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Magnitude

FIGURE 8.4-5 _
Magnitude characteristics of an elliptic approximation with arbitrary € and for orders of n =
3,4, and 5.

convert the vertical axis to a decibel range. Figure 8.4-6a shows the gain speci-
fications, G, of a low-pass filter with the vertical axis specified in decibels and
the frequency axis normalized to wpg. () is defined as wsp/wpg and Gq (dB)
=20log;o Gsp. Because the gains of most filters are less than unity, attenuation
rather than gain is often used to describe their characteristics. Figure 8.4-6b shows
the equivalent specification of Fig. 8.4-6a in terms of attenuation, A = 1/G,
where Apg = 1/Gpp [Apg (dB) =~—Gpp (dB)], and Ag = 1/Gq [Aq (dB) =
—Ggq (dB)].

Normalized gain (dB)

Normalized attenuation (dB)

(b)

FIGURE 8.4-6
(a) Specifications for a low-pass filter in terms of gain, (b) Specifications for a low-pass filter in
terms of attenuation.
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From the parameters A, App, and £}, the order of the filter can be quickly
determined using a set of nomographs.*> Figure 8.4-7 is a nomograph for deter-
mining the order of the Butterworth filter approximation. The use of nomographs
is illustrated in Fig. 8.4-8. A straight line is drawn through the specified values
of Apg and Ag, shown as points 1 and 2 in Fig. 8.4-8. The intersection with the
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FIGURE 8.4-7
A nomograph for determining the order of a Butterworth magnitude function (Kawakami).
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FIGURE 8.4-8
A Aq Q The method for using the nomograph of Fig. 8.4-7.

left side of the graph (point 3) is then extended horizontally until it meets a line
drawn vertically from point 4, corresponding to the desired normalized stopband
frequency, ). The resulting intersection at point 5 establishes the required order
of the filter. If point 5 is between two of the order loci, the higher one must be
used.

Example 8.4-1. Determination of the order of a low-pass Butterworth filter.
Find the order of a Butterworth filter approximation to Fig. 8.4-6b where Aq = 40
dB, APB =3 dB, and () = 2.

Solution. Using the nomograph of Fig. 8.4-7, we find that point 5 lies between
n = 6 and n = 7. Therefore, the order of the filter approximation must be 7.

Figures 8.4-9 and 8.4-10 give the corresponding nomographs for determin-
ing the order or degree of Chebyshev and elliptic filter approximations, res-
pectively. These nomographs are used in the same manner as the one in Fig. 8.4-
7. An example will illustrate how the Chebyshev and elliptic filter approximations
require lower order than the Butterworth filter approximation for the same design
parameters.

Example 8.4-2. Determination of low-pass Chebyshev and elliptic filter ap-
proximations. Repeat the preceding example to find the order of the Chebyshev
and elliptic filter approximations that will meet the same specifications.

Solution. From Fig. 8.4-9 we obtain n = 4 for the Chebyhev filter approximation,
and from Fig. 8.4-10 we see that n = 3 is sufficient for the elliptic filter approxi-
mation to satisfy the specifications.

Once the order of the filter approximation is known, the designer must
then decide how the filter is to be realized. Two approaches will be considered.
The first approach starts with Eq. 8.4-6 in which the numerator and denominator
polynomials are factored in the form of second-order products with real coeffi-
cients (a first-order product will be necessary if » is odd). This information can
be found from the tabulations in the literature. For example, Table 8.4-1 shows
the denominator coefficients of Eq. 8.4-6 with by = 1 and gives the pole locations
and quadratic functions of the denominator of Eq. 8.4-6 for the Butterworth filter
approximations. The numerator polynomial of Eq. 8.4-6 for the Butterworth filter
approximation is a constant. In this case the function H(s) can be expressed as
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A nomograph for determining the order of an elliptic magnitude approximation (Kawakami).

TABLE 8.4-1a

Denominator coefficients of maximally flat magnitude (Butterworth)
functions of the form: s* + b,_; 5" + b,_, 5" 2 + ++* b,s* + b;s + 1 with
passband 0 - 1 rad/s

n b1 bz b3 b,‘ bs

2 1.414214

3 2.000000

4 2.613126 3.414214

5 3.236068 5.236068

6 3.863703 7.464102 9.141620

7 4.493959 10.097835 14.591794

8 5.125831 13.137071 21.846151 25.688356

9 5.758770 16.581719 31.163437 41.986386

10 6.392453 20.431729 42.802061 64.882396 74.233429

(By permission from L. P. Huelsman and P. E. Allen, Introduction to the Theory and Design of Active Filters,
McGraw-Hill Book Co., New York, 1980.)




682  vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

TABLE 8.4-1b

Pole locations and quadratic factors (s* +

b,s + 1) of maximally flat magnitude (Butter-
worth) functions with passband 0 — 1 rad/s
(Note: All odd-order functions also have a

poleats = 1)
n Poles I
2 —0.70711 *= j0.70711 1.41421
3 —0.50000 x j0.86603 1.00000
4 —0.38268 + j0.92388 0.76536
—0.92388 + j0.38268 1.84776
5 —0.30902 *= j0.95106 0.61804
—0.80902 * j0.58779 1.61804
6 —0.25882 £ j0.96593 0.51764
—0.70711 £ j0.70711 1.41421
—0.96593 + j0.25882 1.93186
7 —0.22252 + j0.97493 0.44504
—0.62349 + j0.78183 1.24698
—0.90097 = j0.43388 1.80194
8 —0.19509 * j0.98079 0.39018
—0.55557 + j0.83147 1.11114
—0.83147 + j0.55557 1.66294
—0.98079 + j0.19509 1.96158
9 —0.17365 = j0.98481 0.34730
—0.50000 = j0.86603 1.00000
—0.76604 * j0.64279 1.53208
—0.93969 + j0.34202 1.87938
10 —0.15643 * j0.98769 0.31286
—0.45399 + j0.89101 0.90798
—-0.70711 + j0.70711 1.41421
—0.89101 * j0.45399 1.78202
—0.98769 = j0.15643 1.97538

(By permission from L. P. Huelsman and P. E. Allen, Introduction
to the Theory and Design of Active Filters, McGraw-Hill Book Co.,
New York, 1980.)

a product of biquadratic functions, H;(s), where the general form of the second-
order (quadratic) function will be
2

= Hoiwy; _ __ *Houpipa
52 + (wpi/Qi)s + wf,,- (s + p1)(s + pa)
where Hy; is the gain at @ = 0, wp; is the undamped natural frequency, and Q;

is the quality factor of the pole p; and p,; is the complex conjugate of py; if py;
is not real.

H(s) = (8.4-7)
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Typically, the information tabulated on filter design is normalized so that
wpg is unity. However, the actual filter specifications are usually in the neigh-
borhood of thousands of cycles per second. To convert the normalized frequency
values of the design tables to the actual filter frequency requires a frequency
denormalization. This denormalization involves a change of the complex fre-
quency variable. If we consider p as the normalized complex frequency variable
and s as the denormalized (actual) one, then the frequency denormalization is
defined as

s =Qup (8.4-8)

where (), is a dimensionless frequency denormalization constant. This denormal-
ization is generally used at the synthesis stage of the design. Following this
approach, a filter is initially synthesized to realize the normalized transfer function.
The denormalization then entails a subsequent scaling of the component values
in the filter. Table 8.4-2 shows how this denormalization acts on the normalized
values of R, L, and C.

A second type of denormalization that is often used is called impedance
denormalization. It permits an arbitrary scaling to be applied simultaneously to
all the passive elements of a filter in order to get more practical component values.
A normalized impedance Z,(s) can be denormalized to the impedance Z (s) by
the relation

Z(s) = zaZu(s) (8.4-9)

where z, is a dimensionless impedance denormalization constant. Table 8.4-
2 shows how this denormalization affects the passive elements. The combined
effects of the denormalizations of Eqgs. 8.4-8 and 8.4-9 are illustrated in this table.
This impedance denormalization does not affect the voltage or current gain of the
filter.

Figure 8.4-11 shows three possible active filter realizations of Eq. 8.4-7.
Figure 8.4-11a uses a finite-gain amplifier and an RC feedback network. This
circuit was originally proposed by Sallen and Key in 1955% and was one
of the first active RC filter structures. This circuit does not have flexibility in
realizing Eq. 8.4-7 if H,; is also specified because H,; is fixed and equal to

3-(/Q).

TABLE 8.4-2
Effect of frequency and impedance

denormalization on network elements

Denormalized R C L
(o L
= R — il
§ =P Q Q,
C
Z =2.Z, Z.R z— Zol
C Za

Z(s) = z.Zu(p) R L

nzn Qn

(=]
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FIGURE 8.4-11
Three possible realizations of Eq. 8.4-7 (second-order, low-pass): (a) Sallen and Key (finite-gain)
structure, (b) Infinite-gain structure, (c¢) Tow-Thomas (resonator) structure.
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This is not considered a major limitation because the overall gain can be realized
by adding a cascaded gain stage. In Fig. 8.4-11a, one may choose a suitable value
for R; w,; and Q; define the rest of the elements. Alternatively, one may choose
a suitable value for the capacitors; then the resistors are defined as (wp,C)
The circuit of Figure 8.4-11a realizes Eq. 8.4-7 with a positive sign.

The circuit of Figure 8.4-11b is called an infinite-gain realization. It has
the ability to reahze simultaneously H,;, wp;, and Q; and realizes Eq. 8.4-7
with a negative sign. The circuit of Figure 8.4-11c is called the Tow-Thomas
circuit®”-3® and consists of the cascade of a damped inverting integrator, an
inverting integrator, and an inverter. This circuit has a great deal of flexibility and
is very easy to tune. If the output is taken at V,, then it realizes Eq. 8.4-7
with a negative sign. If the output is taken at V3, then the circuit of Fig. 8.4-11c
realizes Eq. 8.4-7 with a positive sign. In these circuits, a suitable value for
either R or C is chosen and the remaining component values are calculated from
the equations given in the figure. Many other realizations of Eq. 8.4-7 exist;
however, the circuits of Fig. 8.4-11 are representative.

Example 8.4-3. Design of a low-pass Butterworth filter. A low-pass Butterworth
filter is to be designed for the specifications of Aq = 30 dB, wpg = 20007, and
wsg = 40007,

Solution. If we normalize wpp to unity, we get { = 2. From Fig. 8.4-7 we see
that n = 5 will satisfy the filter specification. From Table 8.4-1, we conclude that
this function can be realized with two second-order stages cascaded with one first-
order stage. The realization is shown in Fig. 8.4-12a. The stage order is arbitrary,
although one typically chooses the high-Q stages as the last stages. The normalized
transfer function for each of the stages is shown, as well as Q; and w,;. Note that
stage 1 is a simple, first-order circuit so that Q is not defined. Stage 1 may be
realized by a simple damped integrator, whereas one of the circuits in Fig. 8.4-11
can be used for stages 2 and 3. Selecting the circuit of Fig. 8.4-11b results in the
realization of Fig. 8.4-12b, where the formulas of Fig. 8.4-12a have been used
with w,; = 1 fori = 1,2 and 3, Q> = 0.61804, and Q3 = 1.61804. The last step
is to frequency-denormalize the realization using Eq. 8.4-8. To denormalize from a
frequency of 1 rad/s to 20007 rad/s requires Q, = 20007r. To avoid 1 ) resistors,
an impedance normalization of z, = 10* will also be used. The resulting realization
is shown in Fig. 8.4-12¢. If a Butterworth filter approximation had been used for
any value of Apg other than —3 dB, then the normalized passband would not be
unity. This must be taken into account when finding the proper ().

Note that the same circuit structure used in Fig. 8.4-12 could also be used
to realize the Chebyshev function. In this case the quadratic functions would be
obtained from tabulated data in the literature. Only the component values in Fig.
8.4-12b and ¢ would vary in changing this realization from a Butterworth to a
Chebyshev filter.

8.4.2 High-Pass Filters

Filters other than the low-pass type can be designed through the use of frequency
transformations. These allow one to take the tabulated low-pass filter information
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Realization for Example 8.4-3: (@) Stage ordering, (b) Normalized realization (all values in ohms
or farads), (¢) Frequency and impedance denormalized realization (all values in kilohms and
microfarads). '

and transform it to apply to high-pass, bandpass, or band-elimination filters. The
transformed filter information can then be realized in a cascaded manner using
the appropriate RC active stages. A low-pass to. high-pass transformation can be
defined as

(8.4-10)

S| -

S=

where s is the low-pass complex frequency variable. Figure 8.4-13 illustrates how
Eq. 8.4-10 transforms an-ideal low-pass filter to an ideal high-pass filter. The
poles of a high-pass filter can be found by substituting the low-pass.poles for s
in Eq. 8.4-10. Oné must also remember that a high-pass realization of order n
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has n zeros at the origin. Alternatively, one can use Eq. 8.4-10 to replace s in
expressions such as Eq. 8.4-7 to get

* oiPz
P2 + (wpi/Qi)P + wf;i

which is a high-pass quadratic form of Eq. 8.4-7. Second-order RC active real-
izations of Eq. 8.4-11 similar to those shown in Fig. 8.4-11 can be found in the
literature on RC active filters. Figure 8.4-14 gives three realizations using the
same types of structures as were used in Fig. 8.4-11.

Hupi(p) = (8.4-11)

8.4.3 Bandpass Filters

A low-pass to bandpass transformation can be defined as

w2

=p+— 8.4-1
s=pt 5 (8.4-12)
where s is the low-frequency complex variable, p is the bandpass complex
variable, and w; is defined in Fig. 8.4-13 as the geometric center frequency of
the bandpass filter, given as

@ = /onon (8.4-13)

where wr; and wr, are defined in Fig. 8.4-13. The bandwidth is defined as
w12 — or; and is equal to the original passband of the low-pass filter, wrp
(or wpg). The transformation of Eq. 8.4-12 is used in the same manner as the
transformation of Eq. 8.4-10 to get either the new bandpass roots or the bandpass
transfer function. The transformation of Eq. 8.4-12 doubles the order of the low-
pass filter. For example, if a low-pass filter is given as

Hoi(w1/Q)
s + (01/Q)
then application of the low-pass to bandpass transformation of Eq. 8.4-12 gives

*Hoi(0/Q)p
p* + (0/Q)p + ?

HLPi(s) = (84-14)

Hpp;(p) = (8.4-15)

It is seen that the second-order bandpass structure has two poles which are often
complex and a zero at the origin and at infinity in the complex frequency plane.
A more general form of the second-order bandpass transfer function is

* Hoi(wpi/ Qi)s
52 + (wp/Qi)s + wgi

Hgp;(s) = (8.4-16)

where we have reverted to the notation of s for the complex frequency variable.
Figure 8.4-15 shows three realizations of Eq. 8.4-16 using the same basic struc-
tures illustrated in Figs. 8.4-11 and 8.4-14.
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FIGURE 8.4-14
Three realizations of Eq. 8.4-11 (second-order, high-pass): (a) Finite-gain or Sallen and Key
structure, (b) Infinite-gain structure, (c) Tow-Thomas or resonator structure.

A second major approach to active filter design, once the order of the filter
is known, is to go directly to a passive realization. Passive RLC realizations for
normalized low-pass filter approximations have also been tabulated and can be
found in the literature.?6-27-28:34.3% To jllustrate this approach, we repeat Example
8.4-3.
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Example 8.4-4. Realization of a passive RLC filter. Design a passive RLC filter
that will satisfy the specifications of Example 8.4-3. This filter is to be driven from
a voltage source having zero resistance and will be terminated in a 1000 {2 load.

Solution. From Example 8.4-3, we know that n = 5. From the tabulation found
in the literature, we obtain the realization shown in Fig. 8.4-16. This realization
has been normalized so that wpg = 1 rps and R = 1 ). It is now necessary
to denormalize using Eqs. 8.4-8 and 8.4-9. Because wpg of Fig. 8.4-16a is unity
and we desire wpg of 2000, then €, = 20007. Because Ry of Fig. 8.4-16a
is 1 Q) and we want R = 1000 Q, then z, = 1000. Applying the equations
of Table 8.4-2 to the components of Fig. 8.4-16a resuits in the final realiza-
tion shown in Fig. 8.4-16b, which has a transfer function equivalent to that of
Fig. 8.4-12c.

The passive RLC low-pass realizations may be easily converted to high-

pass, bandpass, or band-elimination using the transformations of Fig. 8.4-13.
The passive RLC realizations are also used as the starting point in certain types
of active filter design.

Figure 8.4-17 summarizes this section. The design of active RC filters

starts with the filter specification, which is converted into a filter approximation.
Sometimes, the classical approximations presented here are not adequate, and
computer-generated approximations are used instead. The filter approximation
will take the form of a rational polynomial transfer function. If the roots of
the rational polynomial are factored into first- and second-order products, then
the cascade realization approach illustrated here can be used. Methods also exist

Lg=1.5451 L3=1.3820 L{=0.3090
Yy Y'Y\

vy Cy=1.6944 . C,=0.8949
(@
0.2459 0.2199 0.04918
Y'Y Y\ Y'Y Y\
Vi 0.02697 1~ 0.01423 ~~
(All values in kilohms, henrys, and microfarads)
(b)
FIGURE 8.4-16

(@) Passive RLC normalized prototype for Example 8.4-4, (b) Denormalized realization of a.
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Filter specifications
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'

Filter approximation
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Roots of H(s) Passive RLC prototype
\ \i
Cascade RLC simulation
approach approach

FIGURE 8.4-17
Summary of continuous-time filter design approaches.

for synthesizing a circuit directly from the rational polynomial without obtaining
the roots, but they have not been discussed here. Tabulations of a passive RLC
prototype circuit that implement the standard approximating functions are also
widely available in the literature. The switched capacitor filters, which will be
presented in the next section, start from the roots of the rational function, the
rational function, or the passive RLC prototype.

8.5 SWITCHED CAPACITOR FILTERS

The use of switched capacitor methodology to design and implement analog filters
using integrated circuit technology is illustrated in this section. It is necessary that
the technology be capable of providing a good switch, a well-defined capacitor,
and an op amp. Because all of these aspects are found in MOS technology, it
has become the predominant technology for switched capacitor filters. Switched
capacitor methods are not new and, in fact, were employed by James Clerk
Maxwell in his discussion on the equivalent resistance of a periodically switched
capacitor.*’ The key development that led to the rapid evolution of practical
switched capacitor methods was the realization that switched capacitor concepts
could be implemented in MOS technology.#! This realization was followed by a
rapid development and implementation of analog signal processing techniques in
MOS technology. Today, many switched capacitor circuits, including filters, are
found in various products, including telecommunications products.42
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The material presented in this section is a brief description of how to design
switched capacitor filters. Three basic methods will be described. The first is
resistor substitution and replaces the resistors in an RC active circuit with a
switched capacitor realization. The second uses switched capacitor integrators
to simulate the passive RLC prototype circuit for a desired filter realization. The
last uses a direct building block approach in the z-domain. The filter requirements
are transformed from the continuous-time frequency domain to the discrete-time
frequency domain (z-domain). These approaches are representative of the methods
used in switched capacitor filter design. More information can be found in the
references.

8.5.1 Resistor Realization

One of the simplest approaches in switched capacitor design is to replace the resis-
tors of a continuous-time, active RC filter realization with a switched capacitor
realization of each resistor. Resistor realizations contain capacitors and switches
and simulate the continuous-time resistor very well as long as the rate at which
the switches are opened and closed is much higher than the frequencies of inter-
est in the analog signal. Figure 8.5-1a shows the configuration of a parallel
switched capacitor realization of a resistor, R, connected between two voltage
sources, Vi and Vj, illustrated in Fig. 8.5-1b. The switches, ¢; and ¢,, are
controlled by the nonoverlapping clocks of period T., as shown in Fig. 8.5-1c.

| |
hde % %2 4L I — - b
[l | A M
| |
Vi | _L | V.V R Vs
| c |
| T |
| |
| |
(@ (b)
by
| | ] ] ) i .
o
o2 ] ] | I I |
| | | | | |
| | | | | |
| | | | | |
1 L L i » !
0 Te T 3T, 2T, b57; 37,
2 2 2
(c)
FIGURE 8.5-1

(@) Parallel switched capacitor realization of a resistor, (b) A continuous resistor, (c) Clock wave-
forms for the switched capacitor realization.
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When the clock waveform in Fig. 8.5-1c is high, the switch designated by that
waveform is closed.

To demonstrate the equivalence between the switched capacitor circuit in
Fig. 8.5-1a and the resistor in Fig. 8.5-1b, assume that V1(t) and V,(t) are
unchanged for several clock cycles. We shall designate these constant voltages as
V, and V,, respectively. During the time between 0 and T./2, switch ¢, closes.
If the switch resistance is small or the clock period large enough, the capacitor C
will be charged to V. At t = T./2, we can define the total charge flow between
0 and T,/2 past the left-hand vertical dashed line as Q;(7./2), which is given as

Qi(T./2) = CV, (8.5-1)

where C is initially uncharged. Next, consider the time interval between T,/2 and
T,. Switch ¢, closes and connects the charged capacitor to V,. At time T, we
can define the charge flow past the right-hand vertical dashed line as Q»(T) for
0 <t < T,, which is given as

Ox(Tc) = C(V2— V) (8.5-2)

Note that the flow of charge past the left-hand vertical dashed line during this
period is ‘

Qu(Te) =0 (8.5-3)

During the interval from T, to 3T./2, switch ¢; closes again, resulting in the
following charge flow during this interval.

3T,
Ql(_z' =C(V, = V2) (8.5-4)
and
Qz(%) =0 | 855)

As long as V() and V,(7) remain constant, these equations hold for the charge
flow into the capacitor C during the various switch closures.

The charge flows, Q; and Q,, can be expressed in terms of the current that
flows during the switch closure. This expression for Q; during the period from
T./2 to 3T./2 can be written as

3T : 3T,/2
01 = Qu(T.) + Qs T°) =0+ C(Vi—Vy) = L , Iy dr 3.56)

c

If we divide Eq. 8.5-6 by T, then the integral over the period 7. (in this case,
from 7,/2 to 3T./2) is equal to the average value of I(¢), designated as I(aver).
Thus, from Eq. 8.5-6 we may write the following expression.

I(aver) = %(Vl - Vi) 8.5-7)
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The average current flowing through the resistor R in the same time interval of
length T, is proportional to V; — V; and is expressed as

-V
Iz(aver) = ﬂR—Z (8.5-8)

If V| and V, remain constant, then we can equate 7 ;(aver) and / jg(aver) to obtain
the equivalent resistance of the switched capacitor circuit. From Eq. 8.5-7 and
Eq. 8.5-8 this is

L _ 1
- C  fC

Equation 8.5-9 is a key result! It states that as long as V; and V; are approximately
constant, the switched capacitor circuit of Flg 8.5-1a realizes the resistor of Fig.
8.5-1b.

In reality, V,(¢) and V,(z) are not constants but time-varying voltages.
However, if the clock period is small enough, the values of V(¢ + T.) and
V(t + T.) are not much different from V(¢) and V(). This can be stated in
a different manner, assuming that the V() and V,(¢) waveforms are sinusoidal
with a frequency of f. If f is much less than f., then T is much greater than ¢
and Eq. 8.5-9 is valid. This condition is called the high sampling approximation.

Three other configurations of switched capacitor realizations of resistance
along with the parallel switched capacitor configuration are shown in Fig. 8.5-2.
The parallel switched capacitor resistance realization we have just discussed
is shown in the first row. A second configuration, called the series switched
capacitor realization, consists of two switches and one capacitor. If one repeats
the preceding charge flow analysis, it can be shown that the equivalent resistance
of the series switched capacitor realization is also given by Eq. 8.5-9. A third
configuration, called the series-parallel switched capacitor realization, is shown
in the third row of Fig. 8.5-2. The value of the resistor realization is shown in
the last column and can be found in exactly the same manner as was done for the
previous two configurations. Finally, the bilinear switched capacitor realization
is shown. It uses four switches and one capacitor. If the high sampling frequency
approximation is valid, all resistors of continuous-time RC active networks can
be replaced on a one-for-one basis to obtain a switched capacitor realization.

The advantage of the switched capacitor methodology can be illustrated by
comparing the RC product of a resistance designated as R; and a capacitance
designated as C,. Let us assume that the product of R, and G, forms the time
constant 7, given as

(8.5-9)

7= R (8.5-10)
The dependence of the accuracy of 7 on R; and C, can be written as

dr _dRy , dG

= 8.5-11
T R1 C2 ( )
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Switched capacitor
resistor realization Circuit Requivatent

T
Parallel <
aralle T c i’
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o o
Series — parallel I( L . Te
C1 ’[\ 2 C1 + Cz
o ]

Bilinear o, 4

FIGURE 8.5-2
Summary of switchied capacitor resistor simulations where f << f,.

where dx/x is interpreted as the accuracy of x. The worst-case accuracy of 7 will
be the sum of the absolute accuracies of R; and C,, which will be very poor if
R, and G, are directly implemented by integrated circuit technology.

If R, is replaced by a switched capacitor resistarice realization with a
capacitor of value C; having an equivalent resistance given by Eq. 8.5-9, the
time constant 7 now becomes

1G G
T=——"=T—= 8.5-12)
feCt ccl
The accuracy of the time constant, 7, in Eq. 8.5-12 can be expressed as
d dT, dcC C v
dr _dl.  dG 4G (8.5-13)

T Tc C2 Cl

If the clock frequency is assumed to be constant, then Eq. 8.5-13 reduces to

S ) (8.5-14)




ANALOG SYSTEMs 697

We know from our previous studies that the relative accuracy of two capacitors
fabricated on the same integrated circuit can be quite good. As a result, the value
of Eq. 8.5-14 can be as low as 0.1%, which represents a tremendous improvement
over Eq. 8.5-11 and is one of the key factors contributing to the success of
integrated switch capacitor filters.

Unfortunately, the concept of a one-for-one replacement of resistors by
switched capacitor resistor realizations breaks down if the high sampling fre-
quency assumption is not valid. Although this does impact how switched capac-
itor circuits must be designed, it does not affect the accuracy or the small area
achievable with switched capacitor circuits. The degree to which f. must be
larger than f for Eq. 8.5-9 to be valid depends on both the realization chosen
and the circuit in which it is used. For a demonstration of some of these ideas,
consider the first-order continuous-time RC circuit of Fig. 8.5-3. The continuous-
time frequency-domain voltage transfer function can be written as

1 1

H(s) = = 51
) =1 Say +1 8.5-15)

where 7, = 1/wy = R;C,. The frequency response can be found by replacing s
by jw to get
1
H 7 - —_— 8 -
(o) jw/w) +1 (8.5-16)

The magnitude of Eq. 8.5-16 is
1
[1+ (wR ()22

|H(jw) | = (8.5-17)

and the argument, or phase shift, is
Arg H(jw) = —tan” (@R |Cy) (8.5-18)

The frequency response of the circuit of Fig. 8.5-3 is shown in Fig. 8.5-4a and
b. It is seen that this circuit is a first-order low-pass filter. The root of this filter
is given in Fig. 8.5-4c.

A realization of the filter of Fig. 8.5-3 can be obtained by replacing the
resistor, R, with any of the switched capacitor resistor realizations of Fig. 8.5-2.
Figure 8.5-5a shows a switched capacitor realization using the parallel switched
capacitor resistor realization. To analyze this circuit, the clock sequence must
be specified. Figure 8.5-5b shows a shorthand method of illustrating the clock
sequence for this circuit. ¢; and ¢, specify the phase periods during which the
switches ¢; and ¢, close and will be denoted as the odd and even phase clocks,
respectively. The odd phase periods (¢;) will be designated by a superscript o,
and the even phase periods (¢;) will be designated by a superscript €.

—AAA— -
R 1T
Vi G, 1’23
T FIGURE 8.5-3
—  Continuous-time RC network.
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IH{jo)l
]

(c)

FIGURE 8.5-4
Frequency response of Fig. 8.5-3: (a) Magnitude, (b) Phase response, (c) Root locations of Fig.
8.5-3.

In the analysis of the circuit of Fig. 8.5-5a we assume that V(#) is constant
during the phase periods (which can be achieved by a sample-and-hold circuit).
T will be used to denote 7, when there is no possible confusion. Consider the
first odd phase period, where (n — 1) = (¢/T) < (n — %), when switch ¢,
is closed. In this analysis, we assume that switch ¢; closes immediately after
t =(n — 1T and that C; is charged instantaneously to V{[(n — 1)T]. In practice,
the time required for V; to charge C; to this value should be small compared with
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1 ¢1 ¢2 2
5 O
il 1+
’ °T “TE
5
(@)
2 O o O
7
1 1
o n—g n1 n-2 n n+g FIGURE 8.5-5
(a) Switched capacitor realization of
(b) Fig. 8.5-3, (b) Clock phasing.

T/2. During the odd phase period, we may redraw the circuit of Fig. 8.5-5a as
shown in Fig. 8.5-6a. From this figure, we see that

Vai(t) = Vl(n — DT] = V§(n — 1) (8.5-19)
and
Ver(t) = Vil(n — DT] = Vi(n — 1) (8.5-20)

The clock period T in Eqs. 8.5-19 and 8.5-20 has been dropped because it adds
no useful information, thus simplifying the notation. This convention will be
followed where no misinterpretation is likely.

In the next even phase period, (n — %) = (t/T) < n, switch ¢, is open
and switch ¢, closes. Figure 8.5-6b represents Fig. 8.5-5a during this phase
period. During this time, C; and C, are paralleled, resulting in a new value of
V,. The circuit of Fig. 8.5-6b may be converted to the equivalent circuit of Fig.
8.5-6¢ with uncharged capacitors. The voltage sources representing the initial
voltages on the capacitors are assumed to be multiplied by a unit step function
that starts at t = (n — %)T but whose value was established atz = (n — 1)T . After
closing switch ¢,, the charges on C; and C, must be redistributed to reestablish
equilibrium. Using superposition techniques, V, can be expressed as

C

G
t) = Vi(in—1) + (n -1 5-2
V(1) C+ G i(n —1) Ci+ G 2(n — 1) (8.5-21)
Evaluating V,(¢) att = (n — %)T, we obtain
1 C1 C2
n—2)=—Vn—-1) + 5(n — 8.5-22
e R e A A U Voo £ Rl N CER2

At the beginning of the next phase period n = ¢t/T < (n + %) , the voltage at V,
can be written as

V(n) = Vi(n — %) (8.5-23)
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1 2
- s
1 L+
Vilin-1T] Vea(t) ANCy CormVeolt)  VEIN-1)T]

(a)

vSl(n-1)T]
Vl(n—-3)T] C C,

~ VSIn-1T] Vy(t)

|/I+

Hh__-w

(b)

+6

2
vslin-37]

VSIl(n-1)T 1 T v3l(n-1)T] -

FIGURE 8.5-6
(a) Equivalent circuit of Fig. 8.5-5a when switch ¢, is closed, (b) Equivalent circuit of Fig. 8.5-5a
when switch ¢, is closed, (¢) Alternate form of b.

because the voltage V, has not changed from its value at ¢t = (n — %)T. Using
Eq. 8.5-23 allows us to write

o G
Von — 1) + Vn — 1 8.5-24
G+ in - revaln=h )

Equation 8.5-24 recursively defines a sequence that can be transformed from the
discrete-time domain to the z-domain by taking the z-transform characterized by

Vin) =

V(n) =z "V(2) (8.5-25)
Using this transformation on Eq. 8.5-24 results in
Ciz”! Gz 7!
Vi(z) = ———=V(2) + =——V) 8.5-26
2(2) Cl + C2 l(z) C] + C2 2(2) ( )

Solving for V§(z)/V{(z) results in the z-domain transfer function of the circuit
of Fig. 8.5-5a sampled at the odd output phase.

Vi@ [ 1
Vo) \1+a

z—l

1-[a/(1 + )]z}

H®(z) = (8.5-27)
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where a = C,/C;. Applying Eq. 8.5-25 to Eq. 8.5-23 results in V3(z) =
272V §(z). Thus, Eq. 8.5-27 can be written as

er o V5(2) 3 1 712
H™2) = Voz) \l+all-[a/(l+ a))! (8.5-28)
Thus,
H®(z) = z7 2 H*(z) (8.5-29)

The basic concepts of the z-transform have been used in an algorithmic manner
in order to keep the presentation simple. The z-transform is rigorously developed
elsewhere.®

The discrete-time frequency response can be found by replacing z by
¢/*T which is analogous to replacing s by jw in the continuous-time frequency
domain. Making this replacement in Eq. 8.5-27 gives the following expression,
which is equivalent to the discrete-time frequency response of the circuit of
Fig. 8.5-5a.

vileT) 1
VoeioT) (1 + a)cosol —a + j(l + &) sinwT
(8.5-30)

where Euler’s formula (e/“T = coswT + j sinwT) has been used to remove
¢/T | The magnitude of Eq. 8.5-30 is

He/oT) =

. i
oo, , joT — _ 231
| H(™) | [1 + 2a(1 + &)(1 — cos wl)]"2 (8.5-31)
and the phase shift is
Arg [H*(e/*T)] = —tan™" sin T (8.5-32)

coswl — a/(l + @)

In order to compare the performance of the circuit of Fig. 8.5-5 with the
circuit of Fig. 8.5-3, we must appropriately choose the values of a and T.. One
of several methods used for making this comparison is to assume that @, of Eq.
8.5-15 is much less than w, = 1/(277T.). In this case, z of Eq. 8.5-27 can be
replaced by

=6 =1+ joT (8.5-33)

to get
; 1
HOO joTy ~ o= 4
S jo(l+ )T +1 (8.5-34)

Comparing Eq. 8.5-16 with Eq. 8.5-34 gives

-1— =T + o (8.5-35)
W)
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The frequency response of Eq. 8.5-30 is plotted in Fig. 8.5-7 for the
value of w./w, = 10, which from Eq. 8.5-35 corresponds to a = 0.5915. Also
plotted is the frequency response of Eq. 8.5-16 from the circuit of Fig.
8.5-3. For frequencies of  less than 0.02wc, the switched capacitor circuit of
Fig. 8.5-5a is a good approximation of the frequency response of the circuit of
Fig. 8.5-3. However, as the frequency increases, the switched capacitor circuit
is a very poor approximation. At w/w. = 0.5, the greatest attenuation of the
switched capacitor circuit occurs; and at w = @, the magnitude is at the starting
value, with a phase shift of —360°. The roots of the circuit of as determined from
Eq. 8.5-27 are shown in Fig. 8.5-8 and consist of a pole located at /(1 + @) on
the positive real axis. To improve the switched capacitor realization of the circuit
of Fig. 8.5-3, it is necessary to increase w or, alternatively, reduce ®;.

At this point, one can begin to use the resistor realization method to replace
the resistances of an RC active network. This method has been applied to the filters
of Figs. 8.4-11, 8.4-14, and 8.4-15. The disadvantages of this method are that
the circuits are very difficult to analyze and they contain floating nodes. Floating

Switched
capacitor
. 1 (Fig. 8.5-5a) 7]
H(e j mT)
H(1)
1/2 N
A ~
Q) ~
0 1 ] | Bl
0.01 0.1 1.0 o
mc
0° T T T T

-20° T

—40° . RS 7

Switched ~ . Analog (Fig. 8.5-3) -

Arg H(el®Ty-60° | capacitor S |

gHEe™) i (Fig. 8.5-5a) ]

— 80 ° S ~ano - -

10
| | 1 i
0.01 - 041 1.0 o
(DC
FIGURE 8.5-7

Frequency response of Fig. 8.5-5a compared with the frequency response of Fig. 8.5-3.
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FIGURE 8.5-8
Roots of Fig. 8.5-5a.

nodes are nodes that are not connected to a voltage source or a virtual ground.
Floating nodes cause a susceptibility to parasitic capacitance as well as complicate
the analysis. Examples of floating nodes are nodes A and B in Fig. 8.4-11a
and node A in Fig. 8.4-11b. Figure 8.4-11c has no floating nodes and . thus
is suitable for the resistor simulation approach. Because of these reasons, the
resistor simulation method is restricted to simple configurations. The following
two methods provide better and easier methods of realizing switched capacitor
filters.

8.5.2 Passive RLC Prototype Swntched
Capacitor Filters

One of the more useful methods of synthesizing filters using switched éapacitor
networks is based on the realization of RLC ladder networks. Since the integrator
is an important part of this method, we shall consider the implementation of
switched capacitor integrators first. An inverting analog integrator is shown in
Fig. 8.5-9. The transfer function can be found as
Vy(s) -1 -1 —w,
H(s) = = = — = 8.5-36
(5) Vi(s) sR1C, 51, K ( )
where 7, is the time constant of the integrator. The transfer function magnitude
of the inverting integrator is given as

4
1\
G,
R1
P >
+ Lo
+
7 v,
_ ~  FIGURE 8.5-9

o— o  An inverting continuous-time integrator.
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| H(jw) | =% (8.5-37)
and the phase shift is
Arg H(jw) = —723 (8.5-38)

A noninverting integrator has the same magnitude as the inverting integrator. The
phase shift of the noninverting integrator is equal to — /2.

A logical approach to a switched capacitor integrator realization is to replace
the resistor R; of Fig. 8.5-9 by the parallel switched capacitor realization of Fig.
8.5-1a. The result is shown in Fig. 8.5-10a and is called the parallel switched
capacitor integrator. Figure 8.5-10b shows the clock sequence for the switched
capacitor integrator. During the odd phase periods, the charge on C, is constant.
An equivalent circuit to Fig. 8.5-10a is shown in Fig. 8.5-10c for the even phase
period. The charge left on C; at ¢t = (n — %)T, 0L, is

(9 l [ 1
Or(n — 5) = GViy(n — 5) (8.5-39)

The charge on C, during the odd period, Qy, is
Ou(n — 1) = GVi(n — 1) (8.5-40)
The charge that will be contributed to C, from C; during the even phase period,

QC9 is

Q°C(n -1 = —CIV‘I’(n -1) (8.5-41)
A 1L
o 0 AN 3
Cx
V, -
! ~ V2 o
G +
— s G,
(a) Ver A< V2
even odd even odd
KRR .
T | )
n—§ n-1 n-—_1_ n n+.1_
2 2

(b) ()

FIGURE 8.5-10

(@) Parallel switched capacitor inverting integrator, (b) Clock sequence, (c) Equivalent circuit during
the ¢, phase period.
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Charge conservation techniques applied to node A of Fig. 8.5-10c result in
1
Of(n — 5) =0n(n —1) + Q2(n — 1) (8.5-42)
Making the substitutions of Eqs. 8.5-39 through 8.5-41 into Eq. 8.5-42 results in
1
GVs(n — 5) =GQVin -1 ~-CVn -1 (8.5-43)
During the odd phase, the charge on C, does not change, so that
1
Vi(n) = V§(n - 5) (8.5-44)

Combining Egs. 8.5-43 and 8.5-44 results in
GVi(n) = GV (n —1) = CV8(n — 1) (8.5-45)

Applying the transformation of Eq. 8.5-25 to Eq. 8.5-45 results in the desired
z-domain transfer function

GVa(z) = Cz7'Viz) — Ciz7Ve(2) (8.5-46)

This can be expressed as

HOO(Z) —

0 -1
1410 —CI( z ) (8.5-47)

Viz)  Gll-z

H%(z) can be found by multiplying Eq. 8.5-47 by z =2, H%°(z) of Eq. 8.5-47
and the corresponding H °(z) are sometimes called the type I direct-transform
discrete integrator and the type I lossless integrator, respectively.43~45

The frequency response of the circuit of Fig. 8.5-10a can be found by
replacing z by ¢/“T in Eq. 8.5-47 to get

. C e—ij/2
ofy . _=1f_ €~
Hoo(el ) = Cz(eij/Z — e_j"’T/2) (8.5-48)
If we define w, = C,/(TC,), then Eq. 8.5-48 can be expressed as
: T/2
Ho(eoT) = ~&{—“’ —jwT/2 5-4
[e*) jolsin (o1/2) [P (7/@T/2) (8.5-49)

Thus, the magnitude and phase response of Eq. 8.5-49 can be expressed as

oo/, jwT =& L/Q'J -
[H™(e) [ =22 — (wT12) (8:3-30)
and
Arg HOO(eij) - % _ [%T] (8.5-51)

We observe from Egs. 8.5-50 and 8.5-51 that as wT approaches zero, these
equations approach Eqgs. 8.5-37 and 8.5-38, respectively. Consequently, the terms
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TABLE 8.5-1
Magnitude and phase (delay) errors in

switched capacitor integrators versus
normalized frequency

Normalized Error in Error in
frequency gain constant phase from
fif. magnitude ideal 90°
0.00 0.00% 0°

0.05 0.41% 9°

0.10 1.66% 18°

0.15 3.80% 27°

0.20 6.90% 36°

0.25 11.07% 45°

0.30 16.50% 54°

0.35 23.41% 63°

0.40 32.13% 72°

0.45 43.13% 81°

0.50 57.08% 90°

in the bracketed portions of Eqs. 8.5-50 and 8.5-51 can be considered magnitude
and phase error terms. The effects of these error terms are shown in Table 8.5-1.

A noninverting switched capacitor integrator is shown in Fig. 8.5-11. It can
be observed that C; is charged by V; in one direction and then reversed before
it is discharged into C,. The result is exactly the same transfer function as Eq.
8.5-47 except there is no minus sign. The phase shift is given as

Arg H(e/eT) = - L _ [“’—T] (8.5-52)
2 2
Consequently, the magnitude and phase errors given in Table 8.5-1 are also
appropriate for the noninverting switched capacitor integrator.

Figure 8.5-11 has a very important property not found in any of the switched
capacitor circuits previously considered in this section. This property is called
stray insensitivity. In reality, every node in a circuit has some stray capacitance to
ground. These capacitances are represented by C, and Cg in Fig. 8.5-11. During
the ¢; phase, Cp is discharged and C, is charged by the voltage source, V.

| L 1L
° > IT< AN °
+ 04 e c, N 0o c, +
/ \
/ \
[ 1
Vi Ca -~ o2 & -~ Cpg Vo
\ !
\ /
N /
N 7
~ e
e O

FIGURE 8.5-11
A stray-insensitive, noninverting switched capacitor integrator.
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During the ¢; phase, an uncharged Cg is paralleled with a virtual ground, and Ca
is discharged to ground. Neither Ca nor Cg has any direct influence on the charge
on Cj, which is transferred to C, during the ¢, phase period. Consequently,
Fig. 8.5-11 is insensitive to stray capacitances. Repeating this procedure with
a stray capacitance in Fig. 8.5-10a will show that the charge transferred from
C; to C; during the ¢, phase period will be influenced by stray capacitances.
Most commercial switched capacitor circuits use building blocks that are stray
insensitive.

The stray-insensitive, inverting switched capacitor integrator of Fig. 8.5-12
will complete our repertoire of switched capacitor integrators. Although there
are many other possible integrators, these will be sufficient for our purposes in
this section. The transfer function of this integrator can be found by writing the
expressions for the various charges that are being transferred. The clock phasing
of Fig. 8.5-10b will be used for Fig. 8.5-12. The charge left on C, at the end of
the even phase period is

1
Oi|n - %) = GVin - 5) (8.5-53)
The charge on C, during the previous odd phase is
Ou(n —1) = GVi(n —1) (8.5-54)

The charge transferred to C, by the charging of C; to V(n — %) during the even
phase is

1
QE n — —) = —C1VT

2

Using charge conservation techniques gives

n - %) (8.5-55)

1 ' 1
Qfjn — 5) = QOu(n — 1) + Qg(n -3 (8.5-56)
Substituting Eqs. 8.5-53 through 8.5-55 into Eq. 8.5-56 results in
' 1
GViln —=| =GVi(n —1) — ClVﬁ(n - 5) (8.5-57)

If we assume the input is from a sample-and-hold circuit, then Vi(n ——5) =Vn).

4 ¥4
O -0
> AN < BLAY
+ (0% 7 c, AN [ C, +
/ \
! \
- 4
Vi Ca -~ oy o1 -~ Cg Vo
\ !
\ /
\ /
- \\ // -
o= —0
FIGURE 8.5-12

A stray-insensitive, inverting switched capacitor integrator.
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During ¢;, V5(n — %) = V3(n). Substituting these relations into Eq. 8.5-57 gives

GVi(n) = QVi(n — 1) — GiVi(n) © o (8.5-58)

Using Eq. 8.5-25 we obtain the desired transfer function for the circuit of
Fig. 8.5-12 as

HOO(Z) —

V‘l’(z) AV

We see that for the inverting, stray-insensitive switched capacitor integrator, there
is no delay in the forward path from the input to the output.

The frequency response of the circuit of Fig. 8.5-12 can be found by replac-
ing z by e/¢T . Making this replacement and multiplying through the numerator
and denomlnator by /T gives

HOO(eij) - -

f JwT /2
G g ) (8.5-60)

Cy| efoT/2 — g=jol 2

We note that Eq. 8.5-60 is identical to Eq. 8.5-48 except for the minus sign in
the numerator exponential. This means that the magnitude response of the circuit
of Fig. 8.5-12 is given by Eq. 8.5-50 and the phase shift by Eq. 8.5-51, except
that the phase error term is positive. The integrator error terms given in Table
8.5-1 are also applicable to the integrator of Fig. 8.5-12. The frequency response
of various types of integrators is illustrated in Fig. 8.5-13 for a ratio of w, to
w, of 0.1. The integrators we have just discussed are sufficient to implement
practical switched capacitor filters. A more complete presentation, concerning
other realizations and details, can be found in the literature.

Next we shall use the switched capacitor integrator to realize the passive
RLC prototype ladder filter. Consider the fifth-order low-pass filter shown in
Fig. 8.5-14. This filter is similar to the type that was considered in Sec. 8.4. The
subscript 7 on the components indicates prototype or normalized values. The first
step is to select the electrical variables that will be used to describe the circuit.
Each component is characterized by a current, /;, and a voltage, V;, one of which
can be expressed as the integration of the other variable. The integrand variable
is current for an inductor and voltage for a capacitor. The integrand variables
I1,,V2,15,V4, and I5 are shown in Fig. 8.5-14.

The next step is to use these integrand variables to write a set of s-domain
equations that describe the circuit. The selection of the integrand variables allows
the realization using integrators. For the variable 7,, we may write the loop
equation:

Vion = I1(Ron + sL1y)— V2 =0 (8.5-61)
Using the concept of a “voltage analog” of current, we express Eq. 8.5-61 as
Vi (

Vin = & (Ron + sLi,) =V, =0 (8.5-62)
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integrator when wo/@; = 1/10, (b) Phase response of various switched capacitor and continuous-
time integrators.

o—AAN
+ ROn
Vin

o

FIGURE 8.5-14 ,
A fifth-order, low-pass, passive prototype filter.
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where the voltage analog of I, is designated as V'{ and is defined as
Vi =RI, (8.5-63)

where R is an arbitrary scaling resistance (normally unity). Solving for V' of Eq.

8.5-62 results in
, R R
Vi= [Vin‘Vz—(%

Vi} (8.5-64)

This expression can be implemented by an integrator that sums Vi,, —V>, and
—(Ro,/R)V]. The fact that the output is in part equal to the integral of itself
indicates nothing more than a damped integrator. Moving on to the next variable,
V>, we sum currents to get

11 - 13 - SC2,,V2 =0 ‘ (85-65)
Solving for the variable V, using voltage analogs of /; and I, we get
' 1
V, = ——[V]— V3 8.5-6
2= RG (Vi—-Vil ( 6)

The equation describing the variable /3 can be written from the loop consisting
of Copy L3y, and Cy, as

Vs — sLagls — V4 = 0 (8.5-67)
Solving for the voltage analog of I3 gives
, R _ .
Vi=——(Vy— V) (8.5-68)
sL3p

Next, the equation involving V4 can be found by a nodal equation written as

I3 —5CyuVs—15=0 (8.5-69)
Again using voltage analogs for /3 and /5 gives,
! .
Vo= Vi — Vs 8.5-70
4= 1R C4n( %) ( )

Finally, a loop equation involving Cyy,, Ls,, and R¢, will be used to describe the
variable [ s:

V4 - SL5,,15 —I5R6,, =0 (85-71)
which can be expressed in terms of voltage analogs as
R R :
Vs = Vg4 — Vs 8.5-72
5= LSn( 47 g 5) ( )

However, we would prefer to have the variable Vo rather than V5. Because
Vour = (RG,,/R)Vg, we express Eq. 8.5-72 as

R6n

(V4 - Vout) (8.5-73)
sLs,

Vou =
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The method of generating these equations should be obvious. Starting
with Eq. 8.5-61, the equations are a succession of loop equations followed by a
node equation. The substitution of Vo, for V5 was simply by application
of Ohm’s law. This method can be used for practically all low-pass ladder RLC
filters. ,

The next step is the realization of Eqgs. 8.5-64, 8.5-66, 8.5-68, 8.5-70, and
8.5-73. Equation 8.5-64 represents a summing integrator with inputs of Vi,, V7,
and V{ and output Vi. It can be realized by switched capacitor circuits by
combining the ideas of Figs. 8.5-11 and 8.5-12. The circuit of Fig. 8.5-154
results as a proposed realization of Eq. 8.5-64. Note that the right-hand switches
have been combined to reduce the number of switches. Using the results of Eqs.
8.5-47 and 8.5-59, we write

1 -
Vi) = (1_—Z_1 [z~ Vin(2) — anVa(2) — anVi(@)] (8.574)

Next the high sampling approximation is made so that 1 — z~ 1 is approximately
sT and z ! is approximately 1 — sT = 1. Thus, Eq. 8.5-74 becomes

1
Vi(s) = —rlanVin(s) = anVa(s) = a3 Vi(s)] - (8.5-75)

Before Eq. 8.5-75 can be equated with Eq. 8.5-64, it must be frequency-
denormalized. This is because Eq. 8.5-64 is based on a low-pass normalized pro-
totype, having a cutoff frequency of 1 rps. This denormalization is accomplished
by replacing the clock period, T, in Eq. 8.5-75 by

Ty
T =— 5.
Q, (8.5-76)
where T, is the normalized clock period and (), is defined as
Actual cutoff frequency in rps
n = : S k4 8.5-77)
Normalized cutoff frequency rps
Therefore, Eq. 8.5-75 can be written as ‘
1
Vi(s) = 'ST[auVin(S) — a1 Va(s) — s Vi(s)] - - (8.5-78)
n .

Equating Eq. 8.5-78 and Eq. 8.5-64 results in the design of the first integrator of
Fig. 8.5-15. These results are ‘ ‘ ’

RT, RO, T RQ,
— —_— ——— T = 8. _7
T T T L Luf (8.579)
and _
Ro,T. RonQ.T  Ro, Q)
ay = —non - SOt et (8.5-80)

Lln Lln B Llnfc



