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FIGURE 8.5-15
Stage-by-stage realization of Fig. 8.5-14: (a) Input stage, (b) Second stage, (c) Third stage,
(d) Fourth stage, (¢) Output stage.
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Next we repeat this process for the variable V, of Eq. 8.5-66. Figure
8.5-15b is a realization of Eq. 8.5-66. Using the high sampling approximation
allows us to write the output of this circuit as

1
Va(s) = F[alei(S) — anVi(s)] (8.5-81)

employing the same approach that was used to get Eq. 8.5-78. Equating Eq.
8.5-66 with Eq. 8.5-81 results in

o T T O
2 R C2n R C2n R Can c

o) = (8.5-82)
The realizations for Eqs. 8.5-68, 8.5-70, and 8.5-73 are identical in concept to
that of Eq. 8.5-66. Figure 8.5-15 shows the switched capacitor realizations of
these equations. Using the same approach as before, we may express the design
equations of Fig. 8.5-15c as

RT, _ RO,T _ RO,

a3 = om = L3, Ls, B ch?m (8.5_83)
and Fig. 8.5-15d as
_ T T
Y4 = 0% T RCy T RCan | RCunfe 8559
and Fig. 8.5-15¢ as
2Tn  Ren€)
o5 = g5 = Rn o = (8.5-85)

L5n LSnfc

Equations 8.5-79, 8.5-80, and 8.5-82 through 8.5-85 permit the design of
the filter in Fig. 8.5-14 according to a given set of specifications. When the
various integrators of Fig. 8.5-15 are combined, the filter realization is that shown
in Fig. 8.5-16. The filter structure consists of coupled internal feedback loops
containing two integrators each. In order to achieve minimum delay around each
loop, it is necessary that each integrator be sampled by the next integrator as
soon as the new sample is available. Therefore, in one clock period, the signal
circulates around the internal feedback loop. The clock scheme indicated will
avoid a T/2 delay, which would create a difference between the actual realization
and that desired. The following example illustrates the application of the preceding
approach to the switched capacitor realization of a low-pass filter.

Example 8.5-1. A switched capacitor realization of a fifth-order low-pass
Chebyshev filter. A fifth-order low-pass Chebyshev filter with a 1 dB ripple in
the passband is to be designed for a cutoff frequency of 1000 Hz. The structure of
Fig. 8.5-16 based upon the passive prototype of Fig. 8.5-14 is to be used. Find the
switched capacitor realization for this filter if the clock frequency is 100 kHz.

Solution. The normalized values of the RLC passive prototype that satisfies the
specifications are Ry, = 1 Q,L,, = 2.1349 H, G, = 1.0911 F, L3, = 3.009 H,
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FIGURE 8.5-16

Switched capacitor realization of Fig. 8.5-14.

Csn = 1.0911 F, Ls, = 2.1349 H, and R¢, = 1 ). These values are found from
tabulations in the literature.?-3! Using the preceding equations with Q, = 20007,

we get

One item of concern in switched

= 0y < a3 = 0.02943

= ap = 0.05759
= ap3 = 0.02094
= ayq = 0.05759
= aps = 0.2943

capacitor filters is the total capacitance

required in the realization. Large capacitor ratios are undesirable because of the loss
of relative accuracy and increased area. If a;; of the jth stage is less than unity,
then aijCj will be less than G . If we equate the smallest capacitor, a; G,
to a unity capacitance C,; , then we may find the total relative capacitance of a
stage by summing C,; with all other capacitors being divided by «;;. In the
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preceding example if we let Cy; = Gy = C3 = Cus = Gys = G, then the total
capacitance is 155.596C,. If C, is selected as 1 pF, then 155.596 pF of capacitance
is required for the filter. It is important to keep this number as small as possible if
the filter is to be integrated. Reduction of the clock frequency will always reduce
this number, but at the expense of not satisfying the high sampling approximation
at the higher signal frequencies.

This design method starting from the low-pass, passive RLC prototype is
general and can be applied to all types of symmetrical filters. Elliptic filters
can also be synthesized by replacing the L cutsets or C loops with controlled
sources.28 The result requires a nonintegrated input to the integrator, which can
be accomplished by an unswitched capacitor. Bandpass, high-pass, and band-
elimination filters can be synthesized using the transformations of Fig. 8.4-13
applied to the low-pass, passive RLC prototype. The bandpass is realized by a
second-order bandpass structure with the ability to sum multiple inputs. Such a
structure could be derived from the circuit of Fig. 8.4-15¢ if the integrators are
replaced by the appropriate combinations of the integrators of Fig. 8.5-11 and
Fig. 8.5-12 with summing inputs.

The high-pass switched capacitor filter realizations present more of a chal-
lenge, although they use the same approach as that used for low-pass switched
capacitor filters. The reason for the additional complexity is that the low-pass
to high-pass transformation applied to the low-pass, passive RLC prototype will
result in differentiators if the same integrand variables used for low-pass filters
are selected. It is necessary to reselect the variables so that the equations can be
realized with integrators.

Band-elimination filters are also possible using this approach. One first
transforms the low-pass, passive RLC prototype to a band-elimination form. The
switched capacitor realization will require a second-order structure with the ability
to sum both integrated and nonintegrated inputs. For more information on the
design of switched capacitor circuits from general symmetrical filters, the reader
should consult Chapter 4 of the text Switched Capacitor Circuits.?®

8.5.3 Z-Domain Synthesis Techniques

In many cases, the designer is given the filter approximation in the z-domain
rather than the s-domain. In this case, the realization of the filter takes place
directly in the z-domain. Various methods of arriving at H(z) given H(s) are well
developed and can be found elsewhere. Irrespective of how the tranformation is
made, the starting point of z-domain synthesis techniques is

ap+ a1z + a2t + .o+ am—12" 1 + ap™
by + b1z + b222 + ...+ bn—lz’"l + b,7"

H(z) = (8.5-86)

One approach is to convert Eq. 8.5-86 into a signal flow diagram consisting
of amplifiers, delays, and summers.** Another approach is to break Eq. 8.5-
86 into products of first- and second-order terms. An example of how the first
approach works is illustrated by Fig. 8.5-17a. This is a general building block
that consists of a combination of a stray-insensitive noninverting and inverting
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FIGURE 8.5-17
General building block: (a) SC circuit, (b) z-domain block diagram, (c) Z-domain block diagram.
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integrators and an inverting amplifier. Note that V;, V,, and V3 can be con-
nected at arbitrarily different points or to the same node to provide more flexi-
bility for different structures. This general building block can provide different
paths, including local feedback, overall feedback, and feedforward. Figure 8.5-
17b shows the flow diagram of Fig. 8.5-17a in terms of z ! delay elements.
A change of the z-domain variable is introduced, which simplifies the flow dia-
gram and improves the sensitivity performance of the various realizations.* This
transformation is

z=2z-1 (8.5-87)

Figure 8.5-17¢ gives the z flow diagram of the circuit of Fig. 8.5-17a. The output
of the circuit of Fig. 8.5-17¢c, V,(z), is given by

Vo(3) = a2 'Wa(3) — ayVi(2) —a3(1 + 2 HV3(3)  (8.5-88)

The transformation used in Eq. 8.5-87 is arbitrary. The design procedure
outlined in the following could equally well be applied to H(z). Note that Eq.
8.5-88 may be simplified if V,(zZ) = V3(Z). Combinations of this general build-
ing block can be used to realize various z-domain transfer functions when the
transformation of Eq. 8.5-87 is made to Eq. 8.5-86 to get H(z). When H(Z)
is converted to a signal flow diagram, then the synthesis becomes a straightfor-
ward procedure. These ideas will be demonstrated for second- and third-order
structures, which can be cascaded to obtain a filter of any order in the z-domain.

One popular method of designing higher-order filters is the cascade of
first-, second-, and third-order sections.*’*® Because Fig. 8.5-17a represents a
first-order filter, we will consider only the second-order (biquad) and third-

order (triquad) realizations. The biquad is a fundamental building block for

higher-order switched capacitor filters. The biquad flow diagram shown in Fig.
8.5-18 is a versatile structure and is one of many that could be considered.
The properties of this structure are (1) the capability of realizing all stable z-
domain biquadratic transfer functions, (2) sufficient flexibility to permit small total
capacitance with low sensitivity, and (3) freedom from parasitic capacitances.

The general biquad structure is formed by the interconnection of the general
building block of Fig. 8.5-17a. The biquadratic transfer function of the circuit of
Fig. 8.5-18 is given as

HGp = Vel Aot A+ At (8.5-89)
Vi) 1+ g7
where
Ao = DoB3 — D3
A, =D, — D3 + D3By — DoB, — D,B3 + DB (8.5-90)
Ay = D3Bo + DB, — D2B3 — DB
Ci = B,B3 — By

C; = BoB3 — BB,
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FIGURE 8.5-17
General building block: (a) SC circuit, (b) z-domain block diagram, (c) £-domain block diagram.
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integrators and an inverting amplifier. Note that V;, V5, and V3 can be con-
nected at arbitrarily different points or to the same node to provide more flexi-
bility for different structures. This general building block can provide different
paths, including local feedback, overall feedback, and feedforward. Figure 8.5-
17b shows the flow diagram of Fig. 8.5-17a in terms of z ! delay elements.
A change of the z-domain variable is introduced, which simplifies the flow dia-
gram and improves the sensitivity performance of the various realizations.*6 This
transformation is

z2=2z-1 (8.5-87)

Figure 8.5-17¢ gives the Z flow diagram of the circuit of Fig. 8.5-17a. The output
of the circuit of Fig. 8.5-17¢c, V,(2), is given by

Vo(2) = a2 'Va(8) — aqVi(2) —as(1 + 2~ H)V3(2)  (8.5-88)

The transformation used in Eq. 8.5-87 is arbitrary. The design procedure
outlined in the following could equally well be applied to H(z). Note that Eq.
8.5-88 may be simplified if V,(z) = V3(Z). Combinations of this general build-
ing block can be used to realize various z-domain transfer functions when the
transformation of Eq. 8.5-87 is made to Eq. 8.5-86 to get H(z). When H(Z)
is converted to a signal flow diagram, then the synthesis becomes a straightfor-
ward procedure. These ideas will be demonstrated for second- and third-order
structures, which can be cascaded to obtain a filter of any order in the z-domain.

One popular method of designing higher-order filters is the cascade of
first-, second-, and third-order sections.*’*® Because Fig. 8.5-17a represents a
first-order filter, we will consider only the second-order (biquad) and third-
order (triquad) realizations. The biquad is a fundamental building block for
higher-order switched capacitor filters. The biquad flow diagram shown in Fig.
8.5-18 is a versatile structure and is one of many that could be considered.
The properties of this structure are (1) the capability of realizing all stable z-
domain biquadratic transfer functions, (2) sufficient flexibility to permit small total
capacitance with low sensitivity, and (3) freedom from parasitic capacitances.

The general biquad structure is formed by the interconnection of the general
building block of Fig. 8.5-17a. The biquadratic transfer function of the circuit of
Fig. 8.5-18 is given as

Vou(2) _ Aot AZ7 4 A2

H(z) = V.(3) - Cli—l N C22_2 (8.5-89)
where
Ao = DoB3 — D3
Ay =D{ — D3 + D3By — DoB; — D3B3 + DyB3 (8.5-90)
A, = D3By + D,B; — D3B3 — DBy
Ci = B,B3; — By

C, = BBz — B1B;
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FIGURE 8.5-18
Signal flow diagram of a biquad.

It is observed in Fig. 8.5-18 that B, and B are positive-feedback components. If
By and B are zero, the filter will be stable from an ideal viewpoint. For nonzero
values of By and B, the filter will remain stable if Bj is greater than B, and B,
is less than B,Bj. o

Figure 8.5-19a shows a switched capacitor implementation of the flow
diagram of Fig. 8.5-18. The two outputs are designated as V,; and V. The
most general output of this realization is at V, because each coefficient can be
realized independently of the other. The transfer function at V,, is

Voa(2) _ Do + (D3B; — D,)i ™" + (D3B, — DB, >
Vi(2) 1 + (ByB3 — Bo)i ' + (ByB3 — BBy 2
(8.5-91)

Note that the individual Bs and Ds represent a ratio of two capacitors. The circuit
can be simplified in a number of ways depending on the actual transfer function
required. For instance, if there is a zero at z = —2 (i.e., z = 1), the “bilinearly”
equivalent analog-domain zero frequency is at s = o; and if the zero is neglected,
then Do becomes zero. The switched capacitor implementation of Fig. 8.5-19a
with the minimum number of switches is shown in Fig. 8.5-195.

H(z) =
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FIGURE 8.5-19
(a) Switched capacitor implementation of Fig. 8.5-18, (b) Switched capacitor biquad with a minimum
number of switches.
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Generally, the second-order z-domain transfer function is given in terms of
its z-domain roots. A general expression for Eq. 8.5-91 in terms of the roots is

HE) 1+ (2—2rocos 08" + (1 + r2 —2rycos B2
Z) = - -
1+02-2rcosff '+ (1+r2—2rcosf?
(8.5-92)

where the locations of the poles and zeros in the z-plane are at re™/ ® and
i—‘o . . . .
roe™/ 9, respectively. Expressions for the root locations in terms of the co-

efficients are

r =[1— BB, + Bg]"? (8.5-93)

— B,B
cos§ =2 B2B3 * Bo (8.5-94)

2r
ro =[1 + (Dy — D1B,)/Dg]"? (8.5-95)

and
2 + (D, — D3B,)/Dy
cos @, = 5 (8.5-96)
o

A possible set of design equations is developed next. The root locations
described by r, r,, 6, and 6, are assumed to be given. Because there are
several extra degrees of freedom, we can arbitrarily choose B;, B3, D3, and Dj3.
Therefore, the rest of the components can be calculated from

By =2rcos6 —2 + B,B; (8.5-97)
B; =0.5[2 — B,B3 + By] (8.5-98)
D, — D3B

Dy =—2—22 (8.5-99)

2rocos 6, — 1)
and

D, + (1 —r2Dy

D, = (8.5-100)

B,

It is observed that the general biquad can be simplified by choosing as many
of the capacitor values as possible to be equal to zero. The coefficients of Eq.
8.5-91 are a result of the multiplication and subtraction of several individual
capacitor ratios. Thus, the biquad is capable of realizing very small coefficients.
However, we must keep in mind that the sensitivity might be inversely propor-
tional to that small difference. Typically, a tradeoff between sensitivities and total
capacitance is possible and will be illustrated shortly.

Next, a third-order realization is developed. This structure is useful when
the filter has an odd order. Figure 8.5-20a shows a general third-order structure
in its signal flow diagram form. The transfer function of this structure is
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FIGURE 8.5-20
(a) General third-order block diagram, (b) Simplified third-order block diagram (signal flow graph).

~ a1 a2 ~—3
Vo(2) ) + a2 + @z + a3z

H(z) = V) T 1481 g s B (8.5-101)
where
ay = —As (8.5-102)
o) = A1BsBg — AyBg + Ay — As (8.5-103)
ay = 2A1BsBg — AgBsBg + A3Bg — ABg (8.5-104)
a3 = BsBg(A| — Ay) (8.5-105)
B1 = B2Bs — B1BsBs — By (8.5-106)
B2 = BoBsBg — 2B1BsBg — B3Bg + B,Bg (8.5-107)
and

B3 = BsB¢(Bo — By) (8.5-108)
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Besides the transfer function of Eq. 8.5-101, two other transfer functions for each
op amp output can be obtained. Equation 8.5-101 is chosen for its flexibility. A
simplified yet versatile structure is considered next.

IfB, =B, =A; = A4 =0, and if we omit the 1 + 77! following As, then
the flow diagram Fig. 8.5-20b results. The coefficients of Eq. 8.5-101 become

—ap = As (8.5-109)
—a; = AsBs (8.5-110)
—ay = Bg(AoBs — A3 + A2) (8.5-111)
—a3 = ApBsBg (8.5-112)
B1 = B2Bs (8.5-113)
B2 = Bs(BoBs — B3 + B3) (8.5-114)
and
Bs = BoBsBs (8.5-115)

A switched capacitor implementation of Fig. 8.5-20b is shown in Fig.
8.5-21. Table 8.5-2 shows the generality of the third-order building block in
designing the transmission zeros. This table gives the values of the a coefficients
and the capacitor ratios required for several conventional types of filters. In addi-
tion to the tradeoff between sensitivity and total capacitance mentioned before,
we have added the constraint that the largest-to-smallest capacitor ratio be less
than 10. More details regarding the tradeoff between sensitivity, output voltage
swing, and total capacitance are given elsewhere.*

If the third-order specifications are given in terms of root locations, then
it is necessary to relate the coefficients to the root locations. The root locations
include one real pole at 7, two complex poles at r e*/?, and two complex zeros
at roe™/%, These expressions are

a =0 (8.5-116)
o =1 (8.5-117)
ay =2 —2rycos B, (8.5-118)
a3 =1+r2—2r,cos6, (8.5-119)
Bi=3—r; —2rcosf (8.5-120)
By =3—2ry +r%—4rcos@ + 2rr cos 6 (8.5-121)
and
Bi=1-r +r2—rir—2rcosf + 2rrycos®  (8.5-122)
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To illustrate the synthesis procedure, the second-order and third-order blocks
are used to design a fifth-order low-pass filter. The specifications of the filter are
a 0.125 dB passband ripple, a cutoff frequency of 3.4 kHz, a stopband minimum
attenuation of 32 dB above 4.6 kHz and a clock frequency of 128 kHz. The design
begins with the roots of the s-domain rational polynomial approximation, H(s).
These roots are mapped to the Z-domain through the bilinear transformation.26

AsCs
4
I\
o C2 g,
_/ N
92\ ¢4
o1 ACe O

Ci

a— /T

0
FIGURE 8.5-21

Switched capacitor implementation of Fig. 8.5-20b.
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FIGURE 8.5-22
) Root locations in the s-plane of the fifth-
ek ing order filter: O= zeros, X = poles; w; =
8, 405792 x 103, wy = 28.367 X 10, w3 = 22.604 X
5 103, wg = 17.83 X 103,83 = 1.938 X 103, 8, =
o 05 = 8.514 X 103, 85 = 15.474 x 10%.
The s-domain zero at infinity that maps to z = —2 is ignored. The location

of the roots in the s-domain are illustrated in Fig. 8.5-22. The second-order
realization has two zeros and two poles, *jw; and 8; * jw,, respectively. The
corresponding root locations in the 7-domain are r = 0.92838, § = +£7.722°, and
ro = 1.0,8, = £12.928° for the poles and zeros, respectively. The third-order
stage realizes two zeros and three poles: *jw;, 85, and 83 = jws, respectively.
The corresponding root locations in the z-domain are r = 0.938,6 = +9.88°,
r, = 0.878,r, = 1.0, and 0, = *18.9° for the poles and zeros, respectively.
It should be noted that in obtaining the coefficients in both filters, the dc
gain of each stage was adjusted to be near unity. For the specified values of
r and 0, the capacitor ratios of the biquad can be calculated by setting B, =
0.1,B3=1.6,D,=0.0, and D3 = 0.22. The final results are summarized in Table
8.5-3. The total capacitance for the biquad is 28.172 C,. The capacitor ratios for
the third-order building block are given in Table 8.5-4. The total capacitance
for the third-order building block is 39.481C,. After simplifications,* the total
capacitance is 33.28C,. The total filter capacitance is Ct = 61.452C,. It has been
shown that there is a tradeoff between sensitivity, total capacitance, and dynamic
range.?% Figure 8.5-23 shows the resulting fifth-order low-pass filter realization.

TABLE 8.5-3 ,

Capacitor values in units of ¢, for the biquad circuit

Capacitor B,C, B\C, BoyG D;Cy DG DG C G
B3C, D,

Value 1 6.2863 0 1 4.3336 0 45517 10
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TABLE 8.5-4

Capacitor values in units of ¢, for the triquad circuit

Capacitor A()Cl Cl 36C3 A3C2 BzCz B3C2 C2 B5C2
BoC) G AG

Value 1 10 1 1 5.684 4.657 3.057 1.083

The performance of this filter is shown in Fig. 8.5-24. The simulated results and
the experimental results agree -quite closely.”

A brief overview of the methods of designing switched capacitor filters
has been shown. The three approaches selected were resistor replacement or
simulation by switched capacitor equivalents, the use of integrators to realize
passive RLC prototype ladder filters, and the direct synthesis of the z-domain
transfer function. Many more approaches exist, and they should be considered if
the above approaches do not provide the required performance.

Because of the lack of space, topics such as the prewarping of the s-domain
specifications to account for the (sin x)/x effect of the sample-and-hold circuit on
the filter performance have not been discussed. Also, the influence of the switches
and the op amp performance (gain and bandwidth) have not been considered.
Another problem the designer is faced with when designing switched capacitor
circuits is a method of analysis. Because the switched capacitor circuit is an
analog sampled-data system, aliasing can occur, and it is often necessary to use
an antialiasing filter, which must be a continuous-time filter. Fortunately, the
accuracy requirement of the continuous-time, antialiasing filter is not severe, and
RC active filter techniques can be used.

1
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FIGURE 8.5-23

SC circuit diagram of the fifth-order filter, capacitor values in C, units.
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FIGURE 8.5-24

Experimental and theoretical frequency response of the filter of Fig. 8.5-23: O= experiment, — =
theory.

The success of switched capacitor filters has created the demand for
increased performance in the area of dynamic range and frequency. The influence
of the feedthrough of the switches has been found to be a serious factor in Limit-
ing dynamic range. Besides using small switches and other methods previously
discussed to reduce feedthrough, it is important to keep the summing nodes of
switched capacitor circuits physically away from the clock lines. In fact, any
analog input line should be isolated from lines that carry digital signals. Another
factor limiting the dynamic range is noise. The noisé can come from the op amp
or from switched capacitors (k7/C noise). Of particular concern is the folding of
high-frequency noise into the baseband of the switched capacitor circuit.

The frequency limits of switched capacitor circuits are primarily due to
the op amp frequency limitations. Design methods exist that allow the signal
bandwidth to approach half the sampling frequency. One of the benefits of these
methods is that the capacitor ratios are reduced and the area required for capacitors
is minimum. The finite gain bandwidth of the op amp will cause the actual
switched capacitor filter performance to deviate from the desired performance.

Careful layout, the use of high-frequency op amps, and a fully differential
signal path have resulted in switched capacitor filters with very good dynamic
range and with high-frequency performance. Of the three approaches presented,
the RLC ladder approach using fully differential integrators or the cascaded biquad
are typically used. The designer generally tries to minimize the area and power
dissipation in addition to achieving the filter performance requirements.

Switched capacitor techniques are also useful for nonfilter applications.
Many of the circuits covered in the next section can be implemented using
switched capacitor circuit methods. The full application of switched capacitor cir-
cuit techniques has yet to be investigated with respect to analog signal processing
circuits.
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8.6 ANALOG SIGNAL PROCESSING
CIRCUITS

One of the largest areas of application of analog signal processing circuits is
filtering. This has been the subject of the last two sections. In this section,
we consider nonfilter applications of analog signal processing circuits. These
applications include precision breakpoint circuits, multipliers and modulators,
oscillators, and phase-locked loops. Many other circuits and systems could be
included, but these are representative of the concepts and principles.

8.6.1 Precision Breakpoint Circuits

In many applications it is necessary to realize a voltage transfer characteristic
similar to those given in Fig. 8.6-1. In these transfer characteristics, the breakpoint
is the point where two straight-line segments join, which is at the origin for each

Vour Vour
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Vin » VIN
Ry
R,
1

(@ (b)

Vour Vour
3 A

R,
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3
- Vin > Vin
R,
R,
1

(o) (@

FIGURE 8.6-1
Four possible types of nonlinear voltage transfer characteristics having the breakpoint at Vg = 0.
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of these cases. If the technology used can implement a diode, a resistor, and an op
amp, then Fig. 8.6-2 shows a realization of each of the respective voltage transfer
characteristics of Fig. 8.6-1. The slopes of the realizations will be determined by
the ratio of R, and R;. Because the diodes are in the feedback path, they behave
as ideal diodes. This permits the drain-gate connected MOSFET to function in
place of the diodes in Fig. 8.6-2.

In every diode circuit, it is necessary to first find the breakpoints of the
circuits related to either the input or output variable. In Fig. 8.6-2, the current
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FIGURE 8.6-2

Realizations of the characteristics of Fig. 8.6-1: (a) Fig. 8.6-1a with slope —R,/R;, (b) Fig. 8.6-1b

with slope —Ry/R;, (c) Fig. 8.6-1c with slope R,/R;, (d) Fig. 8.6-1d with slope R,/R;.
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flow in or out of the op amp can flow only through D1 or D2 but not both at the
same time. Therefore, the only possible states of D1 and D2 are D1 on-D2 off or
D1 off-D2 on. The breakpoint in the circuits of Fig. 8.6-2 will occur when both
diode currents are zero. The direction of Ip; and Ip, is not important because
they will be equated to zero to find the breakpoint. For example, consider Fig.
8.6-2a. The currents Ip; and Ip, can be expressed as

Vin |, Vour Vour

Ip; = R, + R, Ipy = R, 8.6-1)
Setting Ip; and Ip, to zero gives the breakpoints as Vour(BP) = 0 and
Vin(BP) = 0.

In many cases, the breakpoint is to be shifted away from zero. This can
be accomplished for the circuit of Fig. 8.6-2b as illustrated in Fig. 8.6-3a. A dc
voltage, E,, has been connected to the inverting input through a resistor, R3.
Using the principles just explained, we solve for /p; and I'p, as

Vin | Er | Your Vour
Ipp = —2 + =L + =2 Iy = 6-2
o= % TR R, D2 = "p (8.6-2)
Setting I'p; and Ip; to zero in Eq. 8.6-2 gives the breakpoint as
E,R
Vin(BP) = —===  Vour(BP) =0 (8.6-3)
3

Figure 8.6-3b shows the voltage transfer characteristics of the circuit of Fig.
8.6-3a.
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(a) Method of shifting the breakpoint of Fig.
(b) 8.6-1b, (b) Transfer characteristics of (a).
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Mathematically, we may express the output voltage of Fig. 8.6-3a as

-— > —
Vour = { Rovw/Ry + RoE,/Ry V= -RE,/Ry o0,

0 Vin < —R1E,/R;3

We note that Ey can be positive or negative, which will shift the breakpoint to
the left or right, respectively. The same principle can be applied to the other
circuits of Fig. 8.6-2 to develop a general capability of establishing a breakpoint
at any value of V.

These concepts can be extended to synthesize a voltage transfer function by
using piecewise linear segments. Figure 8.6-4a shows a number of circuits similar
to the circuit of Fig. 8.6-3a¢ summed into a summing amplifier. The resulting
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FIGURE 8.6-4

(@) Summation of individual segments to form a piecewise linear approximation, (b) Voltage transfer
characteristics of (a).
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transfer characteristic is shown in Fig. 8.6-4b. Each of the individual outputs
implements one line segment. We note that all E;s can be identical, and the Rg;
resistors can be used to design the breakpoints. On the other hand, all Rg;s can be
identical and the E; voltage sources used to design the breakpoints. The slopes of
the line segments become increasingly larger and are indicated on the curve. If the
diodes are all reversed and the polarities of E; changed, the piecewise linear curve
moves to the third quadrant. Ry shown in Fig. 8.6-4a can be added to allow a line
segment with a nonzero slope to go through the origin of Fig. 8.6-4b.

The curve of Fig. 8.6-4b is monotonically increasing in slope. If the slope
is to decrease, then one could place an inverter in with each breakpoint circuit of
Fig. 8.6-4a before summing its output. All possible monotonically increasing and
decreasing slopes are realizable in any of the four quadrants using these ideas.

Although the diodes and op amps of the above circuits can easily be imple-
mented in BJT or MOS technology, the resistors are not practical. Resistors
are not sufficiently accurate for most applications and require too much area. A
method of eliminating the resistors in MOS technology using switched capacitor
methods will be presented next.

Consider the switched capacitor implementation of a noninverting amplifier
shown in Fig. 8.6-5. This circuit is similar to the noninverting stray-insensitive
integrator of Fig. 8.5-11 except for the switch added to discharge C; during the
¢, phase. This switch essentially removes the memory of the integrator, resulting
in an amplifier. It can be shown that the z-domain transfer function of the circuit
of Fig. 8.6-5 is

Vour() _ Gi_—112
Vn(z) G

Equation 8.6-5 represents a noninverting gain function that is valid during the
¢, phase and is delayed by a half clock period from the input. A sample and
hold circuit can be added to hold the output for the entire clock period. If the
output is sampled and held, then Eq. 8.6-5 is multiplied by z ™12 to get a full
delay of H°°(z). One of the disadvantages of the circuit of Fig. 8.6-5 is that the
op amp output is slewed to zero during each ¢; phase and back to the desired
output during each ¢, phase. This is unnecessary and can be prevented by the
introduction of more capacitors and switches as will be shown later.

H%(z) = (8.6-5)

L _
VIN ¢1 C1 ¢2 VOUT

L
el
.

FIGURE 8.6-5
Noninverting switched capacitor amplifier realization.
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If the leftmost pair of switches has the phasing reversed, then the amplifier
is inverting, and the transfer function is given as

Vour(z) _ _ G
Vin(z) G

where the output is valid only at the ¢, phase. If we assume that the high sampling
approximation is valid, then Fig. 8.6-5 can be considered as a simple noninverting
or inverting amplifier depending upon the phasing of the leftmost switch pair.

The voltage transfer characteristics of Fig. 8.6-1 can be realized using MOS
technology if we combine a comparator with the amplifier of Fig. 8.6-5, as shown
in Fig. 8.6-6a. Note that the comparator output controls the switch that couples
C, into the inverting input of the op amp (called the transfer switch). If this switch
is open during the ¢, phase period, the output of the op amp will be zero. If the
transfer switch is closed during the ¢, phase period, the output will be given by
Eq. 8.6-5 or 8.6-6, depending on the phasing of the leftmost switch pair. To see
how the circuit works, consider the circuit of Fig. 8.6-6a with a positive value of
Vin. The comparator output will be high, causing the transfer switch to be closed.
Thus, the output is given by Eq. 8.6-5. If Vyy is less than zero, the comparator
output is low, causing the transfer switch to be open. Therefore, the circuit of
Fig. 8.6-6a realizes the voltage transfer curve of Fig. 8.6-1c with outputs valid
during the ¢, clock phase. If the comparator inputs are reversed, Fig. 8.6-6a
realizes the voltage transfer curve of Fig. 8.6-1d. If the phases of the leftmost
switches (input switches) are reversed, the circuit of Fig. 8.6-6b results. With the
inputs to the comparator as shown, this circuit realizes the voltage transfer curve
of Fig. 8.6-1b. If the comparator inputs are reversed, the voltage transfer curve
of Fig. 8.6-1a is realized.

The switched capacitor breakpoint realizations can be implemented by alter-
nate configurations, but all will utilize a comparator controlling one or more
switches. It is easy to shift the breakpoint of the realization by connecting the

H(z) = (8.6'6)
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FIGURE 8.6-6
(a) Switched capacitor realization of Fig. 8.6-1c, (b) Switched capacitor realization of Fig. 8.6-1b.
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grounded input terminal of the comparators of Fig. 8.6-6a and b to the voltage
E,. It is also necessary to remove point A from ground and connect it to the
voltage E,. A positive value of E, applied to the inverting input of the com-
parator of Fig. 8.6-6a will cause the breakpoint to occur at Vi = E, . The outputs
of several shifted breakpoint realizations can be summed in a manner similar
to Fig. 8.6-4 to obtain a piecewise linear approximation of a voltage transfer
function.’! The switched capacitor realizations of the precision breakpoint circuits
are compatible with MOS technology and have been employed in many com-
mercial applications.

8.6.2 Modulators and Multipliers

Modulators include a class of circuits with multiple inputs where one input can
modify or control the signal flow from the other input to the output. Figure
8.6-7 illustrates the modulator on a block diagram basis. V(¢) and V,(¢) are
input signals. The modulator output signal can be expressed in general as

Vour(t) = falVi(£)]1fB[V2(2)] (8.6-7)

where f 4 and f g are two arbitrary functions of the respective inputs. If f ,[V(#)]
and fp[V,(#)] are linearly dependent upon V(¢) and V,(¢), respectively, the
modulator is called a multiplier. Thus, Eq. 8.6-7 becomes

Vour(t) = K 1Vi(£) V(1) (8.6-8)

where K is the combination of the individual constants for V(¢) and V,(¢).

Figure 8.6-8 shows a BJT modulator using the differential amplifier con-
figuration of Fig. 6.4-7 with resistor loads and a current sink implemented by a
current mirror. The output voltage can be expressed as

1 1
L+ eV 14 eV

Vour = ReIc1 — Ic2) = aplgeR.

(8.6-9)
using Eqs. 6.3-52 and 6.3-53. Equation 8.6-9 can be rewritten as
Vi Vi
Vour = aplgeR. tanh | —— | = I'ggR | — .6-1
our = arlgpR. tan (2Vt) eeRc 2Vt) (8.6-10)

if V| is much less than 50 mV. Because Igg is equal to [V, — Vgg(on))/R, we
may express Eq. 8.6-10 as

R,
Vour = mVl [V, = Vge(on)] = KV ([V; — Vgg(on)] (8.6-11)
t

Vi(t) o—i

Modulator  —»—o Vour(t)
FIGURE 8.6-7
Block diagram for a modulator.

Vo (t) o—]
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"R
V, Q4 Q3
° ‘ FIGURE 8.6-8
A simple BJT modulator using a differential
Vee amplifier.

The multiplier of Fig. 8.6-8 has several problems. The first is that V; is
offset by Vgg(on). The second is that V, must always be positive, resulting in
a two-quadrant multiplier. A third problem is that the dynamic range is limited
because of the approximation necessary to replace tanh x by x where x = V/2V;
in Eq. 8.6-10.

The first two problems can be solved by the Gilbert cell®? shown in Fig.
8.6-9. The Gilbert cell allows four-quadrant operation and is the basis for most
integrated circuit balanced multipliers. The operation of this key cell is as follows.
The collector currents of Q3 and Q4 are

Ic
Iy = 6-
BT 1+ exp(=Vi/VY (8.6-12)

and

I
Jog = —L—— 6-13
“ T+ exp(VI/VY) (8.6-13)

Similarly the collector currents for Q5 and Q6 are

Iy
Joog = ———& 6-
71+ exp(Vi/VY) (8.6-14)

and

o)
= 6-1
Tes = 173 exp (= V1/Vy) (8.6-15)
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FIGURE 8.6-9
The Gilbert multiplier cell.

The two collector currents I ¢; and I, can be expressed as

Igg
Ic = 6-
L7 1+ exp (—Vo/ VY (8.6-16)

and

155!
Joy = — BB 8.6-17
7 1+ exp(ValVy) ( )

Substituting Eqs. 8.6-16 and 8.6-17 into Eqs. 8.6-12 through 8.6-15 results in

- Ieg
Ics = [1 + exp (=Vi/V)I[1 + exp (—V2/ VY] (8.6-18)
1§53
Icy = 6.
7 + exp (VI/VOIIL + exp (= Va/ V)] (8.6-19)
fos = L (8.6-20)
[1+ exp (Vi/VOIL + exp (Va/ V)]
and
e (8.6-21)

Ice = —
[1 +exp(—V/VIL + exp (Va/Vo)]
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Next we define the differential output current, Al , as

Al = U3+ Ics) —(Uca+1ce) = Uz —1Ice) —Ucs — Ics)
(8.6-22)

Substituting Eqs. 8.6-18 through 8.6-21 into Eq. 8.6-22 and using the exponential
formulaes for hyperbolic functions results in the differential output current being
expressed as

Vi

tanh
an o,

Al =IEE

[tanh ( 2V‘)} (8.6-23)

If the input signals V| and V, are small enough, the Gilbert cell of Fig. 8.6-9
functions as a four-quadrant analog multiplier. The output voltage, Voyr, can be
generated from Al by using two equal-valued resistors connected to V¢ with
current Iy(=1¢c3 + I¢s) flowing through one and current I1,(=1Ic4 + Icg)
flowing through the other.

The circuit of Fig. 8.6-9 can be used as a modulator when one of the inputs
is very large and the other sufficiently small so that tanh x is approximately
equal to x. The large input will cause the transistors to which it is applied to
act like switches. This effectively multiplies the small signal by a square wave.
Such modulators are called synchronous modulators and have many applications
in signal processing, including demodulation and phase detection. The amplitude
range of V; can be extended considerably by placing resistors between the emitters
and the I gg current source of the Gilbert cell.

The amplitude constraints on the inputs of the Gilbert cell can be removed
using a predistortion technique that results in a linear relationship between V
and Voyr and V; and Voyr. Figure 8.6-10 illustrates the complete four-quadrant
multiplier. The three boxes, which are voltage-to-current converters or current-to-
voltage converters, will be considered shortly. The predistortion is implemented
by the emitters of Q7 and Q8. The currents /9 and I create a voltage between
the emitters of Q7 and Q8 that is proportional to the inverse hyperbolic tangent
of V;. This will remove the hyperbolic tangent expressions in Eq. 8.6-23.

The analysis of the circuit of Fig. 8.6-10 can be accomplished as follows. It
can be shown that the currents through base-emitter junctions that are connected
in series, such as Q7, Q3, Q4, and Q8, can be expressed as

Iols =141 (8.6-24)

where /; = I and Ig = Iy. Similarly, for the series connection of Q7, Q6, QS5,
and Q8, we have

Iglg =I5l (8.6-25)
Next we note that

I,=13+14 (8.6-26)

I, =15+ 1Ig (8.6-27)

Iy, =15+ 15 (8.6-28)

Iip =14+ 1g (8.6-29)
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FIGURE 8.6-10
Complete four-quadrant analog multiplier.
and
Ixx =19 + Iy (8.6-30)

Let us assume that the transfer characteristics of the rectangular blocks of Fig.
8.6-10 are given by

I¢ — 19 = Vi/K, (8.6-31)
1, =1, =VyK, (8.6-32)

and
Vour = Ko(I12 — I11) (8.6-33)

where K, K, and K, are constants depending on the implementation. Replacing
I1, and I ; by Eqgs. 8.6-28 and 8.6-29 results in

Vour = Kol(Is + Ig) — (I3 + Is)] = KO[(u + 15@) - (14'—“’ + 15)}

I Ig
(8.6-34)




