig. 8.6-1d. If the phases of the leftmost
switches (input switches) are reversed, the circuit of Fig. 8.6-6b results. With the
inputs to the comparator as shown, this circuit realizes the voltage transfer curve
of Fig. 8.6-1b. If the comparator inputs are reversed, the voltage transfer curve
of Fig. 8.6-1a is realized.

The switched capacitor breakpoint realizations can be implemented by alter-
nate configurations, but all will utilize a comparator controlling one or more
switches. It is easy to shift the breakpoint of the realization by connecting the

H(z) = (8.6'6)

Transfer ~ Transfer
switch switch ’ 01
&1
C C C.

Vn ® ! 17 Vour in = ®2 |1 Ii Vour
| AN ° o : | AN °
| |

b2 /01 & LI
A | A
- | - I
: Op amp : Op amp
I - _! .
Comparator Comparator
(@ (b)

FIGURE 8.6-6
(a) Switched capacitor realization of Fig. 8.6-1c, (b) Switched capacitor realization of Fig. 8.6-1b.
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grounded input terminal of the comparators of Fig. 8.6-6a and b to the voltage
E,. It is also necessary to remove point A from ground and connect it to the
voltage E,. A positive value of E, applied to the inverting input of the com-
parator of Fig. 8.6-6a will cause the breakpoint to occur at Vi = E, . The outputs
of several shifted breakpoint realizations can be summed in a manner similar
to Fig. 8.6-4 to obtain a piecewise linear approximation of a voltage transfer
function.’! The switched capacitor realizations of the precision breakpoint circuits
are compatible with MOS technology and have been employed in many com-
mercial applications.

8.6.2 Modulators and Multipliers

Modulators include a class of circuits with multiple inputs where one input can
modify or control the signal flow from the other input to the output. Figure
8.6-7 illustrates the modulator on a block diagram basis. V(¢) and V,(¢) are
input signals. The modulator output signal can be expressed in general as

Vour(t) = falVi(£)]1fB[V2(2)] (8.6-7)

where f 4 and f g are two arbitrary functions of the respective inputs. If f ,[V(#)]
and fp[V,(#)] are linearly dependent upon V(¢) and V,(¢), respectively, the
modulator is called a multiplier. Thus, Eq. 8.6-7 becomes

Vour(t) = K 1Vi(£) V(1) (8.6-8)

where K is the combination of the individual constants for V(¢) and V,(¢).

Figure 8.6-8 shows a BJT modulator using the differential amplifier con-
figuration of Fig. 6.4-7 with resistor loads and a current sink implemented by a
current mirror. The output voltage can be expressed as

1 1
L+ eV 14 eV

Vour = ReIc1 — Ic2) = aplgeR.

(8.6-9)
using Eqs. 6.3-52 and 6.3-53. Equation 8.6-9 can be rewritten as
Vi Vi
Vour = aplgeR. tanh | —— | = I'ggR | — .6-1
our = arlgpR. tan (2Vt) eeRc 2Vt) (8.6-10)

if V| is much less than 50 mV. Because Igg is equal to [V, — Vgg(on))/R, we
may express Eq. 8.6-10 as

R,
Vour = mVl [V, = Vge(on)] = KV ([V; — Vgg(on)] (8.6-11)
t

Vi(t) o—i

Modulator  —»—o Vour(t)
FIGURE 8.6-7
Block diagram for a modulator.

Vo (t) o—]




736  vLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

"R
V, Q4 Q3
° ‘ FIGURE 8.6-8
A simple BJT modulator using a differential
Vee amplifier.

The multiplier of Fig. 8.6-8 has several problems. The first is that V; is
offset by Vgg(on). The second is that V, must always be positive, resulting in
a two-quadrant multiplier. A third problem is that the dynamic range is limited
because of the approximation necessary to replace tanh x by x where x = V/2V;
in Eq. 8.6-10.

The first two problems can be solved by the Gilbert cell®? shown in Fig.
8.6-9. The Gilbert cell allows four-quadrant operation and is the basis for most
integrated circuit balanced multipliers. The operation of this key cell is as follows.
The collector currents of Q3 and Q4 are

Ic
Iy = 6-
BT 1+ exp(=Vi/VY (8.6-12)

and

I
Jog = —L—— 6-13
“ T+ exp(VI/VY) (8.6-13)

Similarly the collector currents for Q5 and Q6 are

Iy
Joog = ———& 6-
71+ exp(Vi/VY) (8.6-14)

and

o)
= 6-1
Tes = 173 exp (= V1/Vy) (8.6-15)
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FIGURE 8.6-9
The Gilbert multiplier cell.

The two collector currents I ¢; and I, can be expressed as

Igg
Ic = 6-
L7 1+ exp (—Vo/ VY (8.6-16)

and

155!
Joy = — BB 8.6-17
7 1+ exp(ValVy) ( )

Substituting Eqs. 8.6-16 and 8.6-17 into Eqs. 8.6-12 through 8.6-15 results in

- Ieg
Ics = [1 + exp (=Vi/V)I[1 + exp (—V2/ VY] (8.6-18)
1§53
Icy = 6.
7 + exp (VI/VOIIL + exp (= Va/ V)] (8.6-19)
fos = L (8.6-20)
[1+ exp (Vi/VOIL + exp (Va/ V)]
and
e (8.6-21)

Ice = —
[1 +exp(—V/VIL + exp (Va/Vo)]
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Next we define the differential output current, Al , as

Al = U3+ Ics) —(Uca+1ce) = Uz —1Ice) —Ucs — Ics)
(8.6-22)

Substituting Eqs. 8.6-18 through 8.6-21 into Eq. 8.6-22 and using the exponential
formulaes for hyperbolic functions results in the differential output current being
expressed as

Vi

tanh
an o,

Al =IEE

[tanh ( 2V‘)} (8.6-23)

If the input signals V| and V, are small enough, the Gilbert cell of Fig. 8.6-9
functions as a four-quadrant analog multiplier. The output voltage, Voyr, can be
generated from Al by using two equal-valued resistors connected to V¢ with
current Iy(=1¢c3 + I¢s) flowing through one and current I1,(=1Ic4 + Icg)
flowing through the other.

The circuit of Fig. 8.6-9 can be used as a modulator when one of the inputs
is very large and the other sufficiently small so that tanh x is approximately
equal to x. The large input will cause the transistors to which it is applied to
act like switches. This effectively multiplies the small signal by a square wave.
Such modulators are called synchronous modulators and have many applications
in signal processing, including demodulation and phase detection. The amplitude
range of V; can be extended considerably by placing resistors between the emitters
and the I gg current source of the Gilbert cell.

The amplitude constraints on the inputs of the Gilbert cell can be removed
using a predistortion technique that results in a linear relationship between V
and Voyr and V; and Voyr. Figure 8.6-10 illustrates the complete four-quadrant
multiplier. The three boxes, which are voltage-to-current converters or current-to-
voltage converters, will be considered shortly. The predistortion is implemented
by the emitters of Q7 and Q8. The currents /9 and I create a voltage between
the emitters of Q7 and Q8 that is proportional to the inverse hyperbolic tangent
of V;. This will remove the hyperbolic tangent expressions in Eq. 8.6-23.

The analysis of the circuit of Fig. 8.6-10 can be accomplished as follows. It
can be shown that the currents through base-emitter junctions that are connected
in series, such as Q7, Q3, Q4, and Q8, can be expressed as

Iols =141 (8.6-24)

where /; = I and Ig = Iy. Similarly, for the series connection of Q7, Q6, QS5,
and Q8, we have

Iglg =I5l (8.6-25)
Next we note that

I,=13+14 (8.6-26)

I, =15+ 1Ig (8.6-27)

Iy, =15+ 15 (8.6-28)

Iip =14+ 1g (8.6-29)
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Current-voltage converter —o
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Ixx Ivy
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FIGURE 8.6-10
Complete four-quadrant analog multiplier.
and
Ixx =19 + Iy (8.6-30)

Let us assume that the transfer characteristics of the rectangular blocks of Fig.
8.6-10 are given by

I¢ — 19 = Vi/K, (8.6-31)
1, =1, =VyK, (8.6-32)

and
Vour = Ko(I12 — I11) (8.6-33)

where K, K, and K, are constants depending on the implementation. Replacing
I1, and I ; by Eqgs. 8.6-28 and 8.6-29 results in

Vour = Kol(Is + Ig) — (I3 + Is)] = KO[(u + 15@) - (14'—“’ + 15)}

I Ig
(8.6-34)
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Rearranging Eq. 8.6-34 results in

o= Ior

vmn==K{—1;;ﬂ%14—19 (8.6-35)

We desire to replace (I4 — Is) by (I; — I,), which can be accomplished as
follows.

i I
Iv=I, =3+ 1) — (s + 1) = 1,22 + 14| — |15+ 152
Iy 19
(8.6-36)
Combining terms and solving for (14 — I5) gives
s
Is—1s5) =|—— ;-1 .6-
(L~ 1) L9+1m%1 ) (8.6:37)
Substituting Eq. 8.6-37 into Eq. 8.6-35 provides the desired result.
To—1Iyp! K.ViVa
1% =Ko|—=———|(I, - 1) = ——— =K, V,V
oUT 0(19+110)( 1~ 12) Tk K> mV1V2
(8.6-38)

where the definitions of Eqs. 8.6-30 through 8.6-32 have been used to obtain Eq.
8.6-38. Because no approximations were used in the derivation of Eq. 8.6-38,
the input signal amplitudes are not constrained.

Figure 8.6-11 shows a practical implementation of the four-quadrant analog
multiplier of Fig. 8.6-10. It can be seen that

2V,

I—1,=— .6-
1 2 Ry (8.6-39)
and
2V
Ig—1,="2 (8.6-40)
Rx

where it has been assumed that the part of V; and V, across the base-emitter
of 99, Q10, and Q1, Q2 are small compared to the drop across the resistors.
Substituting Eqgs. 8.6-39 and 8.6-40 into Eq. 8.6-38 results in

4K R . ViV,

Vour ToRaRy KnViVy (8.6-41)
where R is much greater than R.. These concepts have been used to implement
high-performance four-quadrant analog multipliers having good performance. One
of the problems with the integrated circuit implementation is the need to be able
to trim the various errors due to offsets and mismatches.

Four-quadrant multipliers have also been implemented in MOS tech-
nology.>373% Most of the realizations use a linearized Gilbert cell approach similar
to the bipolar implementation above. A somewhat different approach is based
on the cascade of two differential amplifier pairs has been found to give good
results.>> The principle of operation is illustrated in Fig. 8.6-12. If we assume
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—0 " out

FIGURE 8.6-11
Practical implementation of Fig. 8.6-10.

FIGURE 8.6-12
Cascaded MOS differential amplifiers.
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that M1 and M2 are in the saturation region, then using Egs. 6.3-7 and 6.3-8,
we may write '

172
= BVi

21172

Iss _ V1

B 4

BV pivi
Iss 4l 5

Ip, —Ipy = Iss

(8.6-42)

whre B; = KW,/L1. It is seen that /p; — I'p, depends nonlinearly on V; and
Iss. Let us define Vg, as

Vo1 = —Ri1(Ip) — Ip) (8.6-43)
We can find a similar expression to Eq. 8.6-42 for Ip3 — Ip4, which is
2 1/2
1 Vo
Ins —Ips = BsVor| 22 — —— (8.6-44)
B3 4

where B3 = kW3/L3. If we restrict V; to less than 0.3(/ss/81)"?, then we can
approximate Eq. 8.6-42 as

Iy — Iy = B1VilIss/B1]1"? (8.6-45)

It has been shown that this assumption results in less than 0.2% total harmonic
distortion in I p; — I py. Substituting Eqs. 8.6-43 and 8.6-45 into Eq. 8.6-44 results
in

Ips — Ipg = Vi[—RiIss(B1B83) 211 — (B1B3R3V2/4)]V? (8.6-46)

It is seen that Ip; — Ips depends linearly on Iss. However, there is still a
nonlinear dependence upon V. This dependence could be removed by restricting
the amplitude of Ip3 — Ip4. An alternative approach is to use the predistortion
circuit of Fig. 8.6-13. In this circuit, V; is created by the difference in two
currents, I x, — Ix,. This difference, designated as Iy, can be expressed as

Ix =1Ix,—Ixy = Vi(IpgBs)’[1 — (Bs/4Ipx)VIY?  (8.6-47)

Voo
Va
MEI }—T—l M6
IS NP
Yi
o

FIGURE 8.6-13
Predistortion circuit for the cascade MOS differential multiplier of
Vss Fig. 8.6-12. ,
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where Ipy = Ix1 + Ix». Since the bracketed terms of Egs. 8.6-46 and 8.6-47
have the same form, we can achieve predistortion by equating these two terms
to get

Bs = B1B3RIIpx (8.6-48)
Therefore, Eq. 8.6-46 can be reduced to
12
Io =1Ip3s—Ips = —R, B1Bs Isslx (8.6-49)
Ipx Bs

Equation 8.6-49 is the form of an ideal current multiplier. /ss and Ix will be
generated by voltage-to-differential current amplifiers, and the output voltage will
be derived from /¢.

In order to get four-quadrant operation, /s must be able to be negative.
This can be accomplished by taking the difference of two of the preceding circuits.
The resulting MOS realization using only n-channel transistors is shown in Fig.
8.6-14. Several practical modifications can be made to improve the perfor-
mance of the multiplier with regard to temperature and linearity. This MOS
four-quadrant analog multiplier is capable of linearity better than 0.3% at 75%
of full scale. It has a bandwidth of dc to 1.5 MHz and an output noise 77 dB
below full scale.

Other techniques exist that allow the implementation of multipliers compat-
ible with CMOS technology. A straightforward approach using an A/D and a
D/A converter is shown in Fig. 8.6-15. The input to the A/D converter is one of
the multiplier inputs designated as V. The reference voltage for an n-bit, A/D
converter is provided by another analog input, V;, to the multiplier. The digital
output word of the A/D converter is given as

= % =b 27 4 bbb+ o+ b2 + 5,277 (8.6-50)
2

where D is digital word for the value of V; scaled by V,. This digital word is
then applied to an n-bit, D/A converter that has an analog input, V3, applied as
its reference voltage. The analog output of the D/A converter is given as

Vo=DV3=b2"2+b272 + -+ b,_12" "' + b, 27"
(8.6-51)
Substituting Eq. 8.6-50 into Eq 8.6-51 results in the following multiplier/divider
with n-bit resolution.
V1 V3
Va2

Vo = (8.6-52)
Any of the D/A and A/D converters of Sec. 8.2 and 8.3 can be used to implement
a multiplier by this principle.

In the preceding results, we notice that the V, input of Fig. 8.6-15 is a
dividing input. Obviously, V, cannot be zero. Another method of implementing
a divider circuit is shown in Fig. 8.6-16. Figure 8.6-16a shows the block diagram
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FIGURE 8.6-14

MOS four-quadrant analog current multiplier simplified schematic (values shown are W/L in

microns/microns).
Vv, V3
I b, I
Reference b - Reference
2 -
Vio—{ Input Outputs . Inputs Output |—o Vo
bn-1 >
A/D converter b, - D/A converter

FIGURE 8.6-15
A/D-D/A converter analog multiplier.
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Vi o—>

—»0 V0=KmV1 V2

(@

FIGURE 8.6-16
a) Block diagram symbol for a multiplier, (b) Negative divider, (c) Positive divider.

symbol for a multiplier. If the multiplier is placed in the feedback path of
an inverting amplifier, as shown in Fig. 8.6-16b, then the output can be
written as

_ RV
Vo = KmRz(Vz) (8.6-53)

where V, > 0. If V; < 0 and the input terminals of the op amp are reversed, as
indicated in Fig. 8.6-16¢, a positive divider circuit is obtained. The phase margin
of the op amp in Fig. 8.6-16 will be reduced because of the presence of the
multiplier in the feedback path.
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Vi Vy = F(Vp)

=1

FIGURE 8.6-17
Illustration of the principle of creating the inverse function.

The principle used to develop the dividers of Fig. 8.6-16 can be generalized.
This principle, illustrated in Fig. 8.6-17, is that if a functional block is placed
in the feedback path of a circuit, the closed-loop response is the inverse of that
function. In the previous case, division is the inverse of multiplication. If a circuit
that generates the sine of an input is placed in the feedback path, the closed-loop
transfer characteristic would be the inverse sine of the input.

A simple modulator compatible with MOS technology is shown in Fig.
8.6-18. If V, is greater than zero, then switches S2 and S3 are on and switches
S1 and S4 are off. We see that the amplifier of Fig. 8.6-5 results, with the

¢ 0
J J Vi (t)
T C
S1 o
sz(f). J 0_||:‘ _L
A -
32 i
e e
e : )
T L
S3
qt%4[
1
| |
S4 - - =

FIGURE 8.6-18
A modulator compatible with MOS technology.
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V(1)

V(1)

FIGURE 8.6-19
Illustration of the waveforms of Fig. 8.6-18 used as a modulator.

corresponding transfer function of Eq. 8.6-5. If V;, is less than zero, then switches
S1 and S4 are on and switches S2 and S3 are off. The phasing is reversed on
the input switches, resulting in the inverting transfer function of Eq. 8.6-6. If the
output is sampled and held, or if the high sampling approximation is valid, the
effect of V, is to multiply V; by +1 when V, > 0 and by —1 when V,; < 0.
Figure 8.6-19 shows the waveforms of the modulator of Fig. 8.6-18 when V is
a sinusoid and V, is a square wave whose frequency is greater than that of the
sinusoid but much less than the clock frequency of ¢; and ¢,.

8.6.3 Oscillators

Oscillators are circuits that convert dc power into a periodic waveform or signal.
Oscillators can be classified as shown in Table 8.6-1. The two general classes
are tuned and untuned oscillators. Tuned oscillators produce nearly sinusoidal
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TABLE 8.6-1
Classification of oscillators
Oscillators
Tuned Untuned
oscillators oscillators
RC LC Crystal Triangle Square
oscillators oscillators oscillators oscillators oscillators
Sinusoidal

oscillators

outputs, whereas untuned oscillators produce square and/or triangle waveforms.
Tuned oscillators can be further divided into RC, LC, and crystal oscillators.
We shall only consider RC oscillators since these are most suitable for integrated
circuit technology, although crystal oscillators are often employed with the crystal
external to the integrated circuit. The outputs of the untuned oscillator are typically
square waves and triangle waves. The untuned oscillator can create a sinusoid by
applying the triangle wave to a sine-shaping circuit, such as the one considered
in Prob. 8.40 or one made up from a sufficient number of piecewise linear
line segments. The untuned oscillators are compatible with integrated circuit
technology, which in part accounts for their widespread use. They are also
capable of implementing a voltage-controlled oscillator (VCO), which has many
uses in signal processing circuits. Due to lack of space, the considerations of
oscillators will be limited. Much more information can be found in the
references.>’-!

The following discussion will consider both tuned and untuned oscillators.
The principles of operation and an example will be given. Only oscillators that
use op amps, capacitors, and resistors or resistor equivalents will be considered.
Figure 8.6-20 shows a block diagram of a single-loop feedback system. This
diagram consists of an amplifier (A), a feedback network (8), and a summing
junction. The variables shown are Vs, Vg, V], and Vo which are the source,
feedback, input, and output voltages, respectively. The + sign next to the
feedback input to the summing junction indicates that the feedback is positive. If
the circuit of Fig. 8.6-20 is assumed to be linear, the loop gain, G, is the voltage
gain around the loop when Vs = 0 and is expressed as

Gvs=0 =AB (8.6-54)
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Vo FIGURE 8.6-20
A »—0 Block diagram of a single-loop feed-
back system.

The closed-loop gain, Ay, is equal to Vo/Vg and is given as

_Yo__4 _ 4
Vs 1—-AB 1-G
The principle of a tuned oscillator can be seen from Eq. 8.6-55. If there
is no input, Vs = 0, then for a finite output, Vo, Eq. 8.6-55 must be equal to

infinity. This can only happen if G = 1. Thus, the criterion for oscillation in a
tuned oscillator is

Loop gain = G(jwp) = A(jwo)B(jap) =1 (8.6-56)

where wy is called the radian frequency of oscillation. An alternative form of Eq.
8.6-56 is

A (8.6-55)

Re [G(jwp)] + jIm[G(jwp)] =1+ 0 (8.6-57)
or
| G(jan) | LArg [G(jwp)] = 1£0° (8.6-58)

In order to satisfy this criterion, the oscillator must be able to achieve a
phase shift of 360° at some frequency, wy, where the loop gain is exactly unity.
The analysis of oscillators is simple and consists of calculating the loop gain
and using Eq. 8.6-56, 8.6-57, or 8.6-58 to find the frequency of oscillation, wy,
and the magnitude of the amplifier gain, A, necessary for oscillation. Figure 8.6-
21a shows an RC oscillator called the Wien bridge oscillator. This oscillator
consists of an amplifier, whose gain is K, and a feedback network consisting of
Ry, C1, Ry, and C,. Figure 8.6-21b shows how to open the feedback loop in order
to calculate the loop gain, G. The key principle in opening the feedback loop is
to do so at a point in the loop where the resistance looking forward in the loop is
much greater than the resistance looking backward in the loop. In this case, the
op amp in the noninverting configuration offers infinite resistance looking into the
noninverting terminal. Note that the loop could also be broken at point A because
resistance looking back into the op amp with negative feedback approaches zero.
Assuming Ry = R; = R and C; = C, = C, the loop gain can be written as

K (s/RC)

CU) = FTGIRO)s + (URCY? (8.6-59)
Substituting for s by jw and equating to 1 + j O results in
j Ko/ R
G(jewn) = JRoy/RC =1+4j0  (3.6-60)

[(1/RC)2 — &] + j3wy/RC
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FIGURE 8.6-21 v
(a) Wien bridge RC oscillator, (b) Open-loop version of (a).

Equation 8.6-60 is satisfied if K = 3 at wy = 1/RC, which are precisely the condi-
tions for oscillation of the oscillator of Fig. 8.6-21a. To obtain a 1 kHz oscillator,
we could choose C = 0.01 uF, which gives R = 15.9 k(). Unfortunately, Fig.
8.6-21 is not practical for IC technologies unless the resistors were replaced with
switched capacitors.

‘The amplitude of oscillation is indeterminate in the linear tuned oscillator. In
practice, the amplitude of the oscillation is determined by a limiting nonlinearity.
Figure 8.6-22 shows a possible nonlinear voltage transfer characteristic for the
amplifier with gain K in Fig. 8.6-21a. For small values of Vj, the gain of the
amplifier is designed to be greater than K (3 in the preceding example). When
the gain is greater than 3, the amplitude of the sinusoidal oscillation grows.
As the amplitude grows, the average gain over one cycle becomes smaller. The
oscillator stabilizes at the amplitude where the time average gain is approximately
equal to 3. If the amplitude should increase above this level for some reason,
the oscillation will begin to decay because the effective gain is less than K.
The amplitude stabilization is an important part of the oscillator. If the harmonic
content of the sinusoid can be large, then the limiting effects of the power supplies
can be used, although the waveform will no longer be sinusoidal. Many different
schemes have been successfully used to achieve a stable oscillator amplitude.
These include piecewise limiting circuits, thermistors, and the large signal transfer
characteristics of differential amplifiers.
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FIGURE 8.6-22
Nonlinear amplifier transfer function necessary for amplitude stabilization.

Because the RC products determine the oscillator frequency, the accuracy of
an untrimmed integrated RC oscillator may not be sufficient. Switched capacitor
techniques can be used to replace the resistors of the RC oscillators with resistor
equivalents. Figure 8.6-23 shows a switched capacitor realization of the circuit
of Fig. 8.6-21a. The resistor ratio, Ra/Rg, is assumed to be sufficiently accurate
for this realization. If the high sampling assumption holds, then we may simply
replace the resistor R with a switched capacitor equivalent resistance of T/Cg to
get

C C
o = =r = e (8.6-61)
s T ,
%2 | o I\ '
j\ Cr c
A A + .
—o
- +
l 4 c
—— Pany .
b TCa Ra Vout
. f
=

FIGURE 8.6-23
A switched capacitor realization of the Wien bridge RC oscillator of Fig. 8.6-21a.



752  vLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

We sce that a switched capacitor implementation of an oscillator is really a
circuit that scales the clock frequency to the oscillator frequency. The success
of this implementation depends on the availability of a stable higher-frequency
oscillator, f.. The switched capacitor implementation also requires amplitude
limiting.

The quadrature oscillator (see Prob. 8.42) is one in which switched capacitor
techniques are suitable. The quadrature oscillator is essentially the Tow-Thomas
realization of Fig. 8.4-11¢ with the Q;R resistor equal to infinity and the R/H;
resistor removed. The result is a noninverting integrator and inverting integrator
cascaded in a loop. The integrators of Sec. 8.5 could be used to achieve a switched
capacitor implementation of the quadrature oscillator.

In general, the tuned oscillator is not widely used in integrated circuits for
several reasons. The requirement for accurate RC products or an accurate clock is
difficult to accomplish without using external components. The untuned oscillator
or relaxation oscillator is more compatible with integrated circuit technology. The
principle of operation can be seen from the block diagram of Fig. 8.6-24. This
block diagram consists of an integrator cascaded with a bistable circuit. Although
we have not yet discussed the realization of the bistable circuit, let us first consider
the operation of Fig. 8.6-24. During the time interval from O to T}, the integrator
integrates the voltage L , provided by the bistable circuit. If K is the constant of
integration, we find that the value of V7 att = T is given as

T
Vi(Ty) =S~ + KJO L,dt=S_+KL,T\ =S4+ (8.6-62)
From Eq. 8.6-62, we may solve for the time, T}, to get

_S+_S—

T
! KL,

(8.6-63)

We may solve for V(7T,) using the same methods to get

T,
Vi(Ty) = Vo(T)) + K jT L dt=S_+KThL_=§_ (8.6-64)
1

Solving for T, gives
S— - S +

T =
2 KL_

(8.6-65)

The sum of T; and T, gives the period T and is written as

Seos-l L L] 88
X . L. = XL (8.6-66)

1
T=f—0=T1+T2=

fL, =—-L_=LandS;y =-5S-=2S.
The above equations show that the bistable is a key element in the untuned
oscillator. The bistable is a circuit that has two stable output states and exhibits
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hysteresis when switching between the two states. Bistables may be clockwise or
counterclockwise and can be shifted from the origin. Figure 8.6-25 shows the two
possible generalized bistable characteristics. In this case, L = Vy + Vi, L~ =
Vy—VL,S+=Vx +Vyg,andS— = Vx —Vy.Generally, Ly =L_and S+ =§-.
Figure 8.6-26a shows a realization of a clockwise (CW) bistable. If the output,
Vs, is equal to Vyy (the positive power supply for the op amp), then the voltage
at the noninverting input of the op amp is VyyR3/(R, + R3). If the input, Vr,
is less than this value, then the output is in fact equal to Vyy. However, if Vp

VT=+KI‘édt — P- - VS

Y

Integrator L

FIGURE 8.6-24
Block diagram of an untuned oscillator and the resulting waveforms.
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FIGURE 8.6-25
(a) CW bistable characteristic, (b) CCW bistable characteristic.

increases above this value from below, then the output voltage switches to Vi
(the negative power supply of the op amp) and voltage at the noninverting input
changes to ViLRi/(R; + R3). From this discussion we see that L, =
Vug,L- = ViL,S+ = VugR3/(Ry + R3), and S— = Vi R3/(Ry + R3). If
possible, it is desirable to limit the output of the op amp to a voltage less than
the power supplies.

* The inverting input of the circuit of Fig. 8.6-26a could be grounded and the
voltage Vr applied to the grounded end of R3 to realize a counterclockwise (CCW)
bistable. However, consider Fig. 8.6-26b, which shows a CCW bistable that limits
the op amp swings to less than the power supplies. It can be shown that L , =
—R6VLL/R7,L— = —R5VHH/R4, S+ = —Rz(L—)/R3, and S- = —Rz(L +)/R3.
Diodes D1 and D2 serve to keep the output of op amp Al from swinging from
Vuy to Vi, thus permitting quick transition of states.
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Ry i
MWV
(b)

FIGURE 8.6-26
(@) Simple CW bistable, (b)) CCW bistable with internal limiting.

A bistable circuit can also be implemented using switched capacitor
techniques. Figure 8.6-27 shows a realization of the bistable characteristics of
Fig. 8.6-25. The upper circuit, consisting of op amps 1 and 2, implements a
switched capacitor amplifier with a sample-and-hold at the output and the ability
to change the sign of the gain of the upper input, depending upon the output of
comparator 3. The inputs to the comparator are the bistable input, Vr, and the
output of the amplifier above, Vry. The lower amplifier is similar to the upper
amplifier. C; and C, are equivalent to the series switched capacitor simulations
for a resistor. The discrete time voltages Vg, V¢, and Vg are given as follows
using the notation of Fig. 8.6-25.

Cu -1
— |V
C, HH}Z

={Vx + [sgn Vc()IVulz™" (8.6-67)

C
Vru(z) = {EIIZVHH + [sgn Ve(2)]
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A switched capacitor implementation of the bistables of Fig. 8.6-25.

Ve(z) = sgn{[Vm(z) — Vr(2)]} Vun (8.6-68)

Van
={Vy + [sgn Ve(2)]VLlz ™' (8.6-69)

where sgn x is 1 if x > 0 and —1 if x < 0. A CW bistable characteristic is
obtained when the ¢x and ¢y of the C,; switched capacitor are as shown in Fig.
8.6-27 where Vp is the input and Vg is the output. If ¢y and ¢y are reversed,
then a CCW bistable is obtained. It is observed that the bistable characteristics
are completely general and can be shifted as desired by varying the appropriate
Vun, by adjusting the capacitor ratios, and/or by changing ¢x and ¢y of ;.
The solid portion of Fig. 8.6-28 shows a simplified implementation of a
CW bistable circuit based on the concepts of Fig. 8.6-27. It can be shown that
the second amplifier is not needed for a CW bistable characteristic with Vx and

and

Cx
Vs(z) = {FVHH + [sgn Vc(z)](
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FIGURE 8.6-28

Simplified CW bistable circuit. The dotted portion is required for the waveform generator
implementation.

Vy of Fig. 8.6-25 equal to zero. The output is taken at Vg and the input is applied
at V7. The notation ¢y and ¢y implies that these clocks are reversed depending
upon the sign of V. For the case of Fig. 8.6-28, ¢x = ¢, and ¢y = ¢, will
give a noninverting gain. The phase reversal circuit can be implemented using
the ideas represented in Fig. 8.6-18.

The bistable can now be combined with the proper type of integrator (non-
inverting or inverting) to achieve an implementation of the untuned oscillator
block diagram of Fig. 8.6-24. An untuned oscillator using the CCW bistable of
Fig. 8.6-26b and an inverting integrator is shown in Fig. 8.6-29. The integrating
constant X is equal to 1/(R,C}), and the various limits of the bistable have already
been shown to be L. = —RgV/R7,L- = —RsVynu/R4,S+ = —R,L/R3, and
S~ = —R,L {/R5. For example, if Vggy = -V = 15V, R; = 100k, C; =
1nF, Ry =R3 = 100 kQ,R; =R7 =30k, and Rs = Rg =20 k), then L , =
—L_ =8, =-8- =10V. From Eq. 8.6-66 we find that the frequency of
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NI
1
D1

FIGURE 8.6-29
Untuned oscillator using the bistable of Fig. 8.6-26b.

oscillation, f,, is 2500 Hz. Although the circuit of Fig. 8.6-29 is presented to
illustrate concepts and is not practical for integration, the reader should be able
to convert it to a form suitable for integration.

One of the advantages of an untuned oscillator is that the frequency can
be easily controlled by a voltage. Figure 8.6-30 shows an example of how this
might be accomplished. The output voltage, Vg, is used to connect the inverting
integrator to a positive or negative value of a voltage called Vy;. The limits of

Vs effectively become L, = —L- = V). Thus, the frequency of the untuned
oscillator as developed in Eq. 8.6-66 becomes
Vv %
fo M M (8.6-70)

T 2RC(S+ —S-) _ 4R.C.S

where S = S, = —S—. The range of the control or modulating voltage, Vi,
will be from the power supplies to the point at which op amp offsets become
significant. Consequently, this voltage-controlled oscillator (VCO) should have
two to three decades of frequency range. Other methods of controlling the oscil-
lator frequency include a diode bridge®? and current-controlled multivibrators.?

Many of the components of Fig. 8.6-29 can be removed, at the expense
of some deterioration of the performance. Figure 8.6-31a shows an example of
an untuned oscillator using only a single op amp. The analysis of this oscillator
starts by assuming that the output is ai L ;. Consequently, the voltage at the
positive input terminal of the op amp is R3L +/(Ry + R3) = aL .. If V; is less
than this voltage, then C; will begin to charge to L ; through R;. However,
when V), is equal to aL ., the output of the op amp switches to L_. Now
the voltage at the positive input terminal of the op amp is aL_. Since this
voltage is less than V;, C; begins to discharge toward L - through R;. From
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FIGURE 8.6-30
Voltage-controlled oscillator using the untuned oscillator of Fig. 8.6-29.

this analysis we see that S, = aL, and S— = aL—. The waveform at V; is
no longer triangular but is exponential. It can be shown that the frequency of
oscillation is
_ 1

2RCiIn [(1 + @)/(1 — @)}
where @ = R3/(R; + R3). The square wave can be made asymmetrical through
the use of diodes and resistors, as indicated in Fig. 8.6-31 in the dotted portion
of the figure.

The switched capacitor bistable can also be used to implement an untuned
oscillator that can be controlled by a voltage. This untuned oscillator is shown in
Fig. 8.6-28 if the dotted portion is included. The amplifier of this realization uses
a scheme to avoid requiring the op amp output to be zeroed during each clock
cycle. The use of a parallel switched capacitor resistor realization in shunt with
C, gives the following discrete time transfer function from Vamp to Vs.

Vs(z) _ [sgn Ve(z)I(C/Cz ™!
Vamp(2) 1—z71 (1 -C"/Cy)

fo (8.6-71)

Z—l

C
= [sgn Vc(2)] ﬁ

(8.6-72)

if C; = C';. C’1 opposes the charge being transferred from Cj; to C;. Only
the charge difference on Cj; between consecutive samples is transferred. As a
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result, the op amp output voltage changes only by the difference in the input
voltage multiplied by the gain factor of the amplifier. The circuit of Fig. 8.6-28
functions as a VCO where the amplitude and frequency of the square and triangle
waveforms are given as

Amplitude = (%)VAMp(t) (8.6-73)
1
and
C1GC1f ¢\ Vireg(?)
= (8.6-74
fo (403011 Vane (1) )
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It is seen that the switched capacitor VCO of Fig. 8.6-28 is capable of both
amplitude and frequency modulation. Amplitude modulation is accomplished
by connecting both Vegpg(?) and Vamp(t) to the source of modulation.
Frequency modulation is accomplished by connecting only Vgggq(?) to the
source of modulation and keeping Vamp(#) constant. Figure 8.6-32 shows the
waveforms of the circuit of Fig. 8.6-28 used as an unmodulated, untuned
oscillator, an amplitude-modulated oscillator, and a frequency-modulated oscil-
lator (VCO).%

FIGURE 8.6-32

Drawings of actual oscilloscope waveforms. (a)
Square and triangle waveforms, (b) Use of the circuit
of Fig. 8.6-28 for amplitude modulation, (c) Use of
(c) the circuit of Fig. 8.6-28 for frequency modulation.
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There are many other oscillators compatible with integrated circuit tech-
nology that have not been presented here. They include ring oscillators, con-
stant-current oscillators, and multivibrators, including collector (drain) or emitter
(source) coupled multivibrators. Other performance aspects of oscillators, includ-
ing their temperature and power supply stability, has not been covered. These
subjects are addressed in the technical literature.

8.6.4 Phased-Locked Loops

The last circuit we will consider in this section is the phase-locked loop (PLL).
The phase-locked loop consists of a voltage controlled oscillator (VCO) whose
frequency is equal to the frequency of the PLL input. The voltage controlling the
VCO should vary monotonically with the frequency of the input to the PLL. A
block diagram of a phase-locked loop is shown in Fig. 8.6-33. It is seen that a
phase-locked loop consists of a negative feedback loop in which the output of
a phase detector is applied to the control input of a VCO. The VCO applies a
periodic waveform to the phase detector, the phase of which is compared with
the phase of the input signal. The phase-locked loop has many applications, such
as FM demodulation, frequency synchronization, signal conditioning, frequency
multiplication and division, frequency translation, and AM detection.

A more detailed block diagram of the phase-locked loop is shown in Fig.
8.6-34. In the following analysis, the phase-locked loop is assumed to be locked.
The input signal is assumed to be a sinusoid given as

Vin(t) = Vpsin (or + 6;) (8.6-75)

If the phase shift of the signal at the output of the VCO is 6, then the average
value of the output of the phase detector is

Ve = Kg(0; — Oosc) (8.6-76)

where 6; and 6, are phase shifts with respect to an arbitrary reference. The
phase of the signal at the output of the VCO as a function of time is equal to

Phase Loop i
Input —» - Ampilif
P detector filter mptnier o Output
A
Voltage-
controlled  f=
oscillator

FIGURE 8.6-33
Block diagram of a phase-locked loop.
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the integral of the frequency of the VCO, which can be expressed in differential
form as

d0osc(t)

it (8.6-77)

Wosc(t) =
Thus, in the block diagram of Fig. 8.6-34, this integration is represented in the
VCO block as 1/s. If we assume that the oscillator frequency is given as

Wose = Wo + KoVo (8.6-78)

where w, is the free-running frequency of the oscillator when Vo = 0, then the
transfer function of the phase-locked loop becomes

Vo(s) _ sK4F(s)A
0i(s) s + K4KoAF(s) 8.:6-79)
or
Vo(s) _ Vol(s) KqF(s)A
= = .6-80
w;(s) 56;(s) s + K4K.AF(s) (8.6-80)
If F(s) = 1, then the loop inherently has a first-order, low-pass transfer

response. The loop bandwidth is defined as Ky = K,K4A. Various types
of filters have been used to achieve different dynamic performances for the
phase-locked loop.%

The loop lock range is defined as the range of frequencies about w, for
which the phase-locked loop maintains the relationship:

W = Wose (8.6-81)

If the phase detector can determine the phase difference between 6; and 6 osc over
a = /2 range, then the loop lock range is expressed as

W, = *Awee = KgAK (2 7/2) = K ((/2) (8.6-82)

Ve
V—0 B
o - - v,
Vin Converter Ky Virad F(s) A -oVo
CoTTTTTT T T T !
|
V—¢6 ! s f)osc k. ‘fadis A:
Converter | ! o v [TT
|_ Voltage-controlied osgillator _ |
FIGURE 8.6-34

More detailed block diagram of a phased-locked loop.
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The capture range is the range of input frequencies for which an initially unlocked
loop will lock on an input signal. If F(s) = 1, then the capture range is equal to
the lock range. If F(s) = (1 + s/w)) ~1, then the capture range is less than the
lock range. If the capture range is designated as 2wc, then Fig. 8.6-35 illustrates
the relationships between the loop and capture ranges of a phase-locked loop
with F(s) = (1 + s/w;) . The loop and capture ranges are very dependent on
the loop bandwidth, K. If K decreases, the capture time increases, the capture
range decreases, and the interference rejection properties of the phase-locked loop
improve. The blocks shown in Fig. 8.6-34 can be implemented by circuits that
we have examined previously in this chapter or in Chapter 6 for both MOS and
BJT technologies.

Circuits that are representative of analog processing circuits have been
introduced in this section. These circuits included the precision breakpoint circuit,
multipliers and modulators, oscillators, and phase-locked loops. At this point the
reader has a sufficient repertoire of circuits to undertake the design of systems
using analog processing circuits or to undertake the design of a different type of
analog signal processing circuit.

AV

FIGURE 8.6-35
Illustration of the loop and capture ranges for a phase-locked loop.
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8.7 SUMMARY

This chapter has introduced the elements of analog systems. An introduction
to analog signal processing showed the important relationships between digital
circuits, analog circuits, BJT technology, and MOS technology. It was seen that
there is likely to be a mixture of digital and analog circuit techniques to implement
signal processing systems. The selection of the appropriate technique is decided
by many factors, including space, performance, and technology compatibility.
The existence of technologies combining both BJT and MOS technologies offers
some exciting advantages to the circuit and system designer.

Next, techniques of interfacing analog and digital circuits were presented.
This subject was divided into digital-to-analog converters and analog-to-digital
converters. The performance of the various types of converters was reviewed, fol-
lowed by a consideration of current-scaling, voltage-scaling, charge-scaling, com-
bination-scaling, and serial digital-to-analog converters. Analog-to-digital con-
verters were presented, with the serial, successive approximation, parallel, and
high performance analog-to-digital architectures considered.

One of the largest applications of analog circuits at the present is linear
filtering. A review of continuous-time filters was presented, followed by a dis-
cussion of switched capacitor filters. The switched capacitor circuit technique is
a practical adaptation of circuit design methods to match the technology, once
again demonstrating the important influence of technology upon circuits and sys-
tems design. The key aspect of switched capacitor circuits is that equivalent
RC products become equal to the product of capacitor ratios and an external
clock frequency. This results in time constant accuracies as good as 0.1%. Three
switched capacitor filter design approaches were presented; resistor replacement
or substitution, passive RLC prototype based ladder synthesis, and direct realiza-
tion of the filter in the z-domain.

The chapter concluded with a section on analog signal processing circuits.
A number of nonfilter circuits were examined. These included waveshaping or
precision breakpoint circuits; multipliers and modulators; oscillators, including
tuned and untuned oscillators; and phase-locked loops. These are examples of
circuits that might be used to implement a signal processing system. The boundary
between a circuit and a system is very fuzzy. The topics presented in this chapter
could be considered circuits from one viewpoint and systems from another. We
have chosen to emphasize the circuit viewpoint over the application.

In closing, we will consider a signal processing system and examine how the
design of such a system is hierarchically organized. Figure 8.7-1 shows a block
diagram of an integrated circuit modem. A modem s a system that converts outgoing
data in the form of a serial bit string to a form suitable for transmission over tele-
phone lines and also converts the incoming data back to a serial bit string. This
is a challenging problem because of the limited bandwidth of the telephone sys-
tem and the desire to transmit data at as high a bit rate as possible. The particular
modem considered is a 1200 bits/second, full-duplex, voice-band modem. % This
system represents a reasonably complex design in terms of man-months of effort.

The details of the design of the modem will not be considered. Rather,
the emphasis here will be on how the system is broken into smaller blocks that
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Integrated modem block diagram.

ultimately are recognizable as circuits we have considered in our study. For
example, the transmitter is shown in more detail in Fig. 8.7-2. Here some of
the blocks are recognizable, such as the filters, the mixers, and the summer. The
asynchronous-to-synchronous converter, the scrambler, and the phase encoder are
implemented by digital techniques such as those discussed in Chapters 7 and 9.
The first part of the receiver channel is the automatic gain control circuit shown
in Fig. 8.7-3. The analog blocks in this figure include filters, a full-wave rectifier
(see Probs. 8.32 and 8.34), and a comparator.

cos (o.t)
Base band
— low-pass .
— fiter R
v A~
XMT Ph —
data ™ sync [ Scrambler j- enozfl:;r Equfialltl:rztlon
converter
Base band
— low-pass
Q filter
sin (ogt)
FIGURE 8.7-2

Differential QPSK transmitter.
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To demodulator

The next part of the receiver channel is called the data recovery loop and is
implemented by a Costas phase-locked loop that preprocesses the received signals
through Hilbert filters, as shown in Fig. 8.7-4. The Hilbert filters consist of two
parallel filters, one shifted by 90° compared to the other. The data recovery loop
consists of many analog circuits that have been previously considered, including

s l(mm * rei:f:ry
N Antilias + ! arm Summer/ Receive
™ filter X filter limiter decoder
+
) sin (o) (R T
Re_celvelzd T 6-bit Loop | |} |I
signa . iy ]
rom | sin (o) A D |low +_ Adaptive
sin {w ) con- pass equalizer | |
AGC verter| | filter Tl" |
\ l | Fig.8.7-5 Jl
cos (o) ———~]———
+
L o| |Antilias arm Summer/ Receive
¢=90 filter X - fitter limiter decoder
Q
T L, Clock
cos (wy) recovery
Hilbert filters Costas phase-locked loop

FIGURE 8.7-4

Coherent QPSK demodulation.
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a 6-bit A/D converter. The adaptive equalizer of the data recovery loop is shown
in more detail in Fig. 8.7-5, where we see a combination of analog and digital
circuits. Another part of the receiver channel containing analog circuits is the
clock recovery loop, shown in Fig. 8.7-6. The switched capacitor implementation
of a part of this loop is illustrated in Fig. 8.7-7.

Figure 8.7-8 shows a photograph of the integrated circuit modem. This mo-
dem was implemented in an NMOS technology and used about 11,000 transis-
tors. The modem used approximately 60 op amps and had a power dissipation
of 750 mW. A CMOS version has reduced the power consumption significantly.

This example illustrates the hierarchy and decomposition of a system into
circuits and similar components. Many other examples exist, such as speech
processing circuits, other telecommunications circuits, and automotive control
systems. One of the difficult problems facing the system designer is the simul-
taneous simulation of both the digital and analog parts of the system. In many
cases, only partial simulation is possible.

+
/,
o —» by = pLimiter{ ~ FF T FF T FF —’
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Cn x c,' s, Cn1=Cn Ch v Cp_2
A
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~— hy . .
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Where h(t) = in phase impulse response

i(t) = cross channel impulse response

FIGURE 8.7-5
Adaptive equalizer,
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FIGURE 8.7-8
Integrated modem photograph (Courtesy of Texas Instruments).

The thrust of Chapters 5, 6, and 8 has been to present a hierarchically
oriented introduction to the design of analog integrated circuits. Referring to Table
5.0-1, we have studied the design of analog circuits from the building block level
in Chapter 5, through the basic circuit level in Chapter 6, up to the systems and
complex circuit level of this chapter. The intent has been to give the reader an
overview and the ability to know where and how to begin his or her design. The
reader who faces the design of an analog circuit or system is encouraged to review
the literature carefully in order to pick up some of the practical aspects and the
circuit ideas and techniques that were not discussed here.
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PROBLEMS

Section 8.2
8.1. Compare the sample-and-hold circuit of Fig. 8.2-3a with that of Fig. 8.2-4 and

discuss why the circuit of Fig. 8.2-4 can have faster sample times. Assume that ¢
and ¢ are nonoverlapping clock signals.

8.2. Draw a transfer characteristic of a 3-bit D/A converter that has the largest possible

integral nonlinearity when the differential nonlinearity is limited to *+0.5 LSB.
What is this maximum value of integral nonlinearity?

8.3. Express the output voltage of the binary-weighted resistor D/A converter shown in

Fig. P8.3. Assume that the switches are connected to V¢ if the ith bit is 0, and to
—V s if the ith bit is 1.

8.4. Demonstrate that Fig. 8.2-12b will implement the function Vour = —Rgl [b) +

271p, + - -+ + 27N*1py ] by considering a 4-bit example.

8.5. Find the accuracy required for Rysg of a 12-bit D/A converter that uses the binary-

weighted resistor approach in order to achieve monotonicity.

8.6. What is the maximum percentage tolerance of the current source () for the slave

ladder of Fig. 8.2-13b if monotonicity is to be achieved for a 10-bit D/A converter?

8.7. Show how to modify the circuit of Fig. 8.2-15a to implement the bipolar operation

of Eq. 8.2-13.

8.8. If an approximate formula for the ratio accuracy of capacitors is

Ratio accuracy = 0.01 X (Capacitor ratio)0~25

find the maximum number of bits that a charge-scaling D/A, such as in Fig.
8.2-15a, can have.

8.9. If Ay is the area of the resistors and Ac is the area of the capacitors of the D/A

converter of Fig. 8.2-18, show that for minimum area

In (AR/Ac)

-M =
K In2

where K is the number of bits that are charge-scaled and M is the number of bits
that are voltage-scaled.
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8.10. Determine the value of V¢, in Fig. 8.2-21 following the sequence of switch closing
and openings: S4, S3, S1, 82, S1, S3, S1, S2, and S1. Assume that C;, = C,.

8.11. Repeat Prob. 8.10 if C; = 1.05GC,.

8.12. Show how Eq. 8.2-25 can be derived from Eq. 8.2-24. Give a realization of Fig.
8.2-24 using op amps, switches, and passive components.

8.13. Repeat Example 8.2-2 for the digital word 10101.

8.14. Assume that the amplifier with a gain of 0.5 in Fig. 8.2-24 has a gain error of AA.
What is the maximum value AA can have in Example 8.2-2 without causing the
conversion to be incorrect?

Section 8.3

8.15. Plot the transfer characteristic of a 3-bit A/D converter that has the largest possible
differential nonlinearity when the integral nonlinearity is limited to = 1 LSB. What
is the maximum value of differential nonlinearity?

8.16. Find the 8-bit digital word if the input to Ex. 8.3-1 is 0.3215 V.

8.17. Continue Example 8.3-2 out to the 10th bit and find the equivalent analog voltage.

8.18. Repeat Example 8.3-1 for the case where the gain-of-2 amplifiers actually have a
gain of 2.1. .

8.19. How many bits will an A/D converter with a sampling frequency of 10 MHz have
in 19987 What technology will this converter use?

Section 8.4

8.20. Use the three circuits of Fig. 8.4-11 to obtain a realization of a second-order,
low-pass Butterworth filter with a —3 dB frequency of 1000 Hz and a gain of 1
at dc. In Fig. 8.4-11a, additional stages may be necessary to achieve a gain of
1 at dc.

8.21. Repeat Example 8.4-3 using Fig. 8.4-11c¢, for stage 2 and stage 3.

8.22. Use the transformations of Fig. 8.4-13 to convert the result of Example 8.4-4 to a
bandpass filter having a bandwidth of 500 Hz centered at 1000 Hz.
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Section 8.5

8.23.
8.24.
8.25.
8.26.

8.27.

8.28.

8.29.

8.30.
8.31.

Prove that the equivalent resistance given in Fig. 8.5-2 for the series switched
capacitor resistance simulation is valid.

Repeat Prob. 8.23 for the series-parailel switched capacitor resistance simulation.
Repeat Prob. 8.23 for the bilinear switched capacitor resistance simulation.
Replot the frequency response of the circuit of Fig. 8.5-5a if w; = 0.02w. Compare
with the frequency response (magnitude and phase) of Fig. 8.5-2.

Replace the parallel switched capacitor resistor simulation in Fig. 8.5-5a with the
series switched capacitor resistor simulation of Fig. 8.5-2 and find the discrete-time
frequency response similar to Eq. 8.5-27. Develop an expression for the magnitude
and phase response and compare it with the results of Fig. 8.5-5a.

Obtain the exact frequency response at ¢, of the switched capacitor circuit shown
in Fig. P8.28. Define @ = C,/(;, and solve for the —3 dB frequency, in hertz,
when o = 3 and the clock frequency is (a) 64 kHz and (b) 128 kHz. The clock
phases are nonoverlapping, and V; is from a sample-and-hold circuit.

Develop an expression for the discrete-time magnitude and phase response for H
of the noninverting switched capacitor integrator of Fig. 8.5-10a. Plot the magnitude
and phase for frequencies from 0 to o if wy/we = 0.1.

Repeat Prob. 8.29 for the inverting switched capacitor integrator of Fig. 8.5-12.
Find the actual magnitude and phase of the noninverting switched capacitor inte-
grator of Fig. 8.5-10a for H °° if the frequency applied to the integrator is 10 kHz,
the clock frequency is 100 kHz, and w, is 207 krps.

Section 8.6

8.32.
8.33.

8.34.

8.35.

8.36.

8.37.

8.38.
8.39.

Develop a realization of Voyr= | Vv | using resistors, diodes, and two op amps.
Develop a realization of Voyr = — | Vin — 1 | using resistors, diodes, and the
minimum number of op amps.

Repeat Prob. 8.32 using capacitors, switches, one comparator, and the minimum
number of op amps.

Repeat Prob. 8.33 using capacitors, switches, one comparator, and the minimum
number of op amps.

(a) Design a circuit that realizes the transfer characteristic of Fig. P8.36 using
resistors, diodes, and op amps.

(b) Repeat using capacitors, switches, comparators, and op amps.

(a) Design a circuit that realizes the transfer characteristic of Fig. P8.37 using
resistors, diodes, and op amps.

(b) Repeat using capacitors, switches, comparators, and op amps.

Derive Egs. 8.6-24 and 8.6-25 from Fig. 8.6-10.

Use a four-quadrant analog multiplier, op amps, and resistors to develop a circuit
that produces an output voltage of —K (V)"/? when V; > 0.

C1 ¢1
|/
'O A +
+
V1 V2

o, C, Vour
/r— FIGURE P8.28

—o |
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8.40. The sine of an input voltage V| can be approximated by the formula, sin V| =
1.155v,—-0.33V f, to within =2% over the range of 0 < V; < 77/2. Use multipliers
and op amps to find a realization of sin V, using this formula.

8.41. Find the frequency of oscillation, in hertz, and the value of Ry necessary for
oscillation of the RC phase shift oscillator shown in Fig. P8.41.

I¢
1€
c AAA
c c Ar
e
L .
°
A n§ "
=

FIGURE P8.41



ANALOG SYSTEMS 777

¢
A A
- —AAN
A3
+
c L R
e—— = AAN
R
AN —o
+ A2 +
v°1 v02

FIGURE P8.42

8.42. Find the frequency of oscillation, in hertz, of the quadrature oscillator of Fig.
P8.42. Give expressions for the voltages Vo, V2, and V3 if the amplitude of the

sinusoid at V; is 1 V peak.

8.43. Determine the values for the resistors not given in the bistable circuit of Fig. P8.43
and determine whether to connect Rq to +15 V or —15 V in order to realize the
output-input transfer characteristic shown.

8.44. Show how to use a CW bistable to implement an untuned oscillator, and design
the oscillator to produce a +10 V square wave at 3000 Hz.

8.45. Develop the expression for the frequency of oscillation of the circuit in Fig. 8.6-
31 given in Eq. 8.6-71. What is the frequency of oscillation, in hertz, if R, =

R3le

R,=10kQ
Vi oA

+15V
Ry

-15V

=100 kQ, and C, =

D1

___D'___

D2

D3

+15V

Ry

10

FIGURE P8.43



