CHAPTER

9

STRUCTURED
DIGITAL
CIRCUITS

AND SYSTEMS

9.0 INTRODUCTION

The purpose of Chapter 7 on basic digital building blocks was to introduce prim-
itive logic gates and provide insight into features and limitations of digital MOS
circuitry. The goal of this chapter is to extend that knowledge to the design of
larger digital systems. These digital systems comprise many logic gates and may
occupy a significant part of an integrated circuit chip. Such systems almost always
consist of carefully repeated building blocks, with each block based on circuits
such as those discussed in Chapter 7. Several different structures, including reg-
ular logic arrays, clocked structures, memories, microprocessors, and systolic
arrays, are used to demonstrate the capabilities and design requirements for digital
integrated circuits and systems.

This chapter begins with an examination of the general topic of structured
logic forms. This includes a comparison of random versus structured logic forms,
treatment of programmable logic arrays (PLAs), Weinberger arrays, gate-matrix
design, and logic gate arrays. These are alternate forms used to implement combi-
national logic in a structured manner while maintaining control over layout area.

Clocking schemes are introduced next. Time-based signals called clocks are
required to provide time order in the operation of digital circuits. In particular,
clocks augment simple combinational logic to create sequential systems such
as controllers or microprocessors. Following the section on clocking schemes,
simple dynamic storage is discussed, a prerequisite for the subsequent treatment
of clocked logic, including domino CMOS. Dynamic storage is also useful in
building finite-state machines, which are described later in the chapter.
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The next sections provide descriptions of several forms of memory including
ROM, EPROM, SRAM, DRAM, and static and quasi-static register storage.
The first four of these are introduced from a conceptual viewpoint rather than
a circuit design viewpoint. The internal design of dense memory subsystems
requires detailed circuit design and is outside the scope of this chapter.

With the prerequisites of combinational logic, clocking schemes, and mem-
ory available, increasingly complex digital systems such as controllers, finite-
state machines, microprocessors, and systolic arrays are outlined. This final major
area of the chapter provides an introduction to several practical examples of the
complex digital systems that are created from an orderly composition of relatively
simple digital building blocks.

9.1 RANDOM LOGIC VERSUS STRUCTURED
LOGIC FORMS

A digital logic function may be realized as random logic or as structured logic.
The term random logic describes a particular style (or lack thereof) of digital logic
design. Some integrated logic circuits are placed within a layout in much the same
way that small-scale logic chips are placed on a wire-wrap circuit board and then
interconnected. With the many types of small-scale logic functions required, and
because particular types of small-scale logic functions may be needed at irregu-
lar places within a circuit, the circuit packages and their interconnection wiring
sometimes appear to have been randomly placed. Of course, for the circuit to
function properly, the interconnections, and probably the package placement,
were carefully designed. Nevertheless, random logic is a tag commonly used
to describe digital circuits that lack regularity of circuit function, placement, and
interconnection. On the other hand, structured logic is the term used to character-
ize logic forms that do demonstrate regularity in their layout and interconnection.

Many digital integrated circuits in the past were designed with large areas
devoted to random logic. Early microprocessors such as the Intel 8080 and the
Motorola 6800 each contained large sections of random logic. Examination of the
die photo of Fig. 9.1-1 reveals that about 50% of the area for the Motorola 6809
microprocessor is devoted to random logic. Designs of this type were considered
to have advantages of efficient use of silicon area and potentially fast operation.
They have significant disadvantages caused by lengthy integrated circuit layout
times, difficulty of testing, and costly modification steps.

Other digital integrated circuits have been designed with highly structured
layouts for many years. Most notable among these are all forms of memory
chips. Memory chips, such as the 1M-bit dynamic RAM (DRAM) from Texas
Instruments shown in Fig. 9.1-2, are composed of many identical memory cells
and are naturally structured as regular arrays of these cells. Because of the
potential sales volume for memory parts, considerable effort is expended in
reducing the size of the basic memory cell, causing memory chips to be among
the densest of all integrated circuits.

Most of the newer, large digital integrated circuits, such as the Motorola
68030 and the Intel 80386 microprocessors, have decreased substantially the
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FIGURE 9.1-1
Die photo for Motorola 6809 microprocessor (Courtesy Motorola Inc.).

percentage of silicon area devoted to random logic. This is easily shown by
comparing the die photo of the Motorola 68030 of Fig. 9.1-3 with the die photo
of Fig. 9.1-1. In fact, because of the complexity of many new chips, random logic
design is no longer feasible for large chips. The length of time to design and lay
out a complex random logic chip would increase the cost of the chip prohibitively.
It would also delay introduction of the chip to the market, a costly consideration.
As a result, most new digital integrated circuits increasingly use structured logic
forms such as PLAs, microprogram ROMs, data paths, gate arrays, and standard
cells to displace random logic design.

A widely used measure introduced by Lattin in 1979! is helpful in describing
the regularity of an integrated circuit design. This measure, called the chip
regularity factor, is defined as the ratio of the total number of transistors on the
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FIGURE 9.1-2
Die photo for TI 1M-bit DRAM (Courtesy Texas
Instruments Inc.).

chip to the drawn transistors, where total transistors includes all possible ROM
and PLA transistor placements. Thus, a design that requires a unique layout for
a circuit element and then uses this circuit element » times without change would
exhibit a regularity factor of n. At the other extreme, a design with unique layout
for each circuit component would exhibit a regularity factor of only 1. For a given
complexity of design, a higher regularity factor normally indicates reduced design
and layout costs.
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FIGURE 9.1-3
Die photo for Motorola 68030 microprocessor (Courtesy Motorola Inc.).

Some manufacturers estimate that a typical integrated circuit layout designer
can lay out about 5 to 10 drawn devices per day. This includes the time to draw,
check, and correct a layout. Until recently, the regularity factor for integrated
circuits other than memory was not much greater than 1, indicating that almost
all devices were drawn individually. Thus, a 50,000 device circuit required
twenty man-years just for layout. Some of the newer integrated circuits boast
regularity factors above 10. Table 9.1-1 gives the regularity factors for several
Mmicroprocessor designs.? The higher regularity factors were obtained by using
structured design forms like those to be described in this chapter.

One method to increase the regularity factor and reduce costs is to develop
computer programs that produce integrated circuit layouts directly from high-level
descriptions of the circuit’s intended function. The term silicon compiler has been
used to describe such programs. Research is currently underway in this area, and
a few special-purpose silicon compilers have been developed. However, complete
silicon compiler programs are not yet competitive with manual design using
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TABLE 9.1-1

Regularity factor for microprocessor chips
Chip name Number of devices Regularity factor
8080 4,600 1.1

8085 6,200 3.1

8086 29,000 4.4

78000 17,500 5.0

68000 68,000 12.1

iAPX-432 110,000 7.9

RISC 44,000 27.5

structured logic forms. One major purpose of this chapter is to study integrated
circuit forms that lead to structured, repeatable designs for integrated circuit logic.

9.2 PROGRAMMABLE LOGIC ARRAYS

The implementation of logic functions plays a key role in the design of digital
systems. Thus, it is important to have a method to realize logic functions within
an integrated circuit, without using random logic design. One important method
of implementing logic functions in a regular, structured way is to use a PLA
(programmable logic array). In this description of PLAs it is presumed that the
logic functions used as the input are in the minimal representations desired by a
designer. The broad topic of logic minimization is adequately covered elsewhere.3
This section will concentrate first on describing a typical PLA organization. Then,
programs to automate the generation of integrated circuit layout for a PLA from
a set of logic equations will be discussed. Finally, PLA size limitations and PLA
folding will be described.

Boolean logic equations can always be written in a sum-of-products form
as follows.

K = AB + AC + BC (9.2-1)
S = ABC + ABC + ABC + ABC 9.2-2)
X = AB + 4B | 9.2-3)
Y =AB 9.2-4)

In the sum-of-products form, each equation consists of one or more product
terms composed of independent variables, for example, A, B, and C, that are
ANDed together. If there are several product terms, these product terms are
ORed to produce the desired dependent variable. The product terms AB, AC,
and BC are ORed to produce the dependent variable X in Eq. 9.2-1. Normally, a
PLA can realize several output functions concurrently by producing corresponding
dependent variables from sets of independent variables. The independent variables
are usually shared among the product terms used to form the dependent results.
For example, Egs. 9.2-1, 9.2-2, 9.2-3, and 9.2-4 are each functions of the
independant variables A and B. These equations combine ten product terms to
produce the four dependent results X, S, X, and Y.
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9.2.1 PLA Organization

The PLA structure can be realized in either NMOS or CMOS technology. In either
case, a PLA consists of two major subsections or planes. One is the AND plane,
which requires double-rail inputs (each independent variable and its complement)
to generate the product terms required by the defining logic equations. The AND
plane produces each of the product terms of the right-hand side of Egs. 9.2-1
through 9.2-4. The other is the OR plane, which forms the dependent results
from these product terms. The OR plane must OR the necessary product terms to
produce the dependent variables K, S, X, and Y of Egs. 9.2-1, 9.2-2, 9.2-3, and
9.2-4, respectively.

A simplified block diagram of a PLA is given in Fig. 9.2-1. This figure
shows the major AND and OR planes along with required supporting structures.
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FIGURE 9.2-1
Simplified PLA architecture: (a) Major functional blocks, (5) AND program cell, (c) OR program cell.
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FIGURE 9.2-2
PLA AND-plane detail.

In Fig. 9.2-1, the AND plane is placed on the left with double-rail drivers at
the bottom and pullup devices to the left. The OR plane is on the right with
pullup devices at the top and output buffers at the bottom. Each double-rail driver
accepts an input variable. This input variable is complemented and buffered to
drive the vertical polysilicon lines in the AND plane shown in Fig. 9.2-2. Vertical
ground lines separate each variable and its complement. The vertical ground lines
are run in the diffusion level. Horizontal metal lines provide the path for each
product term. The left end of each metal line is connected to a pullup circuit
and the right end connects to the OR plane. The metal product lines provide
area for contacts to diffusion islands at points between the vertical polysilicon
lines associated with different input variables as shown in Fig. 9.2-2. This allows
creation of a pulldown transistor to OR the effect of an input variable into the
product term. ORing input terms to realize the AND function will be explained in
the following paragraph. The product terms of the AND plane are “programmed”
by selectively connecting pulldown transistors between the horizontal product
term path in metal (the diffusion islands provide the drain connection) and the
vertical ground path in diffusion. The vertical signal lines in polysilicon form
the gates of these transistors, as is shown in Fig. 9.2-2. Because of the choice
of polysilicon for these signal lines, they can directly gate the programming
transistors, thereby minimizing layout area. With vertical polysilicon lines, the
horizontal product lines must be metal to prevent shorts or unwanted transistors
that would occur if the product lines were polysilicon or diffusion, respectively.
Operation of the AND plane of the PLA can be explained with the help of the
NOR structure of Fig. 9.2-3, in which the resistor R is used to designate a pullup
device. Note that in NMOS technology, the pullup device is generally a depletion
transistor as shown in Fig. 9.2-2. In CMOS the pullup device is either a p-channel
transistor with its gate grounded or a clocked p-channel pullup. For illustrative
purposes, Fig. 9.2-3 shows the realization of the product term M = ABT.
The output of a horizontal product term line of a PLA should be high when
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FIGURE 9.2-3

NOR structure of PLA AND Plane.

the individual variables of the product are all true. The pullup device forces
the product term output to a logic high voltage unless one of the programming
transistors connecting the metal product term line and ground is activated by a
high input. If the programming transistors are gated by the complements of the
inputs that form the product term, then the product line will be pulled low if one
or more of the inputs are low (the complement of the input will be high causing
the gate of the programming transistor to be high). This structure is identical to
the multi-input NOR gate of Fig. 9.2-3 and requires a sizing ratio between the
pullup device and the programming transistor corresponding to the multi-input
NOR gate discussed in Sec. 7.4.1. By DeMorgan’s theorem, a NOR gate with
all inputs inverted logically realizes the AND function, as required for the AND
plane.

The OR plane will have the same construction as the AND plane except
that everything is rotated 90° clockwise. This may be observed from the right-
hand side of Fig. 9.2-1a. For the OR plane, the inputs are the product terms from
the AND plane. These are available horizontally at the right side of the AND
plane in metal, where they are converted to the polysilicon level as they enter
the OR plane from the left as shown in Fig. 9.2-2. The outputs from the OR
plane are vertical metal lines. These metal lines connect to pullup devices at the
top and output drivers at the bottom of the OR plane. Horizontal ground lines
in diffusion are placed between alternate pairs of horizontal polysilicon lines in
the OR plane. Programming transistors are formed with the drain connected to a
vertical metal output line, the source connected to a horizontal diffusion ground
line, and the gate formed by a horizontal polysilicon signal line. Once again,
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the choice of direction for the polysilicon lines is defined by the need to gate the
programming transistors directly to minimize layout area. These transistors OR
the proper product terms for each output line. As in the AND plane, this structure
realizes a multi-input NOR gate; the outputs must be inverted to realize the OR
function. Inverting buffers placed at the bottom of the OR plane achieve this
inversion. The structure for the OR plane, including transistor sizing, is usually
identical to the AND plane. A complete PLA that realizes Eqs. 9.2-1 through
9.2-4 is shown in Fig. 9.2-4.

FIGURE 9.2-4
PLA layout for Eqs. 9.2-1 through 9.2-4.
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From the previous description, it is easy to see that a PLA is constructed
by repeated use of a few simple cell layouts. The primary cells include a double-
rail input driver, pullup cell, AND (OR) plane section, AND-OR connect, pro-
grammable transistor section, and an inverting output buffer. Examples of these
basic cells from the PLA of Fig. 9.2-4 are given in Fig. 9.2-5. In creating the
layout for PLA cells, the design and pitch of the basic AND (OR) plane cell
must be considered carefully because this cell has the greatest influence on the
total area of most PLA implementations. The input drivers, pullup devices, and
inverting buffers are designed to match the pitch of the AND (OR) plane cells.

A convenient measure of a PLA’s size is the triplet (i, p, o) where i is the
number of inputs, p is the number of product terms, and o is the number of
outputs. The number of potential transistors in the AND and OR planes is given
by the expression (2i + 0)p. Increasing i or o adds to the width of the AND plane
or OR plane, respectively. Increasing p adds to the height of both the AND and
OR planes. A relative measure of PLA size is given by the calculation (2i + 0)p.

CCLECELLLLLELLLUCE

R

FIGURE 9.2-5

Basic PLA cells: (a) Double-rail driver, (b) Pull-

up pair, (c) AND-plane section, (d) AND-OR plane
connection, (¢) Inverting buffer pair, (f) Programming
plug.
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This measure neglects a constant area factor for the drivers, pullup devices, and
buffers. The i term is doubled because each input produces two vertical lines in
the AND plane. The PLA of Fig. 9.2-4 is a (3, 10,4) PLA. '

The speed of a PLA is determined by its size and by the characteristics of
the drivers and gates employed. From input to output, a PLA requires five levels
of logic, including two for the double-rail driver, one for the AND plane, one for
the OR plane, and one for the output driver. Thus, a PLA is likely-to be slower
than a direct two-level realization for the simplest logic functions. The speed of
a PLA can be estimated by analyzing the individual logic stages as explained in
Chapter 7. A discussion of PLA size constraints is given in Sec. 9.2.4.

9.2.2 Automatic PLA Generation

An important consequence of the structured form for a PLA is the ability to
generate a PLA layout automatically from a set of logic equations. The detailed
layout of the standard cells comprising a PLA needs to be accomplished only
once for a given set of design rules and technology. A PLA generator program
can be written to accept a list of input variables, logic equations based on those
variables, and the layout definition of the standard cells. From this information,
the PLA generator can formulate the complete layout of the PLA along with size,
power, and delay estimates. A PLA generator is a proven example of automatic
layout generation based on higher-level functional definitions.

If a PLA generator program has been written for a particular technology, the
required input from a designer is quite simple, consisting primarily of the logic
equations to be realized by the PLA. As an example of how a PLA generator
program might be used, consider the following computer/designer interaction,
with computer input from a designer shown in upper-case letters and computer
output shown in lower-case letters.

RUN PLAGEN

input variables: A, B, C

logic equations:

C =AB + AC + BC

S =ABC& + AB&C + A&BC + ABC
X = AB& + A&B

size: x = 260 pm, y = 320 um

power estimate: 2 mW

delay estimate: 10 ns

output file name: pla.cif

In this example, the designer must specify the input variables and the correspond-
ing logic equations. The program creates a geometrical layout description file
(pla.cif) and size, power, and delay estimates. If the PLA generator program has
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been written in a technology-independent manner, then the designer must also
specify the library containing the standard PLA cells for the technology. The
availability of automatic PLA generation simplifies the design of many digital
systems. A most important feature is that the designer can be confident the PLA
layout is free from human layout or programming errors and is therefore correct
for the particular set of logic equations input to the program. .

9.2.3 Folded PLAs

The standard PLA form just described is ideal for some sets of logic equations;
however, an improved form called a folded PLA is used under the following
conditions. If two product terms are functions of disjoint sets of input variables,
and these disjoint input sets can be spatially segregated, then it is possible for
two distinct input terms and their complements to share the same AND-plane
columns. This reduces the width of the PLA by two columns and is called AND-
plane folding. If two output terms are functions of disjoint sets of product terms,
and these disjoint product terms can be spatially segregated, then it is possible
for two distinct output terms to share the same OR-plane column. This reduces
the width of the PLA by one column and is known as OR-plane folding. Either
of these folding operations reduces the area required by the PLA. Unfortunately,
the folding of different groups of variables interact so that optimal PLA folding is
a difficult problem. Heuristics are normally used to find a good folded structure
for a PLA.*> Both standard PLA and folded PLA implementations for a set of
logic equations are discussed in the following example.

Example 9.2-1. Folded PLA Structure Implement the following logic equations
with a standard PLA structure and with a folded PLA structure if possible.

S = ABC + ABC + ABC + ABC
K = AB + BC + AC
R=A4AB + AB

W = DE + DE

X =DEF +DEF

Y = ABC + DEF + DE

Solution. These equations can be implemented as a standard (6,13,6) PLA, as
shown symbolically in Fig. 9.2-6. Only the programming planes are shown; an x
is used to locate each programming transistor.

The equations can also be implemented by the folded PLA of Fig. 9.2-7.
In the folded AND-plane (3,13,6) PLA of Fig. 9.2-7, the y’s represent product
terms associated with the input variables at the top of the AND plane while the x’s
represent product terms associated with input variables at the bottom of the AND
plane. If x and y input terms appear on the same column, the line between them
must be disconnected. These product terms are ORed to produce the dependent
outputs.
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AND plane OR plane

X X X X DEF
X X X X x DEF
X X X x DE
X X X . DE
X X X AB
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X ... X ... .oX .. . . AC
. X X X . BC
X X . X AB
.OX X X X x ABC
X . . X . X X ABC
X X . . X X ABC
XXX X .. ABC

A AB B CCDUDETETFTF S KRWIXY

FIGURE 9.2-6
Standard PLA implementation (6,13,6).

In the folded AND-plane, folded OR-plane (3,13,4) PLA, shown in Fig.
9.2-8 the x’s represent programming transistors associated with the lower input
variables to the AND plane or the lower output terms of the OR plane; the y’s
represent programming transistors associated with the upper input variables to the
AND plane or the upper output terms of the OR plane. According to the PLA size
measure introduced in Sec. 9.2.1, the relative sizes are 936 for Fig. 9.2-6, 468 for
Fig. 9.2-7, and 312 for Fig. 9.2-8. The area reduction using the dually folded PLA
structures is substantial.

9.2.4 Large PLAs

Although PLAs provide an excellent means to organize sets of logic equations,
large PLA structures are not necessarily desirable. Extremely large PLA structures
suffer from two related disadvantages. As the size of a PLA grows, increased

AND plane OR plane
D DEEF F
Yy .y .y X DEF
.Y .y Ly . . . . Xx x DEF

y vy . . . . . . X . x DE
y . y X . DE

X X x . AB
X X X AB

X . X X AC

X X X BC

X X . .oX AB
<X X X X x ABC
x . X X X ABC

X X . X X ABC  FIGURE 9.2-7
.X X xo. X . . . . . ABC Folded AND-plane PLA imple-
A A B B ¢ C S K R WX Y mentation (3,13,6).
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AND plane OR plane
D D E E F F ¢
y .y .y . .y . . DEF
Y Ly oy .y . x DEF

y ¥y . . . y . . x DE
y - y y . . DE

X X . X AB
X X X AB

X . X X AC

X X X BC

X X . .X AB
.X X X X x ABC
b X X X ABC

x X x x ABC  FIGURE 9.2-8
CoX XX X . . . ABC Folded AND-plane, folded OR-plane PLA
A A B B C C S K RY implementation (3,13,4).

interconnection capacitances within the larger AND and OR planes slow the
operation of the circuit considerably. Increasing the size of the drivers will reduce
the delay, but additional power and area are then required. A second disadvantage
of a large PLA is that PLAs with many inputs and outputs tend to be sparsely
populated with programming transistors. In these PLAs each output is likely to
be a function of only a few inputs; thus, substantial area may be wasted within
the AND and OR planes to bypass unused signals for a given product term or
output term. Some unused area may be recaptured through the use of folded PLA
structures. The foregoing observations cause many designers to group related
logic signals into separate smaller PLAs rather than into one large PLA.

The standard PLA organization was explained in this section. A typical cell
based structure for a PLA allows creation of programs to generate automatically
the PLA layout from logic equations. The ability to fold PLA structures can greatly
reduce the area required for the PLA. Multiple smaller PLAs are sometimes used
in place of single large PLAs to reduce area, power, and delay.

9.3 STRUCTURED GATE LAYOUT

The realization of logic functions is so basic to digital design that many forms
of structured layout have been developed. The PLA, introduced previously, has
achieved the widest usage of these forms, and because of its importance a
separate section was devoted to the PLA. Other structured layout forms, including
Weinberger arrays and gate matrix layout, have received attention and are covered
together in this section. By design, the PLA is used to realize two-level logic
functions. Yet many digital designs are simplified through the use of multilevel
logic with intermediate functions used as inputs to subsequent logic functions.
The structured logic forms discussed here allow direct realization of multilevel
logic functions. The design, operation, and limitations of the Weinberger array
and the gate matrix layout styles are explored.
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9.3.1 Weinberger Arrays

The Weinberger array is perhaps the earliest example of structured logic.
Originally reported in 19676, this structure was first based on the PMOS NAND
logic gate. More recent implementations have been based on NMOS NOR gates
with depletion pullups. This structure can also be realized in CMOS using p-
channel pullups with their gates grounded. Because any two-level Boolean logic
function can be realized in the NOR-NOR form, the Weinberger structure is
completely general. This logic form is easily extended to multiple levels of logic
where this is desirable. In addition, the array is easily augmented with new logic
functions without change to the original structure.

The basic form for the Weinberger NOR array is shown in Fig. 9.3-1.
Vertical columns with a pullup device at one end provide the outputs for logic
functions. Alternate pairs of output columns are separated by ground columns.
The pullup device is the load for the NOR gate, while a pull-down transistor is
placed between the vertical output column and a ground column for each input
to the logic function. Device sizing is determined by the NOR gate structure
as explained in Sec. 7.4.1. Gate inputs are received horizontally in polysilicon.
Because pullup devices are placed at the top of the vertical columns, this structure
allows inputs to be provided from the left with outputs available at the bottom.
Horizontal lines connected to a vertical output line can serve as inputs to subse-
quent logic gates. The horizontal lines can also provide the output of the matrix
on the right side opposite the inputs.
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FIGURE 9.3-1 _
Weinberger NOR array organization withw =a, x = b,y =a+c¢,z=w +c.
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Example 9.3-1. Exclusive-OR function Use the Weinberger NOR array struc-
ture to implement the exclusive-OR function.

Solution. First, the exclusive-OR must be written in product-of-sums form. This is
easily accomplished by analyzing the following truth table for exclusive-OR.

A B | X
0o o0 | o
o 1 |1
10 |1
1 1] o0

The required logic equation is obtained by writing the complement of the logic
function in terms of the zero output rows from the truth table as

X = AB + AB (9.3-1)
and converting to the NOR-NOR form as
X=(A+B)+(A+B) 9.3-2)

Figure 9.3-2 shows a schematic layout for this function. Note that two vertical
output columns are used to generate the complements of the input variables; two
output columns generate the first-level NOR functions; and a final output column
generates the desired dependent variable, X.
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NMOS Weinberger array implementation of exclusive-OR function.




796  vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

The structure shown in the example is easily expanded by adding horizontal input
terms at the bottom and vertical output columns at the right. The output of the
exclusive-OR example above is available as an input to expanded logic functions,
potentially resulting in multilevel logic. For logic functions with many inputs
and outputs, the structure becomes unwieldy because of sparse distribution of
the pulldown transistors. This structure is most useful in depletion-load NMOS,
CMOS with a grounded-gate p-channel pullup, or clocked logic forms because of
the single pullup device per column. It does not map well to complementary gate
structures. Because of the simplicity of its form, a Weinberger array is easily
generated by a computer program that transforms input logic equations into a
layout description. In fact, one of the first silicon compilers’ used this structure
for logic functions in its control section.

9.3.2 Gate Matrix Layout

More recently, a second form of structured logic layout that is suitable for CMOS
was described. Called gate matrix layout, this organization was used in the
development of an early 32-bit microprocessor.? Like the Weinberger NOR array,
gate matrix layout is composed of a matrix of intersecting rows and columns as
shown in Fig. 9.3-3. Transistors are instantiated along the rows, while inputs
and outputs primarily use the columns. The rows are mostly diffusion, while
the columns are polysilicon. Metal is available in both horizontal and vertical
directions for interconnections. A polysilicon column is required for each logic
input and each logic output.

Figure 9.3-3 shows a gate matrix schematic layout for a 2-input NAND gate.
The layout is separated into two partitions with the upper partition containing n-
channel transistors and the lower partition populated by p-channel transistors.
Except for the short metal connection to Vgs, all other vertical lines represent
polysilicon. The polysilicon lines serve a dual function, acting both as a vertical
connection medium and as the gates of transistors. The horizontal n-diffusion
segment in the upper partition of Fig. 9.3-3 is gated by the two polysilicon NAND-
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FIGURE 9.3-3

Gate matrix layout for NAND gate.
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gate input lines resulting in a series pulldown path. The left end is connected to
Vss while the right end is connected to the vertical polysilicon output line, C. The
horizontal p-diffusion segment, implementing the parallel pullup transistors of
the NAND gate, is bisected by a p-diffusion connection to Vpp. This segment is
gated by the two polysilicon NAND-gate input lines. Opposite ends are connected
horizontally to the vertical polysilicon output line by metal. Note that this output
line could gate other transistors to implement a more complex logic function.
In general, more complex logic functions are created by adding transistors and
connections. The gate matrix layout structure is suitable for implementing logic
equations using NAND gates, NOR gates, and inverters in classical CMOS lo-
gic form. Device sizing is determined as explained in Sec. 7.6 for CMOS
logic. The number of inputs to multi-input CMOS gates is limited by asym-
metry of the pullup/pulldown paths as the number of inputs (termed fan-in) in-
creases. The fan-in limit depends on the application.

To begin a gate matrix layout, the designer can draw a series of vertical
polysilicon lines corresponding to the circuit inputs. The number of lines must
be greater than or equal to the number of inputs because some lines may be
required for outputs. Associated transistors for a gate are placed along the same
row as shown in Fig. 9.3-3. Connections between transistors on different rows
are accomplished with metal or with diffusion that runs between the polysilicon
columns. Metal can also run horizontally to connect transistors across polysilicon
columns as it did in the NAND-gate example. ‘

Because of the structured form for gate matrix layout, symbolic repre-
sentation of logic functions is possible. In fact, a layout can be defined by a
line drawing using a small set of symbols and a few simple rules. This can be
created by hand or with computer assistance. Figure 9.3-4 shows an early form

Vg —
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+ +
PNON
PP
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O+ - % - % -- +

N n—channel transistor

P p—channel transistor

+ metal-polysilicon or metal—diffusion crossover
s

contact
! polysilicon or n—diffusion wire
| iffusion wi
| prdiffusion wire FIGURE 9.3-4
vertical metal Symbolic gate matrix layout description for

— horizontal metal two-input NAND gate.
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of symbolic description using only standard symbols from an alphanumeric CRT
to describe the 2-input NAND gate of Fig. 9.3-3. These symbols are defined
at the bottom of the figure. Modern CAD tools use high-resolution graphics
CRTs and allow symbolic input of transistors and interconnections to form a gate
matrix layout. Interconnections are symbolized by single lines, and transistors
are symbolized by small layout icons. The following rules allow a symbolic
description of a logic function that is easily updated as technology advances.

1. Polysilicon runs in one direction only with constant width and pitch.

2. Diffusion runners may exist between polysilicon columns. .

3. Metal runs in either direction and is of constant width.

4. Transistors exist only on polysilicon columns.

5. Transistor width can be increased by using multiples of the symbol vertically.

A more complex example of symbolic representation to better demonstrate this
technology-independent layout style is shown in Fig. 9.3-5.

The symbolic layout methodology outlined here does not specifically con-
sider geometrical design rules. An advantage of gate matrix layout is that a topol-
ogy that realizes a particular logic function can be defined independent of layout
rules. Ultimately, the pitch of the rows is determined by the minimum separation
between two discrete transistors. The pitch of the columns is set to leave room
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to place a diffusion region with contact between polysilicon columns. The matrix
pitch for rows and columns is set for minimum-size transistors. The widths of the
power and ground buses are set by current requirements.

The CPU for the BellMac 32-bit microprocessor was laid out first as custom
logic and then later as a gate matrix layout. This CPU contains about 20,000
transistors. The final gate matrix layout achieved a respectable density of about
2 square mils per transistor in a 4 w technology. This was slightly denser than
an earlier hand-packed version. A 10% to 15% area improvement was reported
by hand optimizing early line drawings for the gate matrix layout.’

Two examples of structured gate layout to implement general logic equations
were described in this section. These differ from the PLA design style, which
requires its defining equations in the sum-of-products form. The Weinberger array
can be generated algorithmically but may be less dense than the gate matrix
style. The gate matrix style provides near handcrafted density while allowing
technology-independent layout specification. Both Weinberger arrays and gate
matrix layout have been used successfully in many commercial circuits.

9.4 LOGIC GATE ARRAYS

Logic gate arrays provide a simplified means to implement digital integrated cir-
cuit designs. This implementation form is consistent with the logic design process
using small-scale and medium-scale integrated circuits. Gate arrays incorporate
logic building blocks that are familiar to many digital system designers without
the high circuit complexity and long turnaround times that are typical for cus-
tom integrated circuits. Building blocks such as logic gates, flip-flops, decoders,
and counters are available and can be combined into an integrated circuit that
has many of the density, power, speed, and reliability characteristics of custom
integrated circuits.

Gate arrays are manufactured as regular arrays of patterned blocks of
transistors. The transistors in one or more blocks can be interconnected to form
logic elements such as gates, flip-flops, and decoders. Figure 9.4-1 shows the
topology for a typical gate array. The array consists of columns of transistor blocks
separated by wiring channels and surrounded by 1/O circuitry. This patterned array
of transistors remains unchanged while allowing many different interconnection
possibilities. As a result, most integrated circuit fabrication steps can be com-
pleted before the interconnections are defined. Ideally, a gate array manufacturer
can stock partially fabricated wafers awaiting customer specification of a partic-
ular design. The interconnections for a particular design are formed by adding
one or more levels of metal interconnection. This is done after the logic design
and computer simulation for the desired circuit are complete.

Because all processing steps before metalization are identical regardless of
the application, a gate array manufacturer can produce uncommitted gate array
wafers as standard, high-volume parts instead of as custom parts. Therefore, the
manufacturer can afford to expend considerable effort on maximizing the yield
and performance of the gate array chip. After a customer provides the definition
of the logic blocks and interconnections for his application, the metalization and
overglassing steps are completed and the circuit can be tested.
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Topology for typical gate array.

Figure 9.4-2 shows that spaces or channels for interconnection wires form
an important part of a gate array chip. Proper placement and sizing of the wiring
channels are important in obtaining high utilization of the transistors within a gate
array. If the wiring channels are too narrow, it may be impossible to interconnect
all the logic circuits from different parts of the chip. For small, fixed wiring
channels, this wiring problem may be minimized by leaving some of the poten-
tial logic gates unused in order to reduce wiring needs. This lessens the density
of logic circuits used within the gate array, and thus wastes some of the tran-
sistor resources. If the wiring channels are widened, the interconnection wiring
problem becomes simpler. However, with wide wiring channels, substantial
integrated circuit area may be left unutilized in the wiring channels, increasing
the cost of the final circuit. Between these two extremes, a compromise must
be found. Wiring channels must be wide enough to allow acceptable transistor
utilization for the gate array, without requiring excessive area for the channels.
A gate array containing 6000 potential logic gates might have about 50% of
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FIGURE 9.4-2
CMOS gate array chip (©IEEE 1982, Kobayashi et. al., ISSCC Proc., p. 316).

its area devoted to wiring channels, with a resulting gate utilization of 80% for a
typical circuit design.

A recently introduced strategy to minimize the area dedicated to intercon-
nections within gate arrays is to eliminate the transistor-free wiring channels.
Instead, the gate array is completely patterned with transistor resources. To
picture this possibility, consider Fig. 9.4-2 with each vertical wiring chan-
nel replaced by a column of transistor resources. The resulting structure is
called a channelless gate array, or sea-of-gates array. In this structure, groups
of transistors are interconnected to form logic building blocks as they are
with the channeled gate array structure. Interconnection wiring is placed over
selected transistor resources, rendering them unusable. With this strategy, logic
building blocks can be created anywhere that interconnection wiring is not
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required. The only area dedicated to wiring channels is that specifically required
for interconnections. This minimizes the previously wasted area in channeled gate
arrays where dedicated wiring channels were not fully utilized.

The sea-of-gates structure has two potential disadvantages. First, the capac-
itance of metal interconnections over the more heavily doped transistor source
and drain diffusions is greater than the capacitance of metal interconnections over
the lightly doped substrate. However, this increased capacitance per unit area is
more than offset by the decrease in required interconnection area resulting from
less restricted placement of interconnections in a sea-of-gates array. Second, the
increased freedom in placement of logic blocks and routing of interconnections
complicates the CAD tools that are used to place and route the gate arrays. This
is a small price to pay for the increased utilization of die area and is rapidly being
overcome by new programs designed for channelless gate arrays.

After a gate array is designed and fabricated by a particular manufacturer,
the wiring channel size and transistor array characteristics are fixed. It might seem
that a designer could simply provide logic block and interconnection definitions
to finalize a digital logic design. This design would be implemented on the
fixed gate array chip by interconnecting suitable logic blocks. An important
step remains, however, before the design can be released for fabrication of the
interconnection layers. The placement of individual logic blocks within the gate
array must be specified before these blocks are interconnected. Unfortunately,
arbitrary positioning of the logic blocks is unsatisfactory because the ability to
properly interconnect the blocks depends heavily on their placement. Substantial
effort has been expended on developing placement and routing algorithms that
provide high density for the logic blocks while retaining the ability to interconnect
those blocks through allowable wiring channels. Optimal placement and routing
is an unsolved research problem, and many investigators are seeking improved
placement and routing algorithms. 1011

The design process with logic gate arrays is less complex than custom inte-
grated circuit design because the designer works at a higher level of abstraction.
Manufacturers of gate arrays provide significant support to the logic designer with
definitions of standard logic elements such as NAND, NOR, D flip-flop, latches,
buffers, and compound logic gates. A typical list of logic elements available
from a manufacturer is given in Table 9.4-1. Providing a set of logic blocks
such as these supports a design style that is closely akin to TTL logic design with
74XX devices. This allows many of today’s logic designers to use microelectronic
circuits in their designs without mastering the details of MOS transistor circuit
design.

A typical logic block might consist of three two-input NAND gates, as
shown in Fig. 9.4-3. Each NAND gate uses two p-channel and two n-channel
transistors to realize its logic function. Three of these gates are grouped into a
single logic block, reminiscent of a TTL 7400, quad two-input NAND package.
For a typical 3 u gate array family, high-to-low and low-to-high propagation
delays average 1.4 ns with no load and 4.6 ns with a 1 pF load. The 1 pF load is
equivalent to a fan-out of three and includes a 100 mil length of metal conductor.
A slightly more complex circuit, a D flip-flop, is shown in Fig. 9.4-4. This circuit
requires two logic blocks and a total of 24 transistors for its realization.
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Typical logic functions

Triple 2-in NAND

Dual 3-in NAND

Triple 4-in NAND

5-in NAND

Dual 2-in NAND/AND
Triple 3-in NAND/AND
Triple 2-in NOR

Dual 3-in NOR

Triple 4-in NOR

5-in NOR

Dual 2-in NOR/OR

Triple 3-in NOR/OR
Triple clock buffer

Quad inverter

Dual tri-state buffer
Tri-state noninv. buffer
EX-OR

NAND latch plus 2-in NOR
Triple NAND latch

NOR latch plus 2-in NOR

2-2 O-A-1

2-2 A-O-1

D flip-flop

D flip-flop with set, reset

2-to-1 mux

1-of-4 decoder with enable (act “L”)
2-bit magnitude comparator

Mux D flip-flop with reset

D flip-flop with preset, reset
Toggle enable flip-flop with reset
D latch with reset

4-bit S-I/P-O SR

Noninverting Schmitt

1-bit ALU

Full-adder

4-to-1 data mux

4 bit parity checker

4-bit S-I, P-I/P-O SR

Presettable down counter with reset
4-in mux with enable tri-state

Triple NOR latch JK flip-flop with set, reset
Gate
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FIGURE 9.4-3

Triple two-input NAND logic block.
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D flip-flop logic block.

Vertical metal interconnection between devices is accomplished through
channels provided between each vertical row of blocks. Horizontal metal inter-
connection is accomplished through the blocks and around the ends of the rows.
Ten horizontal wiring tracks are available per block for the typical circuits of Figs.
9.4-3 and 9.4-4. Most gate array manufacturers provide software tools to assist
with placement of the logic modules and interconnection wiring. They also pro-



STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 805

vide computer simulation tools for designers to verify the logical correctness and
timing characteristics of proposed designs. There is interaction between place-
ment and timing because interconnection lengths and, therefore, load capacitance
change with logic module placements. Accurate simulation is a necessity for gate
array designs as with all microelectronic circuits; it is not feasible to patch an
integrated circuit with jumper wires, as is customary in correcting printed circuit
board wiring errors.

Gate arrays are widely used to customize application-specific logic that
would otherwise require many more IC packages. This results in considerable
savings in area for many products. At least two levels of metal interconnect
are generally required to implement designs with gate arrays. As the capability
of technology has increased, the number of wiring layers for gate arrays has
increased to three and even four layers of interconnect. Gate arrays are offered
in sizes ranging from a few thousand gates to more than 100,000 gates at the
present time.

In this section, logic gate arrays including both channeled gate arrays and the
newer channelless, or sea-of-gates, structures were introduced. With gate arrays,
logic designers can access the advantages of microelectronic circuits without
becoming experts in the details of MOS tircuit design. Both the global structure
of gate arrays and examples of logic building blocks used in gate arrays were
discussed. Finally, the requirement for CAD tools such as placement and routing
programs, logic simulators, and accurate timing simulators was highlighted.

9.5 MOS CLOCKING SCHEMES

In preparation for the introduction of more complex digital systems containing
storage devices and finite-state machines, the concept of clocking methods to
control the movement of information is presented here. The combinational logic
devices discussed previously do not require time-based control signals for their
operation. The output of an ideal combinational logic circuit is completely defined
at any time by the binary signals present as inputs to that circuit. For many
applications, it is expedient to cause the output of a digital circuit to depend on
both present and past inputs. For example, the output of a hand-held calculator
in response to the “=" key depends on previous data and function inputs to the
calculator. Digital circiiits whose outputs depend on both present and past inputs
are called sequential circuits; synchronous sequential circuits require a control
signal to mark the passage of time and thereby delineate present inputs from
past inputs. A digital signal called a clock serves this purpose by controlling the
transfer of binary variables from one storage location to another.

An ideal clock signal is simply a periodic alternation of logic high and low
voltage levels, as shown in Fig. 9.5-1a. Figure 9.5-1b shows a typical clock
signal waveform as it might be observed on an oscilloscope. For 5 V logic, a
single clock cycle is defined by

ck =5V for0= r<ng 9.5-1)
and
cdk =0V fort; =t <T 9.5-2)
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The time T represents the period of the clock signal; the inverse relationship
f = 1T gives the frequency of the clock; and ¢,/T is defined as the duty cycle of
the clock. The square-wave output of a signal generator is an example of a clock
signal with a 50% duty cycle. Circuits that operate from a single clock signal are
said to use a single-phase clock. Much digital circuitry in the past was designed
using single-phase clocks. Single-phase clocks could be used because of readily
available binary storage devices (clocked flip-flops) that used one edge (either
rising or falling) of the single-phase clock to update their stored value.

For reasons to be shown later, MOS logic circuits typically use multi-
phase clocks. Two-phase clocking schemes and four-phase clocking schemes
derived from two-phase clocks are common. A two-phase clock is composed of
two related sequences of alternating high and low voltage levels with the same
frequency. A two-phase clock may be supplied to an integrated circuit from an
external source or may be generated within the integrated circuit itself by spe-
cial clock generation circuitry. Normally, a two-phase clock is composed of two
nonoverlapping single-phase clock signals. Figure 9.5-2 shows nonoverlapping
two-phase clock signals. The two-phase clock signals, ¢; and ¢, are said to be
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nonoverlapping because they are never both in the high state at the same time.
This is represented by the logical AND function as

b1 =0 : (9.5-3)

It is frequently desirable to derive a nonoverlapping two-phase clock from a
single-phase clock signal. It might seem that this could be accomplished with the
simple inverter circuit shown in Fig. 9.5-3a. However, a physical inverter circuit
exhibits delay between its input and output signals, causing the derived two-phase
clock signals to overlap when the input clock signal changes from a low to a high
voltage level. This overlap condition is shown in Fig. 9.5-3b. The length of the
overlap condition depends on the inverter delay. For practical inverter circuits,
an overlap condition will always occur with this circuit.

Although a simple inverter cannot be used to generate a nonoverlapping two-
phase clock from a single clock input, a slightly more complicated connection of
simple logic gates will generate a nonoverlapping two-phase clock from a single
clock input. The circuit in Fig. 9.5-4a generates a nonoverlapping two-phase clock
with a nonoverlap time of at least one gate delay at each clock change. Figure
9.5-4b shows ideal waveforms for this circuit assuming identical, symmetric gate
delays of length A for the inverter and the NOR gates. The reader should verify
that the delays shown in Fig. 9.5-4b are correct. Asymmetric delays will change
the time between clock edges, but will not cause overlap of the clock signals (see
Prob. 9.12).

Clock waveforms have been presented in this section without restrictions
on such clock characteristics as frequency, nonoverlap time, duty cycle, or rise
and fall times. In fact, the clock signals shown have been idealized with zero
rise and fall times. In practical circuits, clock signals are frequently required to
drive a large number of gate inputs. The resulting capacitive loading can seriously
degrade the rise and fall characteristics of clock signals, as was shown in Section
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FIGURE 9.5-4
(a) Circuit used to generate a nonoverlapping two-phase clock from a single-phase clock input, (b)
Ideal clock waveforms from the circuit of (a) assuming symmetrical clock delays.

7.9. To speed system operation and to minimize rise and fall times, clock signals
are usually buffered and/or regenerated as they are used throughout the circuit.
Exact device sizing for clock drivers depends on the size of the capacitive load
and the speed with which the load must be driven. Techniques such as those
discussed in Secs. 7.8 and 7.9 are used to calculate delays and set device sizes.
Other characteristics of clock signals will be discussed in this chapter as they
apply to the circuit under discussion.

9.6 DYNAMIC MOS STORAGE CIRCUITS

With the inverter, pass transistor or transmission gate, and multiphase clocks
introduced in previous sections, the tools are in place to look at a useful stor-
age mechanism within MOS circuits. This simple storage mechanism is termed
dynamic storage and is widely used for momentary storage of data in digital
circuits. The following subsections outline the structure and operation of dynamic
MOS storage devices, particularly dynamic shift registers.

9.6.1 Dynamic Charge Storage

Among the technologies widely used for digital design, MOS technology pro-
vides two unusual features that lead to a particularly efficient way to store data
momentarily. These two features are the MOS transistor’s extremely high input
resistance and the abilijty of an MOS transistor to function as a nearly ideal elec-
trical switch. The circuit combination of these features with the source terminal
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of one MOS transistor connected to the gate terminal of a second MOS transistor
allows electrical charge to be stored momentarily on or removed from the gate
terminal of the second transistor.

The three circuits of Fig. 9.6-1 show typical circuit configurations used
to achieve dynamic charge storage. The pass transistor and transmission gate
devices are often designed with minimum-size transistors to reduce layout area.
The inverters are the simple inverters of Secs. 7.3 and 7.5 except for a higher
sizing ratio k as explained in the next paragraph. Figure 9.6-1a is useful with
NMOS circuits, while the other two are examples from CMOS circuits. Operation
of the NMOS circuit will be explained to demonstrate dynamic charge storage,
and then the changes required for CMOS will be noted.

Operation of the circuit of Fig. 9.6-1a depends on whether the pass transistor
is off or on. If the gate of the pass transistor is at a high logic voltage, then the
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FIGURE 9.6-1

(a) NMOS dynamic storage circuit, (b)) CMOS dynamic storage circuit, (c) CMOS pass transistor
storage circuit with level restoration.
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pass transistor conducts. In this case, the gate terminal of the inverter input
transistor will be charged or discharged according to the logic voltage level at
the input to the pass transistor. The time required to charge or discharge the gate
terminal will depend on the gate capacitance, the pass transistor resistance, and the
signal source. The gate can be discharged to 0 V, or can be charged to Vpp — Vn.
This sets the gate terminal to either a logic 0 or a logic 1 value, respectively.
Because the inverter input voltage range has been reduced from the normal range
of Vi to Vpp to a smaller range of Vi to Vpp — VN by the pass transistor,
the switching threshold voltage V) should be lowered by increasing the inverter
sizing ratio k from 4 to about 8. This can be shown through an analysis like that
of Sec. 7.3.2.

When the gate of the pass transistor is at a logic low voltage, the pass
transistor is off, thereby isolating any charge on the gate capacitance of the
inverter input transistor. This charge (or the lack thereof) represents the stored
logic value. If the stored charge were perfectly isolated, the logic value would
be stored indefinitely. However, the isolation is less than perfect, primarily
because of leakage through the reverse-biased diode created between the pass
transistor source diffusion and the substrate. Leakage also occurs through the
pass transistor switch. Because the stored charge will leak away over time, this
circuit is termed a dynamic storage circuit. The following example examines the
temporal characteristic of a typical dynamic storage node.

Example 9.6-1. For the NMOS circuit of Fig. 9.6-1a assume a pass transistor
source diffusion area of 4 u X 5 w and an inverter input gate area of 9 u?. If the
gate terminal capacitance is 1 fF/u? and diffusion leakage current to substrate is
0.2 fA/u2, how long does it take for the stored voltage to change by 2.5 V?

Solution. The approximate capacitance is given by
C=9 u*x1fF/u?+20 u2x0.12 fF/pu? + 18 px 0.2 fR/pu =15 fF
and the leakage current is
I, =2 u2x0.2fA/u? =4x107% pA
Then the time it takes to discharge the capacitance by 2.5 V is given by
ths =2.5C/, =25V X 15 fF/4x 107> pA =9.38 s

This is clearly a long time compared to the clock periods of most digital circuits.

For dynamic storage with present MOS devices, the primary charge leakage
path occurs through the diode between the source diffusion and the substrate.
As MOS processes are created with linearly scaled-down devices, subthreshold
leakagezthrough the pass transistor’s channel will become the predominant leakage
factor.!

Dynamic storage can be implemented in CMOS by replacing the pass
transistor with a transmission gate, as shown in Fig. 9.6-1b. Note the increase
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in circuit complexity caused by the addition of the p-channel transistor in
the transmission gate and the requirement for a dual-polarity control signal.
This situation can be alleviated somewhat with the circuit of Fig. 9.6-1c. In
this circuit, called a level-restoring inverter, an n-channel pass transistor is
followed by a special inverter with a weak p-channel feedback transistor to
restore the logic high level. The p-channel transistor must be sized to have
an equivalent resistance much greater than the series pulldown resistance of
the pass transistor and any circuit that drives the pass transistor input. The
pass transistor can discharge the inverter gate to 0 V to give a good low
logic level. In this case, the inverter output is high and the p-channel feed-
back transistor is off. As explained in Chapter 7, an n-channel pass transistor
cannot raise the voltage high enough to ensure that the p-channel transistor of
the inverter is off. Nevertheless, the pass transistor can pull the inverter input
voltage high enough to force the inverter’s output to a low logic voltage. This
low voltage turns on the p-channel feedback transistor, thereby pulling the
inverter input to the upper supply voltage and holding it there.

Dynamic storage is widely used within MOS circuits because of the simplic-
ity of the required circuitry. The NMOS version of Fig. 9.6-1a requires only three
transistors, while the CMOS version of Fig. 9.6-1c requires just four transistors.
Thus, dynamic storage is area-efficient compared to the static storage circuits to
be discussed later. A frequent use of dynamic storage circuits is to create shift
registers. The following discussion shows shift registers that are built upon a
generic MOS dynamic storage stage consisting of a pass transistor and a simple
inverter for NMOS or a level-restoring inverter for CMOS.

9.6.2 Simple Shift Register

Figure 9.6-2 shows a multistage MOS shift register with each stage composed
of a pass transistor and an inverter. The operation of this shift register can be
described as follows based on a nonoverlapping two-phase clock. Assume that
a logic signal is placed at the input of shift register stage A while the ¢, clock
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FIGURE 9.6-2
A linear shift register.
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is low. Because the ¢; clock is low, the pass transistor in stage A is off. Next,
when the ¢; clock goes high, if the signal at the input to stage A is held constant,
it will be propagated to the input of inverter A. After a short delay, the output
of inverter A will provide the inverted logic signal to the input of shift register
stage B. At this time, the ¢, clock is low and the pass transistor in stage B will
not pass this input. When the clocks change so that ¢, is high, the pass transistor
of stage B will propagate the output signal of stage A to inverter B and then to
the output of stage B. The signal will be stopped by the pass transistor of stage
C because ¢, is low while ¢, is high. This sequence continues through the shift
register chain as the clock signals alternate, causing the original input signal to
propagate through the shift register stages.

At this point, a question should arise about the input to the inverter of shift
register stage A when the ¢, clock signal is low. In this instance, the input pass
transistor of stage A is off, and the logic value is held by the dynamic storage
of the input of the inverter. While the input to inverter A remains at its stored
logic value, the output of inverter A will actively drive the input of stage B to
the complementary logic level.

Each time the ¢; clock changes to a high level, the shift register input
signal will propagate to the gate of inverter A and on to the output of stage A.
A sequence of alternating ¢; and ¢, clock signals will cause an input signal
to propagate or shift through the structure at the rate of two stages of the shift
register for each complete cycle of the clock signals. After N clock cycles, a logic
input value will have shifted through 2N stages of the shift register. When a two-
phase clock is used to control a shift register, it is important that the two clock
phases do not overlap. If both phases of the clock were high simultaneously, a
data value could propagate through multiple stages during the clock overlap time.
This would result in uncontrolled operation of the shift register circuit and erratic
movement of stored information.

Shift registers such as the one just described are used frequently within
integrated circuits to provide temporary storage of digital signals. Such shift
register storage can be used as a simple way to delay the arrival of a signal
for a specific number of clock cycles. Shift register storage is also frequently
used as the temporary memory for a sequential logic circuit. It will be shown
later that a shift register can be combined with a PLA to provide a regular,
expandable sequential machine. In general, shift registers provide dense, limited
access memory for many applications within digital integrated circuits.

Figure 9.6-3 shows a parallel set of shift registers used to shift a group of
signals in lock step fashion. As an example, such a parallel shift of 8, 16, or 32
data bits is sometimes required in microprocessor circuits. The basic structure of
this set of shift registers demonstrates two principles important for the efficient
geometrical layout of digital circuits. In Fig. 9.6-4, a symbolic layout diagram
showing the geometrical topology for this circuit shows that the data for the shift
register flows from left to right while the control signals (¢; and ¢, clocks) flow
from top to bottom. Such an orthogonal structure of data paths and control signals
within a subsystem is widely used to provide a regular organization of logic
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circuits within an integrated circuit chip. The shift register stages are mirrored
vertically about the ground and Vpp, lines. This mirroring technique allows shared
power and ground connections and reduces required circuit layout area. It is
important to minimize the size of the basic shift register stage because this stage
is repeated many times in a large shift register.

9.6.3 Other Shift Registers

A slightly different connection of the basic shift register cell is used to demonstrate
another useful operation on a group of data signals. The need to shift the entire
contents of a data word in one direction or the other is common in digital systems.
If a data word is shifted toward the less significant bits, the equivalent binary
weight of each bit is halved by each shift. If a data word is shifted toward its more
significant bits, the equivalent binary weight of each bit is doubled by each shift.
This doubling operation is useful in the conventional “shift and add” algorithm
for binary multiplication.

Figure 9.6-5 shows a simple connection of shift register stages that allows
a data word to be shifted toward higher significance or shifted directly along the
data path according to a control signal. The control signal is ANDed with one
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FIGURE 9.6-5
Four-bit shift-over, shift-up shift register.
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clock phase to determine whether the data word is shifted or just passed along
the data path. The layout of this circuit is similar to that of the parallel group of
shift registers in Fig. 9.6-4 because the data and control signals are introduced
orthogonally.

The purpose of this section has been to introduce dynamic storage, a most
useful capability of MOS circuits. The ability to momentarily store logic values
with minimal transistor and area requirements is widely used in digital ICs. The
transient nature of the storage, typical storage circuits, and an application of
dynamic storage to implement shift registers were all described.

9.7 CLOCKED CMOS LOGIC

Clocked logic in various forms has been used within digital MOS designs for
many years.'? Early use of clocked logic circuits was intended to minimize power
dissipation in PMOS or NMOS logic. Present use of CMOS clocked logic circuits
allows reduction of the number of transistors required within a design as compared
with complementary static logic. Classical static CMOS logic gates require 2N
transistors for an N-input gate, while NMOS logic gates require only (N + 1)
transistors. Clocked logic circuits for CMOS reduce the number of transistors
to (N + k) where k is a small constant overhead. This is accomplished by
requiring dynamic storage of logic values within the gate structure (see Sec. 9.6).
Clocked logic styles retain the desirable CMOS property of essentially zero static
power dissipation. For this purpose transistors gated by clock signals, instead
of complementary transistors gated by logic signals, are used to break the path
between power and ground. Three styles of clocked CMOS logic are described
here. The latter two have found wide application in large-scale digital circuits
such as microprocessors and signal processors.

9.7.1 C*MOS

A dynamic shift register in CMOS is complicated by the need for a transmission
gate and complementary clock signals rather than a pass transistor as described in
Sec. 9.6. Figure 9.7-1 shows the four transistors and two clock signals required
to construct a CMOS dynamic shift register stage. This construction can be

Voo
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o FIGURE 9.7-1 :
CMOS dynamic shift register stage.
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simplified somewhat by the circuit configuration of Fig. 9.7-2. This form of
dynamic shift register is called clocked CMOS logic or C*MOS. In this circuit,
the clocked transistors are placed in series with the p-channel and n-channel
transistors of a standard inverter. The primary use of C2MOS is within dynamic
shift registers. All transistors can normally be sized as minimum-size devices
because each stage is only required to drive the capacitance of an identical shift
register stage.

Although the C*?MOS circuit requires the same number of transistors, exter-
nal connections, and clock phases as the standard CMOS dynamic shift register
of Fig. 9.7-1, the layout is simplified because the source/drain regions of the two
p-channel transistors can be merged, and the corresponding regions of the two n-
channel transistors can be merged. This reduces circuit capacitance, number of
contacts, and layout area.

Operation of the C2MOS circuit is quite simple. The gates of the p-channel
pullup transistor and the n-channel pulldown transistor of the inverter are both
connected to the input signal. For a valid logic input, one of these transistors will
be off while the other is on. Clocked transistors placed in series with the pullup
and pulldown transistors serve to connect these transistors to the output when the
clock is high. For a high logic input, the output storage node will be discharged
when the clock is high; for a low logic input, the output storage node will be
charged when the clock is high. Otherwise, the output node will remain in its
present state. In contrast to other clocked logic circuits, which are introduced in
the following sections, the autput of C*MOS is available during the entire clock
cycle, although it is actively driven only when the clock is high.

A problem with the C2MOS circuit is that the load capacitance is the storage
node for the dynamic charge. In the standard dynamic shift register, the storage node
is inherently buffered from the output because the inverter gate is the storage
node. Thus, the C2MOS circuit is more susceptible to interference from the load
circuit attached to the stage. If the load is an identical C*MOS stage, the gates of
the next stage can provide sufficient capacitance for the dynamic charge storage.

FIGURE 9.7-2
CZMOS dynamic shift register stage.
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9.7.2 Precharge-Evaluate Logic

A more general form of clocked logic, called precharge-evaluate logic, or P-
E logic, provides low power dissipation like that obtainable with CMOS logic,
and yet requires a transistor count comparable to NMOS logic. A basic tenet of
such clocked logic is a tradeoff of output availability against power dissipation
caused by the resistive pullup device of NMOS logic. If the path between power
and ground is broken by two series transistors that are on at mutually exclusive
times, no dc current path from power to ground will exist, nor will static power
be consumed. Also, because there is no dc current path to place constraints on
device sizing, minimum-size transistors can be used throughout to conserve layout
area. The path to Vpp is used to precharge the output node during part of the
clock cycle, and the path to ground is used to selectively discharge the output
node during another part of the clock cycle. The output is taken high during the
precharge time and is logically valid during the discharge cycle only after time is
allowed to selectively discharge the output. Thus, for a square-wave clock signal,
valid output availability is less than 50%.

The circuit of Fig. 9.7-3 shows a three-input NAND gate in P-E form. If
the precharge transistor is a p-channel device and the discharge enable transistor
is an n-channel device, a single clock signal will suffice. When the clock is in
the low state, the p-channel transistor conducts and the output node is precharged
to Vpp. When the clock signal goes to the high state, the n-channel transistor
will enable discharge of the output node depending on the logic condition at the
circuit’s inputs. For the circuit of Fig. 9.7-3, the output is discharged only if
all three inputs A, B, and C are in the high logic state. If any of these inputs
is in the low logic state, the discharge path is broken and the output node is
left charged to a logic high value. Thus, the gate realizes the NAND logic
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FIGURE 9.7-3
- Three-input NAND gate in P-E form.
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function. The P-E logic form allows realization of complex logic functions, as
demonstrated in Fig. 9.7-4.

P-E CMOS logic has both advantages and disadvantages compared with
classical static CMOS logic. In general, P-E logic requires less area than clas-
sical static CMOS logic because it does not require complementary transistor
structures. The logic structure is ratioless, allowing use of minimum-size transis-
tors throughout the gate logic. Because there is no dc pulldown current, a large
number of transistors can be placed in series within the logic section. As another
plus, it is possible for P-E logic to be faster than static logic because of lower
gate loading on logic signals.

On the negative side, P-E logic has several disadvantages. The logic output
value can be affected by a phenomenon called charge sharing. If a discharged
node internal to the logic section is connected to the output node when the logic
function is not satisfied, the output node charge will be shared with the discharged
internal node, thereby degrading the output voltage level. Care must be exercised
in circuit design to ensure that the output capacitance is larger than the internal
node capacitances. P-E logic requires the addition of clock signals. There is a
minimum clock rate because of the dynamic nature of the output signal, and
the maximum clock rate is limited by circuit characteristics. The inputs must
be stable during evaluation; otherwise, an incorrect value on the input could
erroneously discharge the output node. Finally, the outputs must be stored during
precharge if they are required during this phase of operation. These disadvantages
are overcome by placing limits on allowable clock frequencies, and by careful
selection of the types of circuits that are connected to P-E logic.

Precharge
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Evaluate

—
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FIGURE 9.7-4
Complex logic gate in P-E form.
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Multiple stages of P-E logic based on the same clock signal cannot be
cascaded. Because the output of each stage of logic is driven to a logic high
during the precharge phase, use of this output to drive secondary stages of P-E
logic could erroneously satisfy their logic conditions immediately after the clock
signal is pulled high. This could discharge the output of the secondary stage,
preventing proper logical operation. A solution to this problem is to use cascaded
stages with multiple clock signals so that the inputs to a stage are stable during
its evaluation phase. Explanation of multiphase clock operation can be found in
other sources. '

9.7.3 Domino CMOS

A variation on P-E logic, called domino CMOS, was popularized during the
development of the BellMac microprocessor.!> A domino logic gate consists of
two elements: a P-E logic gate followed by a static inverter buffer at the output.
The logic can be built in two forms: mostly n-channel, where the transistors
comprising the logic are n-channel devices; and mostly p-channel, where the
logic is performed by p-channel devices. The transistors used within the logic
section can be minimum-size transistors. The static inverter at the output serves
to buffer the logic part of the circuit from its output load, resulting in a more
robust logic gate than standard P-E logic. The output inverter can be sized as
desired, for example, to achieve symmetric output drive or to quickly drive a
large capacitive load.

The behavior is explained based on the mostly n-channel form shown in
Fig. 9.7-5. As with P-E logic, there is a precharge phase and an evaluation phase.
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Domino CMOS logic gate.
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During the precharge phase, the internal logic output is precharged to the high
logic condition. This is inverted by the static buffer, providing a low logic output
for the domino CMOS gate during the precharge phase. During the evaluation
phase, the output of the logic part of the gate is selectively pulled low according
to the logic input values. If the logic condition of the gate is satisfied, the internal
output node is pulled low. This is subsequently inverted by the static buffer to
provide a high logic output condition.

The domino CMOS gate has many of the same advantages and disadvantages
described for P-E logic when compared to static logic. In addition, domino CMOS
has advantages over the simpler P-E clocked logic form. For example, the static
buffer provides output drive capability to either Vpp or ground. In P-E logic,
the output can be driven only to ground in response to logical conditions, not to
Vpp. When the logic condition of the P-E gate is not satisfied, dynamic charge
storage at the output must maintain the high output value. The dynamic logic
section of a domino CMOS gate always has a fan-out of one, thereby simplifying
device sizing within the gate structure. As contrasted with P-E logic, domino
CMOS stages can be cascaded successfully. The p- and n-channel transistors are
easily grouped into a common n- or p-well, depending on the technology used.
The fact that domino CMOS is a noninverting logic form provides at least one
disadvantage over P-E logic. Lack of an inverting capability means that domino
CMOS is not logically complete in the sense described in Sec. 7.2.

Examining the operation of the cascade of domino logic gates shown in
Fig. 9.7-6 provides a basis to explain the choice of name for this clocked logic
form. During the precharge phase with the clock signal near ground, the output
of each domino stage is at the low logic condition. Thus, inputs to all subsequent
domino stages are low. During evaluation, as the clock signal is pulled high, the
outputs of some first-tier stages move to the high logic condition if their inputs
are satisfied. The outputs of these gates may satisfy the logic for some second-
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tier stages, resulting in a high value at their outputs. In fact, during evaluation,
logic decisions propagate through a cascade of stages like a falling domino chain.

As described, domino CMOS logic is a dynamic logic form. The precharged
high at the input to the static inverter buffer is held by charge stored at the
input to the static inverter and will not remain indefinitely. If this high could be
maintained while the clock was stopped, a static logic form would result. The
circuit of Fig. 9.7-7 shows a “keeper” transistor used to maintain a precharged
high. This transistor can be formed as a weak static pullup device that contributes
little to the pulldown current during evaluation or to static power dissipation. A
weak static pullup is created by a large L:W ratio of 10 or 20:1 to increase the
equivalent resistance of the transistor. This pullup transistor also improves noise
immunity and allows a longer evaluation time.

Three styles of clocked logic were examined in this section. The first,
C?MOS, is useful primarily in shift registers. The latter two, P-E logic and domino
CMOS logic are widely used for high-density, low-power implementations of
logic equations. Both require only N + k transistors, where N is the number of
inputs and k = 2 for P-E logic and k = 4 for domino logic.

9.8 SEMICONDUCTOR MEMORIES

Integrated circuit memories provide the opportunity for semiconductor manufac-
turers to excel at their forte. That is, they create large, dense arrays of small cells
with a process that is finely tuned for yield and performance characteristics. They
strive to optimize the circuit design and the layout of individual memory cells
to provide the maximum data storage capability for a memory part. Because the
demand for dense semiconductor memory seems insatiable, a manufacturer has
the opportunity to recover significant development costs with large sales volume
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for a new memory design. With fierce competition for domination of the large
market for memory devices, manufacturers constantly search for ways to create
devices with smaller geometries and for clever circuit ideas that shrink the size
of the basic memory cell or enhance its performance.

The excellent results of the research effort to provide small, dense semicon-
ductor memories are rapidly incorporated iato useful components of digital inte-
grated system design. In many new microprocessors, ROM (read-only memory)
partially replaces random logic in the control section. Designers of digital systems
often find that dense memory is a good replacement for logic in other applica-
tions as well. Standard cell design libraries often provide forms of semiconductor
memory as basic building blocks for systems. This trend toward increased use
of memory requires digital system designers to be familiar with various types of
semiconductor memory as tools for structured integrated circuit design.

9.8.1 Memory Organization

Semiconductor memories are universally organized as arrays of single-bit storage
cells. These arrays are encircled by address decoding logic and interface circuitry
to external signals. Figure 9.8-1 provides a block diagram of a typical memory
chip organization. The memory array nominally uses a square organization (m =n
in Fig. 9.8-1) to minimize the external decoding circuitry necessary to select
a particular memory cell. The reason for the square design can be seen by
considering a memory part that contains 16k 1-bit storage cells. A memory array
with 16k locations requires 14 address lines to allow selection of each bit (214 =
16, 384). If the array were organized as a single row of 16k bits, a 14-to-16,384-
line decoder would be necessary to allow individual selection of the bit addressed
by the 14 address lines. However, if this memory is organized as a 128-row
by 128-column square, one 7-to-128-line decoder is required to select a row,
and a second 7-to-128-line decoder is necessary to select a column. Note that a
128-row by 128-column matrix contains 16,384 crosspoints that allow access to
individual memory bits. Thus, the square organization requires much less area
for the address decoding circuitry than the linear organization.

Most memory chips operate such that the row address enables all cells along
the selected row. The contents of these cells become available along the column
lines. The column address is used to select the particular column containing
the desired data bit. This data bit is ultimately routed to drive an output pin of
the memory part. Some memory parts are organized so that n bits are accessed
simultaneously. For these memories, the data from # columns are selected and
gated to n data output pins simultaneously. Additional circuitry, including sense
amplifiers, control logic, and tri-state input/output buffers, is normally required
to create a functional memory part. However, the size of the memory storage cell
and the resulting memory array are of primary importance in determining the size
of the complete memory chip.

Several types of MOS semiconductor memory are in wide use today. These
include ROM (read-only memory), EPROM (erasable programmable ROM),
EEPROM (electrically erasable programmable ROM), SRAM (static random
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access memory), and DRAM (dynamic random access memory). These memory
types derive their unique characteristics and advantages from the basic storage cell
used in each, although the associated support circuitry will also vary. ROM- style
devices will be discussed in the next section, and SRAM and DRAM memories

will be addressed in two subsequent sections. Register array memories will be
described in a fourth section.
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9.9 READ-ONLY MEMORY

Read-only memory is the densest form of random-access semiconductor memo-
ry, using the presence or absence of a single transistor as the storage mechanism.
Figure 9.9-1 shows the relationship between storage cells and the row and col-
umn lines of the memory matrix. Part of the memory address is decoded to select
an individual row line and drive it to a positive voltage. Previously, each of the
column lines had to be pulled to a high level. Each storage cell transistor has
its gate connected to a row line, its drain connected to a column line, and its
source grounded as shown by Fig. 9.9-1. Only if a transistor is placed where the
selected row (corresponding to the row address) crosses a column will that col-
umn be pulled to a low level. Thus, each column line will be high or low to reflect
the stored data along the selected row line. The remainder of the address lines are
decoded to select the desired column or columns to provide the requested data.
The ROM memory contents are programmed by selectively placing transis-
tors within the memory array. Therefore, the contents of a ROM memory are
fixed as the part is manufactured and cannot be changed at a later time. In mass
production, ROMs are the least expensive form of semiconductor memory; how-
ever, each unique ROM incurs relatively expensive start-up costs. As a result,
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FIGURE 9.9-1
ROM memory array.
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ROMs are normally feasible only for applications that require a minimum of
several thousand identical memory parts with permanently stored data.

Each storage cell of a ROM may contain a single enhancement transistor.
The size of the cell is set by the area required for the transistor and its associated
row and column lines. An area of about 16 u? per storage cell is required for
today’s ROMs. The memory array, requiring only enhancement transistors, can
be fabricated in either NMOS or CMOS technology. The peripheral circuitry such
as sense amplifiers, decoders, and control logic can also be fabricated in either
technology. However, CMOS is usually chosen for newer ROMs to reduce static
power dissipation of the peripheral circuitry.

9.9.1 FErasable Programmable
Read-Only Memory

Many applications require semiconductor memory that is nonvolatile like ROM,
yet can be reprogrammed to correct unintentional errors in the contents of the
memory or to change program-based characteristics of a system. A nonvolatile
memory is one that retains its stored data even while power is off. The ROM
just described is nonvolatile and cannot be changed once it is manufactured.
Other popular forms of semiconductor memory, such as SRAMs and DRAMs,
have read/write capability but are volatile—that is, their contents are lost when
power is lost. As a solution to this dilemma, the EPROM (erasable programmable
ROM) was developed. An EPROM provides dense, nonvolatile storage yet can
be reprogrammed as necessary. As a result, these memories are widely used in
microprocessor systems and other circuits requiring nonvolatile storage where the
cost of a unique ROM device cannot be justified.

The EPROM memories acquire their useful characteristics through use of
a unique storage cell. This cell was originated by Intel Corporation and was
called the FAMOS technology (for floating-gate, avalanche-injection, metal oxide
semiconductor). Figure 9.9-2 shows that the storage cell consists of a transistor
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with two gates, one of which is isolated from the circuit. If this floating gate
somehow acquires charge to represent a stored data value, the charge remains
there for a long period of time because the gate is insulated from its surroundings
by silicon dioxide. The leakage paths for this circuit are of such high resistance
that the time constant for the discharge path of the EPROM memory cell is tens
of years. The presence or absence of stored charge is the mechanism by which the
cell stores a data value, but how is the data value changed once it has been stored?

The mechanism for programming new data comes from the second part of
the FAMOS name, avalanche injection. If a relatively high voltage (about 25 V—
less for newer parts) is applied to the floating gate—substrate region, avalanche
injection of electrons onto the gate takes place. This phenomenon serves to
program memory by placing charge on the gate. Memory is erased by removing
undesired charge from a gate as follows. If the floating gate is exposed to strong
light of the proper wavelength (UV-2537 A) for a period of time, enough energy
is imparted to the stored charge to remove it from the floating gate. A quartz
window is incorporated into the memory chip package; thus, all memory cells
are exposed and erased simultaneously. Typical erase times for EPROMs are in
the range of 20 to 30 minutes.

EPROMs are widely used in electronic systems where product volume is
insufficient to justify the high initial cost of ROM parts. They are also used in
prototyping microprocessor systems where reprogrammable but nonvolatile mem-
ory is required. A disadvantage of EPROM memory is the usual need to remove
the memory part from the system if it becomes necessary to erase and reprogram
the EPROM. The next section describes an improvement to the EPROM that was
designed to overcome this undesirable characteristic.

9.9.2 Electrically Erasable Programmable
Read-Only Memory

As useful as EPROM memories are, there are many applications requiring non-
volatile memory that can be reprogrammed quickly without removing the memory
part from the system. For example, it is often desirable to program a standard
CRT terminal with serial interface characteristics that will not be lost when power
is disconnected. Yet, these characteristics must be changeable if the terminal is
connected to a computer using a different serial data format. Applications such as
this created a need for an EPROM whose contents could be changed electrically.
Several manufacturers now offer memory parts called EAPROMs (electrically
alterable) or EEPROMs (electrically erasable) that fulfill this need.

Interestingly, the EEPROMSs solve the programming and erasure problems
with two simple techniques. First, programming has been simplified by on-
chip generation of the programming voltage. Instead of requiring an external
connection to 25 V, a circuit called a charge pump is used to generate the
necessary programming voltage from the standard 5 V supply. Second, instead
of using ultraviolet light to erase the data, an internal connection is provided to
reverse the electron injection phenomenon, allowing charge to be removed from
the floating gate of the EEPROM.
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FIGURE 9.9-3
EEPROM storage cell.

The basic memory cell for an EEPROM consists of a memory transistor and
a select transistor, as shown in Fig. 9.9-3. The memory transistor is composed
of a dual-stacked polysilicon structure in which the bottom gate is floating. A
small, thin oxide (<150 A) isolates the floating gate from the drain and provides
an injection area for electrons to and from the floating gate. Sending a short
(several ms), high-voltage pulse to the row line while grounding the drain causes
tunneling of electrons from the drain to the floating gate (erase). A similar pulse
to the drain with the row line grounded causes tunneling of electrons from the
floating gate to the drain (write). Integrating this device into a memory array
requires an additional select transistor per bit as shown in Fig. 9.9-3 to avoid
disturbing unwanted cells during erase or write. As a result, EEPROM memory
is not as dense as EPROM memory.

The semiconductor memories described in this section each use the same
basic array organization to achieve dense, nonvolatile storage. Ultimately, the
storage capacity of these memory parts depends on the size of the basic memory
cell used as the storage mechanism. The ROM is very dense, using only a single
transistor as a storage cell; the EPROM is less dense, using a single transistor
with a select gate and a floating gate as a storage cell; and the EEPROM is the
least dense, requiring two transistors for each storage cell.

9.10 STATIC RAM MEMORIES

In this section the basic memory cell and organization used in static semiconductor
memory circuits is examined as another example of a highly successful form of
structured design. Static random-access memories, or SRAMs, are composed of
static storage cells as the basic storage mechanism. Each static storage cell is
formed by a pair of cross-coupled inverters. For SRAM memory, many of these
cells are formed into a large memory array organized as explained in Sec. 9.8.
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SRAMs differ from ROMs because they need continuous power to maintain
the feedback required to hold a stored value. If power is lost, the active feedback
path is eliminated, and the memory contents are destroyed. As power is restored,
the memory cell will settle to a logic value that is independent of the previously
stored data. Thus, the SRAM is classed as a volatile memory and depends on
continuous power to maintain stored values.

For SRAMs to be useful as read/write memories, it must be possible to
store desired data values in each cell. The basic memory organization must allow
selection of each memory cell and accessing or storing binary values within that
cell. A common structure consisting of select lines and data access lines for a
SRAM memory cell is shown in Fig. 9.10-1. This figure shows a CMOS storage
cell; a corresponding circuit structure is used for NMOS storage cells. A unique
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FIGURE 9.10-1
SRAM storage cell array.
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select line is provided for each row of the memory array and, when high, selects
all memory cells on its row. A pair of data lines are dedicated to each column
to allow data from a selected cell on that column to be read or written. During a
memory read, the two lines of each data line pair will be forced to opposite logic
states by the contents of the selected memory cell. From a logical viewpoint,
only one data line is needed to access the data within a memory cell. However,
for a memory write, the two lines of the selected data line pair must be driven
to opposite logic states to store a desired value within the memory cell. Because
one cell along every column is selected by the row select, only data line pairs
corresponding to the column containing the desired cell must be driven during a
write. Other data line pairs along the row select will perform read operations.
As shown in the memory chip architecture of Fig. 9.8-1, n address lines are
decoded to generate 2" row select lines. The row select lines can be generated
by the NOR decoder of Fig. 9.10-2, where n = 3. Here, the horizontal row lines
are each pulled high by a pullup device. The pullup device could be a depletion
transistor, a p-channel transistor with its gate grounded, or a clocked p-channel
transistor, depending on the technology. The vertical address lines are converted
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FIGURE 9.10-2
Address-to-row-select decoder.
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to double-rail form and are used as the gates of pulldown transistors in the NOR
structure. For example, row 0 of Fig. 9.10-2 is the logical NOR of A0, Al, and
A2. If any of the three address lines is high, then the row 0 select line is pulled
low. Only if AO, Al, and A2 are all low will the row O line be left high. Thus,
the condition to select the row 0 memory cells is that AO, Al, and A2 must be
low. To quickly charge the large capacitance inherent in the row select lines,
a buffer stage (not shown) is usually inserted between the row decoder and the
memory array. v

Once a given row is selected, data from all memory cells on that row are
available on the column data lines. The memory chip architecture of Fig. 9.8-1
shows that m address lines are used to select 1 of 2™ columns to access the desired
data. Figure 9.10-3 shows an address-to-column selector circuit with m = 3 that
gates one of eight columns to the data output. Address lines A3, A4, and AS are
used in a select array to choose the desired column. A3 selects the odd columns,
while the complement of A3 selects the even columns. After the A3 stage, odd
and even columns are paired because only one of the pair can be active. This
reduces the number of available column paths by one-half. Subsequent stages
of selection each divide the number of column paths by two. After m select
stages, where 2™ is the number of memory columns, only a single column line
is left. This line contains the desired data value. The data value must be buffered
to drive the data output pin on the memory chip. To reduce the time between
selection of a memory cell and availability of data at the chip output, sensitive
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A3 —¢ O D D O
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A4 87 5
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FIGURE 9.10-3
Address-to-column selector.
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sense amplifiers (not shown) are included within the column select structure. The
purpose of these amplifiers is early detection of the data value as the memory
cell drives the large capacitance of its column line pair.

Electrical characteristics of the memory cells, data lines, and select lines
are particularly important when a large array of memory storage cells must
be operated at high speed. The select lines cross an entire array of memory
cells where they drive the gate terminals for 2c transistors for a c-wide array.
These lines are normally run in polysilicon instead of metal because they can
directly gate the select transistors without a space-consuming contact at each
select transistor. The metal level is reserved for the data lines. The length (and
therefore area) of the polysilicon select line and the many gates to be driven
provide a highly capacitive load for the select line drivers. As a result, careful
consideration must be given to the delay caused by this capacitive load when the
select line buffers are designed.

Example 9.10-1. Select line delay calculation Assume a 16k X 1-bit SRAM
memory is organized as a square array of memory cells with 128 cells on a side.
Further, assume that the actual memory array is 2 mm X 2 mm, the polysilicon
select line is 2 u wide, and the select transistor gates are 2 X 2u. The select line
is driven from one end. The polysilicon select line resistance is 22 {) per square.
Capacitance to substrate for the polysilicon is 0.08 fF/u? and gate capacitance is 1
fF/u?. Estimate the select line delay as the approximate 10% to 90% rise time at
the far end assuming that the select line is driven by an ideal voltage step.

Gross solution. First consider a simple solution with the total select line resistance
and capacitance represented as a low-pass RC filter. The resistance can be found by
calculating the number of squares from one end of the select line to the other and
multiplying by the resistance per square for polysilicon. A2 mm X 2 w line is 1000
squares long. The capacitance can be calculated from the area of the polysilicon
select line and the area of gates for the select transistors. The area of the select line
less the gate area is (2 mm—256 X 2 u) X 2 u or 2976 2. The total area of the
gates will be 2 X 128 X 4 u? or 1024 p?.

Cp = 2976 w? X 0.08 fF/u? + 1024 p? X 1 fF/u?
Cr = 0.238 pF + 1.024 pF = 1.262 pF
t 09 = 0-1057 = 0.105 X 1.262 pF X 22,000 Q = 2.92 ns

'o% = 2.3037 = 2.303 X 1.262 pF X 22,000 Q = 63.94 ns

1= toog ~ oo = 63.94 ns — 2.92 ns = 61.02 ns

Distributed lumped-parameter solution. For this solution, break the polysilicon line
into 10 segments with the resistance and capacitance divided equally among the 10
segments. A SPICE simulation (refer to Chapter 4) can be used to find the 10% to
90% delay times. The results are given below.

110% voltage 4.39 ns

£909% voltage = 33.77 ns

ta = lygq ~ g = 3377108 — 4.39 ns = 29.38 ns
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The lumped parameter solution with 10 equal segments is very close to the
exact solution. The simple RC method presented first can be used to give a worst-
case estimate of the delay at the end of the select line. (It more than doubles the
actual delay in this example.) In fact, it has been shown that an estimate of half
the simple RC delay is a good approximation for a distributed RC line.®

The delay characteristics of the data lines are also of concern because
they traverse the entire memory array in the vertical direction, providing a large
capacitive load. These lines are usually run in metal rather than diffusion because
they must cross the polysilicon select lines. Unfortunately, during a read operation
the memory cells themselves must drive the data line capacitance. Special line-
driver circuits are not available to overcome this speed limitation because their
size prohibits providing a line driver for each memory cell. The memory cells
are designed for minimum size to increase the overall memory density, and they
cannot provide good capacitive drive characteristics. As may be seen from Fig.
9.10-1 the selected SRAM storage cell must drive the complementary data lines
of the cell column in opposite directions. Thus, the limiting delay condition is for
the data line that must be driven high where the memory cell p-channel pullup
device must charge the data line capacitance. For NMOS cells, if the pullup
transistor provides a low resistance path to Vpp, the memory array will dissipate
an undesirably large amount of power because one inverter of each memory cell
always conducts. Providing a high resistance for the pullup transistors would cause
an unacceptable delay in charging data line capacitance. A typical resolution of
this conflict is presented next.

A common method for minimizing the pullup time for a highly capacitive
line driven by ratio-type circuits is to pull the line to a voltage above the logic
threshold voltage when it is not in use. This technique is called precharge because
the line is precharged to a value at or near the high logic condition. For this scheme
to work, it must be possible to isolate the line from any driving sources during the
precharge time. Such sources can be isolated from the line with pass transistors
as they are in a memory array. When the capacitive line is to reflect the logic
condition of a driving circuit, the corresponding pass transistor is turned on. If
the driving circuit has a high voltage output and the line has been precharged to a
high level, the correct logic output is available immediately. If the driving circuit
has a low logic output, the pulldown transistor must discharge the output line
before the correct logic value is available. Because the resistance of the pulldown
transistor has little effect on power dissipation, the driving circuit can have a
low-resistance pulldown transistor, allowing the discharge time to be shortened.
The use of precharged lines provides a means of bypassing the asymmetric drive
characteristics of a ratio logic output stage for situations where a high-capacitance
line must be driven. The precharge scheme is often used for buses that must be
driven by many sources.

Example 9.10-2. Optimum precharge voltage for data lines Consider that an
optimum precharge voltage level might exist for a capacitive line driven by ratio
logic. That voltage level would equalize the charge and discharge times of the output
line for a given driving circuit with a puilup/pulldown ratio Ry/R4. Also, assume
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high and low logic levels of V, volts and V| volts, respectively. What should the
precharge voltage level V), be for fastest symmetrical operation of a read?

Solution. To reach a high voltage level, the data line voltage as a function of time
is

V(1) = Vpp — (Vpp ~ Vp)e "R
For the time to reach Vy, solve for ¢y, as
Vop — Vp
th = RyCG. In Vop — Vs
To reach a low voltage level (ignore the small effect of Ry), the data line voltage
as a function of time is
V(1) = Vpe "RdL

For the time to reach V), solve for #; as

Vo
ty =R In —
1 dGLIn v,
Setting t, = #] gives
Ryln ——— =R In —
uit Vop = Vi ¢ Vi

Letting the pullup/pulldown ratio be § = Ry/R4 and solving for § gives
s In Vp/V)
~ In[(Vpp = Vp)/(Vpp — V)]

as the relationship between § and V.

For a ratio-type memory cell, the pullup/pulldown ratio is set higher than the
normal value for logic gates to minimize power dissipation in the memory cell.
Assuming that § = 10,Vpp =5V,Vy, =4V, and V| = 0.5V, then V, = 3.78
V. In practice, § will be higher than 10 and V}, should be closer to V},.

The basic cross-coupled SRAM storage cell has several variations. Figure
9.10-4a shows a depletion-load cell for an NMOS technology. Many newer static
memory circuits use a polysilicon load resistor to form the circuit of Fig.
9.10-4b. This requires an additional mask step to provide a lightly doped poly-
silicon with a resistance of 100k to 1M{/O. If a high-resistance polysilicon
pullup of minimum size is used, the cell size is reduced by elimination of the
depletion transistor and its associated gate-to-source connection.

Another important structure for a static RAM uses CMOS inverters to im-
plement a basic memory cell with extremely low quiescent power characteristics.
Were it not for the size disadvantage of the CMOS cell, this cell would
be the overwhelming choice for static RAM memories. However, because of
the necessity to implement both p- and n-channel transistors and the correspond-
ing n- or p-well spacing requirements, the CMOS memory cell is larger than
its depletion- or resistive-load counterpart. Even with this disadvantage,



834  vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

Vop Voo

1 \

e
@ b)
Vi‘,D
D D
FIGURE 9.10-4
—l— Static RAM cells: (a) Deple-
- tion load, (b) Polysilicon resis-
(¢ tor load, (c) p-channel load.

many new static RAMs are built with CMOS to reduce power dissipation. The
typical CMOS memory cell structure of Fig. 9.10-4¢ can be compared with the
similar NMOS cell structure shown in Fig. 9.10-4a. The operation of the two
cells is identical except that the CMOS cell dissipates negligible power because
one of the series transistors from Vpp to ground is always turned off. The overall
organization of a static memory is the same independent of the type of load
device.

Unfortunately, SRAM memory is not as dense as the ROM memory types
described earlier because a typical static RAM storage cell requires six transistors.
The read-only memory cells of Sec. 9.9 required only one or two transistors
per cell. Even when manufacturers replace the depletion pullup transistors with
high-resistance polysilicon resistors, the SRAM memory cell still requires four
transistors plus the polysilicon resistors. Another type of fast read/write memory,
which requires only a single transistor and capacitor for a storage cell, is also
available. This memory is described in the next section.

SRAM s are the fastest read/write semiconductor memory in wide use today.
A speed advantage over DRAMs offsets the higher density and lower cost per
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bit of DRAMSs in many applications. For example, SRAMs are widely used
in high-speed cache memories for modern computer systems. This section has
shown the characteristic cross-coupled inverter structure used for SRAM cells.
Additionally, examples showing operation of the highly capacitive row select and
data bit lines were considered.

9.1 DYNAMIC RAM MEMORY

The dynamic RAM (DRAM) form of integrated circuit memory has surpassed all
other random-access read/write memories in the number of cells or bits that can
be placed on a memory chip. A DRAM memory circuit uses charge storage on a
capacitor to represent binary data values. A few transistors (first three and now
just one) are required to select the cell and access the stored data. Because SRAM
memory requires more transistors per memory cell (either four or six, depend-
ing on how the pullup for the cross-coupled inverters is implemented), SRAM
cannot be manufactured with the high memory density of DRAM. Historically,
DRAM chips provide a ratio of about 4 to 1 in the number of memory cells
provided relative to SRAM chips for the highest-density memory chips of each
type. The DRAM memory array, requiring only enhancement transistors, can
be fabricated in either CMOS or NMOS technologies. The peripheral circuitry
such as decoders, selectors, sense amps, and output drivers can also be designed
for either technology. Most new DRAMs are designed for CMOS processes to
minimize power dissipation in the peripheral circuitry.

Dynamic RAM gets its name because the charge stored on the capacitor
cell leaks off with time, causing the stored value to be dynamic. If a logic state
is represented by a high voltage level on the capacitor cell, this voltage level
decreases for a p-well or p-type substrate device because of various leakage
paths until the value is indeterminate or changes to the complementary state.
Conversely, for an n-well or n-type substrate, the cell voltage increases with
leakage. The dynamic nature of this storage mechanism is described more fully
in Sec. 9.6. To prevent loss of data, the voltage on the capacitor cell must be
sampled and restored within a specified time period. This sample-and-restore
operation is called a memory refresh; it takes additional external circuitry to
ensure that all memory cells are refreshed periodically. A value of 2 ms is a
typical specification for the maximum time period between refreshes for DRAM
memories.

At one time, most DRAMs were manufactured using a three-transistor cell.
This cell, shown in Fig. 9.11-1, is based on charge stored on a capacitor with
one transistor acting as a buffer to drive the read data line, one transistor acting
as a read-select switch, and a third transistor acting as a write-select switch.
All transistors are minimum or near-minimum size to reduce layout area. The
three-transistor cell requires four bus lines for operation. These bus lines include
separate read and write selects and corresponding read and write data lines like
those shown in Fig 9.8-1. Providing a buffer transistor to drive the data line during
aread operation prevents degradation of the stored charge during a read operation.
However, the charge on the capacitor must still be refreshed periodically because
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FIGURE 9.11-1
Three-transistor dynamic RAM cell.

of the leakage problems mentioned earlier. The memory refresh is performed by
executing a read operation followed by a write operation. The three-transistor cell
is robust with respect to the read operation because the stored charge is isolated
by a buffer transistor.

Further search for increased memory density brought about the one-transistor
DRAM cell. A typical cell with a single select transistor and capacitor for charge
storage is shown in Fig. 9.11-2. The single transistor is a pass transistor that
serves to connect the stored value to a data bus under control of a select line. The
select line simultaneously selects all transistors along the same row, causing data
to be placed on the column lines corresponding to each selected cell. Although
valid data appear along every column, only one of these columns is further
selected for connection to the output on typical DRAMs. These one-transistor
cells are formed into a memory architecture as shown in Fig. 9.8-1.

Select J_
1

Data

FIGURE 9.11-2
One-transistor dynamic RAM cell.
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To keep the size of a dynamic memory cell small, both the select transistor
and the storage capacitor must be small. The select transistor is a minimum or
near-minimum size device. The small storage capacitor is required to charge the
data line through the select transistor during a read operation. Because of the
length of the data line, its capacitance is usually large compared with storage
cell capacitance. When the select transistor connects the storage cell capacitance
and the data line capacitance, the charge is shared to equalize the voltage across
the two capacitors that now appear in parallel. Unfortunately, the charge on the
larger data line capacitance will have more effect on the final data line voltage
than the charge from the small memory cell capacitance. Thus, clever techniques
and sensitive circuits are necessary to reliably sense the stored value of a DRAM
cell.

One simple technique commonly used to sense the state of a dynamic mem-
ory cell involves splitting the data line into two equal halves, thereby splitting
the capacitance. Both halves of the data line are precharged to a voltage approx-
imately midway between the high and low logic levels. When a select line goes
high, it connects a storage cell capacitor to one of the data line halves; the other
half remains unselected. If a comparator circuit is connected with each data line
half serving as an input, then even the small change in data line voltage caused
by the selected capacitor cell can be detected. The inactive data line half serves
as a reference point. This technique requires a comparator for each data line.
A typical 256k X 1 DRAM has 512 data lines. The necessity of providing 512
comparators without using excessive area requires a simple comparator circuit.

Figure 9.11-3 shows a comparator circuit (also known as a sense amp) that
has been used to sense the state of DRAM memory cells. This circuit is a flip-flop
with special provision to break the cross-coupled links between the two inverters.
Before a read operation, the column select, Vg, and sense lines are set low. To
execute a read operation, the data lines are precharged to equal voltages (Vggr);
the desired data cell is gated by a row select to a column line, causing a slight
voltage imbalance; the cross-coupled feedback lines of the ﬂip—ﬂop are connected
(VEr); and the flip-flop is enabled (Sense). The flip-flop was in a quasi-stable state
before the sense line was asserted. The final state of the flip-flop is determined
by the slight difference in voltage of the two data column halves caused by the
selected memory cell. A later column select signal chooses one of the comparator
outputs as the desired data.

Because of the regenerative action of the flip-flop, the data line half will
be driven all the way to a high or low voltage, depending on the memory cell
contents, and the selected memory cell on each column will be refreshed. That
is, if the data cell voltage was higher than the precharged data line value, the
flip-flop will switch to drive that half of the data line toward the supply voltage,
thereby recharging the selected data cell. Conversely, a low data cell voltage will
be discharged toward ground. All memory cells of a DRAM are refreshed by
reading a cell on every row because all cells on a row are refreshed when any
cell on that row is read. If a memory contains N storage cells and is organized
as a square, the complete refresh operation requires a number of reads equal to
the square root of N .
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As DRAMSs have gotten larger and storage cells smaller, the ratio between
data-line capacitance and memory cell capacitance has increased because of longer
data lines and smaller memory cells. To demonstrate how this ratio affects the
sensing voltage, consider the following example.

Example 9.11-1. Sensing voltage versus cell capacitance Determine the volt-
age change on a DRAM data line caused by connection to a memory cell in terms
of data line capacitance and memory cell capacitance.

Solution. Let the subscript ¢ refer to the memory cell, and the subscript d refer to
the data line. Before the memory cell is selected,

_— Q4
i g
and
Oc
Ve==
c Ce

After the cell is selected, the charge is redistributed so that both capacitors are at
the same voltage, V¢. Then

O¢ Q4 + Oc

W*q"q+a

The change in data-line voltage will be

C
Va—Vi=(Vq Vc)cd T G
This analysis shows that the change in data-line voltage that must be sensed is the
initial difference between the data-line and memory cell voltages diminished by the
ratio of the memory cell capacitance to the total capacitance. Typical capacitance
values are C. = 40 fF and Cy = 1 pF. Thus, an initial 2.5 V difference is divided
by 25, resulting in only a 100 mV change in the data-line voltage. It is difficult to
detect such a small change, but modern DRAMs are able to do so reliably.

DRAMs have the highest sales volume of memory chips fabricated today.
The simple storage cell described in this section leads to high density and low
cost per bit. The requirement for refresh of DRAM cell contents is an important
consideration in DRAM applications. The small cell/data-line capacitance ratio
hinders rapid sensing of memory cell state. Further decrease in the cell/data-line
capacitance ratio is an important factor in the design of next generation DRAMs.

9.12 REGISTER STORAGE CIRCUITS

Previous sections described the organization and characteristics of the major
types of semiconductor memories. These descriptions were for memories that
are usually implemented as stand-alone chips packed with as many memory cells
as the current technology allows. Other applications for memory cells are found
within sequential machines where the machine state must be stored. Sometimes
this temporary storage is accomplished with the shift register described earlier.
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Other times, the data must be stored for longer than one clock period. For
example, a general-purpose register within a microprocessor typically must hold
data while other operations are performed. The following sections describe two
types of storage cells that are used within sequential digital systems.

9.12.1 Quasi-Static Register Cells

Figure 9.12-1 shows a way to combine two inverters, two pass transistors, and a
nonoverlapping two-phase clock to provide a quasi-static register cell. Although
the quasi-static register cell uses exactly the same components as a two-stage
dynamic shift register (see Sec. 9.6), these components are interconnected in a
different way. The output of a first inverter is connected directly to the input of
a second inverter. One pass transistor, called the input pass transistor, controls
the input to the first inverter. The second pass transistor, called the feedback
transistor, controls a feedback path from the output of the second inverter to the
input of the first inverter.

The operation of the sample circuit of Fig. 9.12-1 is as follows. When a
binary value is to be stored in the register cell, the input pass transister is turned
on, and the feedback transistor is turned off. This is accomplished through use
of a LOAD signal ANDed with clock phase ¢; to control the gate of the pass
transistor. ¢, is low so that the feedback path is broken at this time. When the
input pass transistor is turned on, any signal applied to the D input of the register
cell is passed to the gate of the first inverter, resulting in the same logic value at
the output R of the second inverter (after two successive inversions). When the
input pass transistor is turned off, the value at the input node of the first inverter
is stored dynamically on the parasitic capacitance of that node. The value at the
output of the second inverter is actively driven and is logically equivalent to the
stored value at the input of the first inverter. During the ¢, clock phase the output
of the second inverter is fed back to the input of the first inverter, thus reinforcing
its logic value. As long as this feedback condition is applied often enough, the
quasi-static register cell will maintain its stored value.

If the register cell of Fig. 9.12-1 can maintain its stored value indefinitely,
why is this circuit connection called a guasi-static register cell rather than a static
register cell? The answer can be found by examining operation of the circuit
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¢ » LOAD <4
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T >
R
FIGURE 9.12-1

Quasi-static binary storage cell.
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over a clock cycle in which a LOAD signal does not occur. Of course, while
the ¢, clock phase that controls the feedback transistor is high, the stored value
is continuously reinforced. However, when the ¢; clock phase that controls the
input pass transistor is high but the LOAD signal is low, there is no active input to
drive the gate of the first inverter. If this condition persists for too long a period,
the logic value at this input gate may change because of charge leakage. Thus,
there is a maximum time for the ¢, clock connected to the feedback transistor to
remain in the low state and still ensure the integrity of the data value stored in
the cell. This condition places a lower bound on the clock frequency when quasi-
static registers are used.

Quasi-static register cells were common in early microprocessors. For exam-
ple, registers in the Motorola 6800 series of microprocessors were composed of an
extension of the basic quasi-static cell that permitted dual-port read and write.!”
This cell, shown in Fig. 9.12-2, provides two gated load (write) signals on one
clock phase, so the register can be loaded from either of two buses. A feedback
path to refresh the stored logic value is provided on the alternate clock phase.
The controller (not shown) that generates the write signals should logically AND
them with ¢; to avoid conflict with the feedback path that is controlled by ¢, in
Fig. 9.12-2. The register output, taken from the center of the register cell, drives
a pulldown transistor. The output of this transistor is directed through pass tran-
sistors to one of two possible buses providing dual-port read. This cell requires
four control signals (each externally gated by clock phase ¢;), an alternate clock
signal ¢, to control the feedback path, two bus lines (each bus line is common
to one input and one output path), power, and ground. This cell, requiring a total
of 10 transistors, will be compared with the static register cell described next.

Write B (¢4) Read A (¢4)
Write A (¢4) Bus A Read B (¢4)
¢,
——
|| T |

H R

—

Bus B

FIGURE 9.12-2
Motorola 6800 microprocessor register cell.
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9.12.2 A Static Register Cell

Fully static register cells are frequently used within finite-state machines and
within microprocessor register arrays. These static register cells are similar to
the memory cell described previously for SRAMs, but often are designed with
different constraints than those necessary for dedicated memory chips. One such
static cell is based on the classical cross-coupled set-reset (SR) latch shown in Fig.
9.12-3a. This latch uses two cross-coupled NOR gates to achieve data storage. An
equivalent NMOS transistor-level circuit for this latch is given in Fig. 9.12-3b.
That this is a static register cell is obvious because the storage does not depend
on clock signals, but only on a directly coupled feedback path.

To explain static register cell operation, the SR latch circuit of Fig. 9.12-
3b will be transformed into a static register cell in two steps. Figure 9.12-4a
shows the previous circuit split into a cross-coupled inverter pair with the set
and reset pulldown transistors physically separated from the storage element by
bus lines. These buses hold signals representing the register cell’s logic state and
its complement. Figure 9.12-4b completes the transformation by including pass
transistors between the outputs of the cross-coupled inverter pair and the buses
to the set and reset pulldown transistors. The pass transistors provide a way to
isolate the register cell from the buses. Note that if both pass transistors are on,
the circuit is equivalent to that of Fig. 9.12-3b, except for additional resistance in
the set and reset pulldown paths because of the pass transistors. This basic static
register cell consists of six transistors, four for the cross-coupled inverters and
two for the connections to the buses. A CMOS version of this cell is created by
replacing the NMOS inverters of Fig. 9.12-4 with CMOS inverters.

Because the basic register cell of Fig. 9.12-4b can be isolated from the
buses, additional six-transistor register cells can be attached between the same

ol

: (o S i

(a (b)

.||_..

FIGURE 9.12-3
Cross-coupled NOR latch: (a) logic, (b) circuit.
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FIGURE 9.12-4
NMOS static storage cell.

two buses. Then a particular register cell is selected for read or write by selecting
(turning on) both pass transistors associated with that cell. Figure 9.12-5 shows
four CMOS static register cells that use the same two buses for read or write of
cell data.

This static register cell is similar to those used in SRAMs. Many applica-
tions, however, do not require the considerable address decoding circuitry and
sensitive read sense amplifiers necessary for large SRAM memory chips. There
are two reasons for this. The first is size. A typical microprocessor application
might require a register array with 1024 bits compared to commercial SRAMs
with 256k bits. The smaller size reduces capacitive loading and diminishes
noise sources, allowing simplified supporting circuitry. The second factor is
organization. As explained in Sec. 9.8, a square organization requiring both
row decoding and column selection to access a single bit is preferred for SRAMs.
A typical 1024-bit microprocessor application might have 32 registers, each
containing 32 bits. Each 32-bit register has its contents accessed as a unit. Thus,
only a 5-to-32 address decoder is required to select a 32-bit register. Based on
these concepts, then, a data value can be stored simply by selecting a cell and
asserting a set or reset line. A stored value can be read by asserting the desired
select line and accepting the logic value on the data bus. When this circuit is used
within a microprocessor register array, a dual-port read is possible by controlling
the two select transistors of a cell individually. Thus, one cell can have its stored
value gated to the data bus, while a second cell has its stored value gated to
the complement data bus. Many microprocessor instructions require two input
operands, making the dual-port structure highly desirable for a register array.

Select
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Two simple storage cells were described in this section. These are important
in digital design for applications that require static storage capability, for example
FSMs and microprocessors. Both quasi-static and fully static storage cells were
described. Individual storage cells are easily configured into n-bit wide registers
where n is set by the width of the data word. The simple design and operation of
these circuits make them ideal for many applications.

9.13 PLA-BASED FINITE-STATE MACHINES

Most digital systems are composed of combinational logic and memory com-
bined in a form called a finite-state machine (FSM) or, equivalently, a sequential
machine. A sequential machine is normally implemented as a forward path con-
taining combinational logic and a feedback path that includes memory. In classi-
cal digital systems the memory is provided by flip-flops or latches. Within MOS
integrated circuits a particularly simple form of sequential machine is possible.
This simple finite-state machine consists of a PLA that realizes the combinational
logic and a clocked shift register in the feedback path to serve as memory. A
dynamic shift register such as the one described in Sec. 9.6 is often used.

Figure 9.13-1 shows the classical form for one type of FSM, called the
Moore machine.'® This FSM is characterized by outputs that are isolated from
momentary input changes by memory. This type of FSM is of particular interest
here because an excellent integrated circuit implementation based on a PLA is
available. A block diagram of a PLA-based FSM is shown in Fig. 9.13-2, where a
PLA is augmented with pass transistors to gate its inputs and outputs. These pass
transistors in combination with the output buffers and double-rail drivers form a
clocked shift register so that the next state presented by the PLA OR plane is
available as the present state at the inputs to the PLA double-rail drivers after a
&1, ¢, clock sequence.

As discussed in Sec. 9.2, automatic PLA generation programs are available.
Based on logic equations in the sum-of-products form, a complete PLA layout
can be created and programmed to realize correctly the specified logic functions.
It is a simple task to augment a PLA generation program to include clocked
input drivers and clocked output buffers in the form shown in Fig. 9.13-2. Such
a PLA generator can be used in one of two modes: it can generate a standard

—_— — |
Inputs  « . « Outputs
* | Combinational | *
>l »| Memory |—»

logic

r —I FIGURE 9.13-1

Classical finite-state machine.
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FIGURE 9.13-2
FSM based on PLA with clocked stages.

PLA

consisting of combinational logic only, or it can generate a FSM formed

from a standard PLA plus clocked shift register feedback created by connecting
the output of a clocked output buffer to the input of a clocked double-rail driver.

To demonstrate the design of a FSM based on a PLA with clocked shift

register feedback, consider the following example.

Example 9.13-1. Finite-state machine Assume that 16 magnetic switches are
to be monitored remotely for a home security application. The 16 status bits cor-
responding to the state of the switches are available from the remote location
through an asynchronous serial data link as alternating bytes of data. The serial
data is received in 8-bit groups by a UART (universal asynchronous receiver/trans-
mitter) whose parallel output must be stored in two eight-bit registers that drive
LED indicators. Each register is composed of 8 D-type flip-flops activated by a
rising clock signal. The first byte of data received is displayed in one set of LED
indicators, and the alternate byte is displayed in a second set of LED indicators.
Thus, there are 16 LED indicators, one for each magnetic switch. This task can be
accomplished with a sequencer (FSM) that alternately selects one of two display
registers, A or B, to store the received data bytes. To simplify the design, assume
that the system is always synchronized with the first, third, and other odd bytes
going to display register A and the even bytes to display register B. The FSM must
also generate a data strobe signal (S) required by the UART to acknowledge that a
byte is accepted. Of course, the UART generates a data ready signal (R) whenever
a new status byte is available at its output. The logic components that compose the
receiving system are shown in Fig. 9.13-3. Show the logical design for the PLA
FSM block of this figure. .

Solution. A PLA FSM that satisfies these requirements is described by the state
diagram of Fig. 9.13-4 and the state transition table of Table 9.13-1. The FSM
waits in state g until the UART indicates that a data byte is ready by asserting the



STRUCTURED DIGITAL CIRCUITS AND SYSTEMS

Serial input from
remote location

|———-> UART
BO B7 R —‘
"t PLAFSM [* *
1’ nooﬁ 1’ e e ’8 B A <—¢2
Register A Register B
e d bt ' FIGURE 9.13-3
rDispIay A I r Display B I Block diagram for system
display.
S=1
A=1
B=0
=0
=0
=0
FIGURE 9.13-4
State diagram for status sequencer.
TABLE 9.13-1 .
State transition table for security monitoring
system
Present Next
Input state state Outputs
R Xy xy S B A
0 00 00 0 0 0
1 00 01 0 0 0
0 01 11 1 0 1
1 01 01 1 0 1
0 10 00 1 1 0
1 10 10 1 1 0
0 11 11 0 0 0
1 11 10 0 0 0
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data ready signal (R). Data ready causes a transfer to state b at the next clock,
causing a load signal (A) to display register A and a data strobe signal (S) to the
UART. It is important that the display register is loaded by the rising edge of load
signal A. Then the FSM waits in state b until the UART removes the data ready
signal (R), causing a transfer to state c. At this point, one byte of data has been
received and the value in register A updated. When a second byte from the UART
is ready, the resulting data ready signal (R) causes a transfer to state d at the next
clock, where the appropriate load signal (B) to display register B and data strobe
signal (S) are generated. Later, after data ready is removed by the UART, the FSM
returns to the first state and waits for new status data.

The state transition table (Table 9.13-1) provides the information necessary
to specify the logic operations to be performed by the PLA. Two state variables
are required to specify four different states. Call the present state variables X and
Y and the corresponding next state variables x and y. The states are encoded with
a Gray code (state a = 00, state b = 01, state ¢ = 11, state d = 10) so that only
one state variable changes for each state transition. The equations for the next state
variables and the outputs are obtained from the state transition table and are given

here.
x = RY + RX
y = RY + RX
S =XY +XY
A=XY
B=XY

From these equations, it is easily determined that a (3,5,5) PLA is required —that
is, three inputs by five product terms by five outputs. Two outputs form the next
state variables, while three other outputs generate the data strobe (S), load register
A (A), and load register B (B) signals. Figure 9.13-5 shows a complete PLA-based
FSM that implements the controller described here.

The ability to create a FSM automatically from a set of Boolean logic equa-
tions is an extremely powerful tool for digital system design. Small PLA-based
FSMs are frequently used as building blocks to construct larger digital systems
such as microprocessors and communications processors. Large PLA-based FSMs
suffer from two important limitations. A large PLA may be sparsely populated
with programming sites, resulting in excessive area to realize a function. Also,
large PLAs tend to be slower than alternative solutions when a large number of
terms must be processed. One alternative is to use several small PLA FSMs
rather than one large PLA FSM to implement required control logic; a second
alternative is described in the next section.

9.14 MICROCODED CONTROLLERS

The clocked PLA structure for FSMs explained in the previous section is an
excellent means to implement small digital controllers. The layout structure
is regular and can be generated automatically and compactly from the logic
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equations for a system. For larger digital systems, the logic design to imple-
ment a clocked PLA FSM becomes unnecessarily complex and the result-
ing large PLA, if generated, would be slow. These larger systems require a
method that overcomes the disadvantages of a large clocked PLA FSM yet
emphasizes regularity in design and layout. A common method to implement
complex digital systems in a regular way is to use a memory-based structure
known as a microcoded controller.

A microcoded controller (shown in Fig. 9.14-1) comprises a memory whose
contents are called microinstructions and a next-address sequencer that directs the
execution sequence of microinstructions. A microinstruction is a set of (usually)
encoded control bits that direct the operation of the logic during a clock cycle.
In essence, a microcoded controller is a special form of computer. The execution
hardware is fixed, and the functions performed are a result of instructions placed
in the microinstruction memory. This memory is frequently read-only memory
and is thus called microROM. As discussed earlier, memories are designed with
a dense, regular structure. Because the microcoded controller consists primarily
of memory, a microcoded controller can also be regular and dense. However,
because microcoded controllers require the overhead of a next-address sequencer
that requires design time and integrated circuit area, this technique is used pri-
marily for larger machines.

In its simplest form, the microcoded controller of Fig. 9.14-1 does not
require status inputs. The next-address sequencer simply generates the next
instruction addresses in a fixed pattern, for example, by incrementing a counter. A
microcoded controller configured in this way functions as an open-loop controller
with a fixed execution sequence. If status inputs are provided, the next-address
sequencer can modify the address of the next instruction, depending on conditions
presented by the status inputs. This provides a conditional branching capability.
In either case, the function of the microcoded controller is determined primarily
by a program placed in its microROM. Conceptually, programming a microcoded
controller is similar to programming a microprocessor in machine language. In
practice, however, the programming task is extremely tedious because of the
multiplicity of individual control bits whose state must be determined for each
instruction.

Figure 9.14-2 shows a typical memory organization for a microcoded con-
troller consisting of a microROM and a memory address register (MAR). While
most semiconductor memory chips are organized with a wide address bus and a

Microprogram 2‘;:‘“
memory adaress
sequencer

kel

Control Status  Simple microcoded controller.
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FIGURE 9.14-2

72-bit control word MicroROM architecture.

narrow data bus (nine multiplexed address lines and one data line for most 256k
DRAMs), the memory (microROM) for a microcoded controller usually has a
wide data bus relative to its address bus (perhaps 72 or more data lines compared
with 12 or fewer address lines). Most of these data lines are dedicated to driving
control points within the system. A few data lines are used to provide next-
address information to the next-address sequencer. The next-address sequencer
uses this address information along with status inputs from the controlled process
to calculate the address of the next microinstruction.

A microROM organized as in Fig. 9.14-2 would contain almost 300k bits
(212 x 72 = 294,912) of control information and would consume a corre-
spondingly large silicon area. An alternative form for the microROM is shown
in Fig. 9.14-3. This two-level microprogram memory consists of a relatively
small microROM driving a secondary memory called a nanoROM. This orga-
nization is based on two reasonable assumptions. First, only a few of the 272
possible control word combinations of Fig. 9.14-2 are necessary in a given
system. Second, many of the control words that are necessary will be required
repeatedly. If fewer than 256 unique control words are necessary, for exam-
ple, and the microprogram memory is organized as shown in Fig. 9.14-3, only
about 50k bits (212 x 8 + 28 X 72 = 51,200) of control memory are required.
This reduction in memory size is not free; the two-level microROM is slower
than a single-level memory because a memory access must traverse two mem-
ory units to produce data. Overlapped instruction fetch and execution and care-
ful design of control circuitry to minimize additional delay can partially offset
the slower control memory.

Nanoinstruction ROM 8 Mlcro;:r;gtﬁ ction
256 x72 4096 x 8
l l T T FIGURE 9.14-3

72 control and address 12 address Two-level microprogram memory.
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FIGURE 9.14-4
Microprogram-controlled microprocessor architecture.

A simplified block diagram for a microprogram-controlled microprocessor

is given in Fig. 9.14-4. The microprogrammed controller drives a data path with
registers, a shifter, and an arithmetic logic unit (ALU). A memory address register
(MAR), an instruction register (IR), and a program counter (PC) are also shown.
The operation of this design will be examined with the following example.

Example 9.14-1. Simple microprogrammed instruction execution Explain
how the microprogrammed controller of Fig. 9.14-4 could be used to add the con-
tents of two registers (register 4 and register 7) and return the sum to register 4. In
register transfer form, the required operation is

Register 4 <« Register 4 + Register 7

Solution. To start execution, a program memory address is placed in the PC. The
PC contents are placed on the address bus and a computer instruction is fetched
from program memory (not shown) over the data bus and placed in the IR. The
next-address sequencer uses the instruction in the IR to specify a particular starting
address in the microROM. The corresponding microprogram control word is output
from the microROM. This control word selects register 4 and subsequently gates
register 4’s contents to the ALU. If the register file is organized for dual-port read,
the same control word from the microROM simultaneously selects register 7 and
gates its contents to the ALU along a second bus. A next microROM control word
address is generated by the next-address sequencer. This address selects another
microROM control word, which causes the ALU to add its two input operands. Still
another address is provided by the next-address sequencer, and a third microROM
control word is selected. This last control word stores the result of the ALU operation
in register 4 and prepares the microprocessor to fetch the next instruction for the IR
from program memory by updating the PC contents.

This rather simplistic description of an ADD instruction demonstrates basic

operation of a microprogram-controlled data path. In many instruction sequences,
the next microROM address depends on results of an ALU operation. This allows
conditional branching to be implemented. The preceding description omits many
important considerations, including timing, pipelined operation, program counter
update, and control signal generation.
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It is appropriate at this point to compare the PLA and microprogrammed
forms of FSMs. In general, a microprogrammed control unit is more complex than
the corresponding PLA FSM because of the next-address generation circuitry. In
fact, a PLA FSM can be compiled automatically once the state equations for the
system are determined; this is much more difficult for a microprogrammed FSM.
The peripheral circuitry for a microprogrammed FSM usually depends on the
application and is thus not automatically generated. For these reasons, the PLA
FSM is normally best for small, simple systems where minimum design time and
circuit area are required. However, larger systems are sometimes created through
use of several small PLA FSMs to offset the difficulties with large PLAs. The
microprogram machine is usually more desirable for larger systems, where the
additional design and area penalties can be offset by its advantages. A signifi-
cant advantage is the ability to substantially change the details of operation by
modifying the contents of the microROM prior to manufacture without changing
the underlying circuit design and layout. This may be necessary for correction of
design errors or to create new capabilities for a working design.

General agreement on the form of FSM that is most appropriate for com-
mercial microprocessor design does not exist. Recent 32-bit microprocessors have
been designed using each of these FSM forms. For example, the Bellmac 32
uses several small PLAs for its control circuitry, and the HP 9000 uses a large
microprogrammed memory to control its operation. 20

9.15 MICROPROCESSOR DESIGN

The focus of this chapter is structured forms of digital integrated circuits. The
evolution of microprocessors provides an interesting study in the development of
structured logic forms. The earliest microprocessors, the Intel 4004 and 8008,
were born to counteract the high development costs for custom large-scale inte-
grated (LSI) circuits.?! Because custom large-scale circuits had to be designed for
specific tasks, it was often difficult to reach the sales volume required to justify
the development of a custom part. This literally forced the development of a
logic form (the microprocessor) that could be tailored to many different applica-
tions by the addition of control logic (programs) contained in separate integrated
circuit devices (memory chips). Only through the large application market that
could be served could the development costs for a custom LSI circuit like the
microprocessor be recovered.

As the complexity of microprocessors has increased, the design time and
costs have also expanded. Development of structured designs using regular
logic forms, such as those discussed in this chapter along with new computer-
aided design tools, has been required to allow the evolution of microprocessor
architecture. A comparison of the Intel 4004 die photograph (Fig. 9.15-1) with
the Intel 80386 die photograph (Fig. 9.15-2) provides a vivid illustration of the
relative percentages of silicon area used for regular structures and the relative
complexity of these two microprocessors.

Today’s basic microprocessor consists of a control unit and a data path.
This is shown by Fig. 9.14-4 of the previous section, where the data path consists
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FIGURE 9.15-1
Intel 4004 die photograph (Courtesy Intel Corp.).
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FIGURE 9.15-2
Intel 80386 die photograph (Courtesy Intel Corp.).

of registers, shifter, and ALU, and the control unit contains the microROM,
MAR, next-address sequencer, IR, and PC. Although these two subsystems
(control unit and data path) may be augmented with bus interface controllers,
memory management units, cache memory, and other functions by different
manufacturers, the present discussion will focus on the control unit and the
data path as essential components of a microprocessor. The data path for a
microprocessor is usually formed with 8, 16, or 32 identical bit paths. As a result
of these identical bit paths, there is an inherent regularity within the data path for
microprocessors. In contrast, the control units have varied structures, with most
present manufacturers choosing microcoded or PLA style controllers.
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9.15.1 Data Path Description

The data path, sometimes called the execution unit, is the place where the
microprocessor executes operations such as addition, subtraction, shifts, rotates,
and Boolean logical functions on data. Figure 9.15-3 shows a typical n-bit data
path structure consisting of a dual-port register array, a barrel shifter, an ALU,
interconnection buses, and support circuitry. Data flows along n parallel paths
in the horizontal direction, while control of the data flow and ALU operations is
provided vertically from the top of the data path. Execution of a typical data path
operation (see Example 9.14-1) requires selection of operands from two registers,
execution of an operation on the two selected operands, and placement of the
result in a register. The elements of the data path must be designed to facilitate
such operations.

The use of a dual-port register array is convenient for the fast execution of
microprocessor programs. This local storage is usually provided within the data
path as a small array of static memory cells. These are organized as an n X m
structure where # is the width in bits of the microprocessor data bus and m is the
number of registers provided. Because an ALU operation often requires access
to the contents of two registers before execution can commence, most register
arrays are organized with dual-port read access. With a dual-port register array,
contents from two separate registers can be fetched simultaneously to minimize
the delay before execution of an operation can begin.

The memory cell structure of a dual-port register array is quite similar to
that of an SRAM cell. There is a need, however, for two data buses and a
mechanism to allow the contents of each register to be switched to either data
bus. The memory cell used for the dual-port register array of the Berkeley RISC
processor?? is shown in Fig. 9.15-4. In this circuit, the designers took advantage
of the provision of double-rail data access to allow the contents from two registers
to be obtained simultaneously. Remember that double-rail access is normally
required to allow storage of data in a simple cross-coupled inverter storage cell.

Shift ALU
Select A Select B Timing constant operation
. i . Shift Opeération
Register address decode decode decode
~—] [ —>
Data | Dual-port Barrel , Data
bus register array shifter ALU . bus
| [———

FIGURE 9.15-3
Microprocessor data path.
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FIGURE 9.15-4
Dual-port register cell.

For a write operation. both data lines must be gated to the storage cell with
complementary values. However, the contents of the storage cell may be read
by gating the cell to either data line. If provision is made to drive the two select
lines, A and B, separately for a read operation, then it is possible to obtain the
data from a first register along one rail of the data bus (bus A), while the data
from a second register is obtained along the other rail of the data bus (bus B).
Of course, the data from the second bus will be the complement of the cell data
and must be inverted.

9.15.2 Barrel Shifter

A second component that is included in the data path for many microprocessors
is a structure that allows the contents of the data path to be shifted or rotated. A
variable-length shift of a bit on the data path requires the possibility of connecting
the selected bit to any one of several other bit paths. A 1-to-n multiplexer
circuit for each bit will accomplish the desired connection. An ideal means of
implementing multiplexer circuits is provided by the pass transistor available
within MOS integrated circuits.

A particularly useful circuit structure to implement a shift or rotate is known
as a barrel shifter. This circuit structure can be explained by first considering Fig.
9.15-5, which shows the circuit diagram of a general-purpose bus multiplexer
for a 4-bit data path. This multiplexer circuit requires 16 pass transistors to
allow connection of any bit line to any other bit line. If each pass transistor
could be selected individually, 16 control lines would be required. Because most
requirements are for parallel shifts with all bits moved the same number of bit
positions, only four shift possibilities are really necessary. Figure 9.15-6 shows
a better circuit with the pass transistors connected in groups of four, reducing
control line requirements from 16 to 4 separate control lines, 50-53. A particular
control line might be selected by encoding a 2-bit control field to drive a 2-to-
4 decoder circuit. The individual decoder output would enable the proper shift
control line. For a 32-bit data path, 1024 pass transistors are necessary to allow the
desired shift operations. Assuming only parallel shifts, 32 control lines selected
by a 5-bit encoded control field are sufficient.
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FIGURE 9.15-5
General bus multiplexer (16 control lines, Sqg . . . S33).

Studying the barrel shifter structure of Fig. 9.15-6 allows some interesting
observations. First, note that if the data path runs horizontally, it is necessary to
provide a vertical path for control to implement the shift function. This vertical
connection is sometimes used to insert or extract external data to or from the
data path along D4-D6 or DO-D3. Remembering that control signals SO-S3 for
the data path are provided vertically, the vertical path of the barrel shifter can
be used to insert data that is part of the data path control instruction. Data that
is part of the data path instruction is usually called literal or immediate data.
Second, recognition of the simplicity of the barrel shifter structure suggests that
the vertical pitch of the data path layout will probably be limited by the vertical
pitch of the register array or the ALU rather than by the barrel shifter. This
observation allows minimization of the horizontal dimension of a barrel shifter
while the vertical dimension is stretched to match the rest of the data path to
obtain area efficiency of the layout.

9.15.3 Arithmetic Logic Unit

The arithmetic logic unit (ALU) is the last important part of the data path to
be discussed. As its name suggests, the ALU must provide arithmetic and logic
operations on data furnished from the data path. The ALU accepts two operands,
performs a specified operation, and outputs the result. A block diagram of a 32-
bit wide ALU showing the inputs, control, and outputs is given in Fig. 9.15-7.
The A and B inputs of the ALU along with the dual-port register array discussed
earlier suggest that two parallel 32-bit buses should be provided in the data path
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TABLE 9.15-1

Common ALU operations

Mnemonic Operation

ADD Add

ADC Add with carry

SUB Subtract

SUBC Subtract with borrow
NEG Negate (2’s complement)
AND Logical AND

OR Logical OR

EOR Logical exclusive-OR
COM Complement (1’s complement)
CMP Compare

ASL Arithmetic shift left

between the register array and the ALU. This allows both inputs to receive data
simultaneously. One of the two parallel buses is used to return the result to the
register array after the ALU operation is complete.

The ALU for a microprocessor is normally expected to accomplish the
operations of Table 9.15-1 as a minimum. These 11 functions require a 4-bit
encoded operation code (often abbreviated as op code) for their selection, although
a 3-bit op code could be used if certain of the operations were combined. For
example, the operations ADD and ADC could be implemented by specifying the
ALU ADC operation with a separate control line to choose 0 or the previous carry
as the carry input to implement ADD or ADC, respectively. The function COM
could be implemented by using the EOR operation with the second ALU operand
set to all 1s. And the ASL function could be implemented by providing the same
operand to both ALU inputs and executing the ADD operation. Although a 3-bit
ALU operation code would suffice, other control lines are required to select the
carry input or set the second ALU operand to all Is.

The ALU execution time may limit the maximum clock frequency of the
microprocessor unless special care is taken for arithmetic operations. These oper-
ations are slowed by carry or borrow propagation delays across the width of the
ALU. This problem has worsened as data bus widths have moved from 8 through
16 to 32 bits. Most microprocessors use a precharged carry line with each bit
position of the ALU required to generate a carry propagate or a carry generate
signal. In addition, newer microprocessors include one or more levels of carry
skip circuits to speed carry propagation across groups of adjacent stages.

9.15.4 Microcoded Controller

Most present microprocessors use a form of microcoded controller (described
earlier in this chapter) to generate required control signals for operation. Both the
Motorola 68030 shown in Fig. 9.1-3 and the Intel 80386 shown in Fig. 9.15-2
are examples of microcoded microprocessors. Many times, bit fields of the micro-
processor instruction word can be used directly to simplify the control field of
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the microROM output. For example, encoded register specification fields can be
gated from the instruction register to the data path to save microcode bits. Also,
the operation code field of the instruction can directly specify the address in the
microROM where execution of an instruction should start. Specific details of
controller implementation vary considerably with different microprocessors and
different manufacturers.

9.16 SYSTOLIC ARRAYS

The ability to place hundreds of thousands of transistors on a single integrated
circuit and then replicate that circuit inexpensively has led many researchers to
propose the use of connected sets of identical integrated circuits to solve problems
in parallel. In particular, one class of parallel processors has been given the
name systolic arrays because the data flow through the array is analogous to the
rhythmic flow of blood through human arteries after each heartbeat.? In essence,
the concept of systolic processing combines a highly parallel array of identical
processors with local interconnections and rhythmic data flow. The array of
processors may span several integrated circuit chips. The connections are formed
so that data is accepted and processed at each stage, with the result ready for
output to the next stage as new data arrives at the current stage. The objective is
to keep most processors busy doing useful work to reduce the time to achieve a
result. Three examples of parallel computational systems using multiple, identical
circuits are described in this section.

9.16.1 Systolic Matrix Multiplication

Figure 9.16-1 shows a systolic interconnection of processors arranged to compute
the matrix multiplication product

C=AXB

Consider any single hexagonal processing stage of this array. An element of the
A matrix arrives from the upper left; an element of the B matrix arrives from
the upper right; and a partially computed element of the C matrix arrives from
the bottom. The calculation ¢;; = c¢;; + a;xby; is performed, and the new value
for ¢;; is passed up to the next processing stage. Two successive steps of this
calculation are shown in Fig. 9.16-1a and b. With this organization, all data are
moved over local interconnections, and one-third of the processors are busy at
each step. Eventually, the newly computed C matrix will surface at the top of the
array. The total computation can be performed faster with a systolic array such
as this than with a sequential computer because many of the required calculations
are performed in parallel.

9.16.2 General Linear System Solver

A second look at the systolic array of Fig. 9.16-1 reveals that local feedback
paths are not present. Although this is not a concern for matrix multiplication,




(b) Stepn + 1

tion: (a) Step n,

862



STRUCTURED DIGITAL CIRCUITS AND SYSTEMS 863

many engineering problems require a system of equations with feedback for their
solution. Consider the general linear system representation as

X(k+ 1) =AX (k) + Bu(k) (9.16-1)
and ‘
Y(k+1)=CX(k) + Du(k) (9.16-2)

The (k + 1)th value of the state variable vector X depends on the kth value of
the state vector. This implies a connection between the output of the state vector
calculation and the inputs to the next calculation. This would be difficult with the
array structure shown in Fig. 9.16-1. A systolic solution to this problem based on
simple processing stages is possible. The solution, shown in Fig. 9.16-2, requires
that all processors access a single common bus.

The operation of the state variable solver of Fig. 9. 16 2 can be explamed
as follows. Rows of coefficient values from the state variable matrix are stored in
circular shift registers within each processing stage. Only the output value from
this circular shift register is shown for each processing element of Fig. 9.16-2.
At the start of a new state vector calculation, the accumulator in each processing
stage is cleared as shown in step 1. As the calculation starts, x(k) is placed
on the common bus. Each processing stage simultaneously forms the product
a;1x1(k), where i is the process stage identifier. The resulting product is added
to the contents of the accumulator. Next, at the second step, x,(k) is placed
on the common bus; the product a;;x,(k) is formed; and the result is added to
the accumulator. Finally, for an nth order system, at the (n + 1)th step u(k) is
placed on the bus, the product b;u(k) is formed, and the result is accumulated.
With the completion of this step, the (k + 1)th state vector is computed.

If n + 1 processing stages are provided, then the output y(k + 1) can be
computed simultaneously with the next-state vector. Note that a total of n + 1
processors are used to solve for the next-state vector and output value inn + 1
iterations. Direct approaches to this problem require n? iterations. The single
common bus required here is less desirable than completely local interconnec-
tions, but a solution for feedback problems with only local communication is not
apparent. For the structure of Fig. 9.16-2, a single, large bus driver can be placed
at the left end to minimize delays associated with driving the long bus.

9.16.3 Bit-serial Processing Elements

To conclude this section, a look at a simple integrated circuit processing element
is appropriate. Even as integrated circuit technology scales to smaller dimensions,
the prospect for placing n parallel processing stages on a single silicon die is dim
for large n. The size of the typical processing stages and the interconnection
buses require too much silicon area. A partial solution to this problem uses
bit-serial processing stages. These stages are smaller than their m-bit parallel
counterparts by at least a factor of m, allowing m times as many stages to be
placed on a silicon die. If the processing stages are designed properly, individual
stages will interconnect directly as they are placed, thereby eliminating inter-
connection buses. This technique of “interconnection by default” is generally
useful within integrated circuit design, saving both layout time and silicon area.
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Initially, it might appear that bit-serial processing stages are a factor of
I/m as fast as parallel processing stages. This could negate the gain achieved
by placing m times as many processors on a silicon die. However, bit-serial
multipliers and adders can be designed to eliminate carry propagation delay. This
allows a net processing speed advantage when m bit-serial processing stages
replace a single m-bit parallel processing stage.

An example of a simple bit-serial multiplier is given in Fig. 9.16-3. The
algorithm for this particular bit-serial multiplier requires the multiplicand b in
parallel and the multiplier g in bit-sequential form. During the first iteration, the
first bit of the multiplier ag is input and ANDed with the parallel multiplicand b,
producing a set of variables called summands. The summands are added by the
full adders to compute a set of partial product bits and the first product bit Py.
Carries and partial product bits are saved and shifted through unit delay registers
so they are available for the next step. As the second multiplier bit a; is shifted
in, it is ANDed with the multiplicand and added to previous carries and partial
product bits. This produces a second bit of the product P;. At each iteration the
weight of each stage doubles, allowing the carry to be fed back within the same
stage. This operation continues until the multiplier a is exhausted and the entire
product has been shifted out of the multiplier.

The simple multiplier just presented requires one operand in parallel. It is
often desirable to accept both inputs in bit-sequential form. This is easily accom-
plished by using pipeline techniques or through other, slightly more complex bit-
serial multipliers.?*

The capability to map algorithms into hardware with large-scale integrated
circuits is revolutionizing the way signal processing is accomplished. The abil-
ity to create special-purpose processors to provide parallel solution of time-
consuming problems may be the next major step in increasing computational
speeds. The concept of systolic processing, with many processors working in
lock step fashion, is an important means to achieve this goal.

by b, b by

a;
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FIGURE 9.16-3
Serial-parallel multiplier.
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9.17 SUMMARY

The scope of a chapter describing structured digital circuits and systems is, of
necessity, quite broad. The topics presented include structured logic forms such
as PLAs, Weinberger arrays, gate matrix layout, and gate arrays (also sea-of-
gates). Clocking schemes for digital circuits were introduced as a prerequisite to
the treatment of dynamic storage, clocked logic, and sequential machines. Three
styles of clocked logic, including C2MOS, precharge evaluate logic, and domino
CMOS logic, were explained. A prototypical semiconductor memory architecture
was presented, followed by an investigation of the prominent types of memory
storage cells that are used. Salient limitations of both the architecture and the
individual cells were provided, usually by example. The memory sections were
followed by brief introductions to two widely used forms of sequential machine:
PLA FSMs and microcoded FSMs. With these concepts available, an overview
of microprocessor architecture was presented to show how the digital subsystems
just described can be formed into a complex digital system. And finally, systolic
arrays were introduced along with three examples: an array multiplier, a linear
system solver, and bit-serial multiplication.

The goal of this chapter was to provide an awareness and basic understand-
ing of structured digital circuits and examples of how these structures are used
to form complex digital systems. The information presented on digital integrated
circuit structures, along with the prerequisite background in digital system design,
allows the design of large digital systems within the integrated circuit medium.
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PROBLEMS

Section 9.1

9.1. If a manufacturer’s layout rate is eight transistors/day and a chip regularization
factor of 20 is achieved, how many man-years are required to lay out a 300,000
transistor chip?

9.2. Estimate the layout time for the Intel 8086 and the Motorola 68000 if a layout rate
of 10 transistors/day is assumed for each (use Table 9.1-1).

Section 9.2

9.3. Determine the sizing triplet (i, p, o) for a PLA that implements the following logic
equations.

X =PB+DB +PDA
Y =PA+ DA +PDA
Z =PB + DA

9.4. In terms of A, estimate the minimum pitch for repeating the AND plane section
of Fig. 9.2-5¢ using the design rules of Table 2B.2 of Appendix 2B. Consider
the spacings required to connect the rotated AND section into the OR plane.
Pitch is defined as the repetition spacing for repeated placements of layout seg-
ments.
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9.5.
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Find a folded PLA realization for the following equations so that the PLA sizing
triplet is reduced from a straightforward implementation. Can you determine if this
is the minimum realization? Why or why not?

X =ABC +AB +BC
Y = ABC +BC

Z = ABC

R = ABC + ABC

S =AB + ABC + BC

Section 9.3

9.6.

9.7.

9.8.
9.9.

Show an NMOS Weinberger NOR array implementation for the logic equations in
Prob. 9.3.

If no rows are shared between input terms and intermediate terms in a Weinberger
NOR array, compute the area required to implement the logic equations in Prob.
9.3 as the product of the rows and columns. Compare with a PLA implementation
for the same logic equations using the same metric.

What logic functions are defined by the symbolic gate matrix layout of Fig. 9.3-5?
Provide a symbolic gate matrix layout for the logic equations of Prob. 9.3.

Section 9.4

9.10.

9.11.

The logic equations of Prob. 9.3 are to be implemented in a CMOS gate array
using logic function blocks from the library of Table 9.4-1. Provide a list of the
blocks required and the specific logic equations implemented by each block for this
design. Use five or fewer types of standard logic function blocks.

Compare the number of transistors required for a straightforward CMOS implemen-
tation of the logic equations of Prob. 9.3 and the number of transistors required with
a gate array implementation using blocks from Table 9.4-1. Note that each standard
logic function block in Table 9.4-1 is composed of a multiple of 12 transistors (6
p-channel and 6 n-channel).

Section 9.5

9.12.

9.13.

For the circuit of Fig. 9.5-4a, let NOR2 be the gate connected directly to ¢, NOR1
be the gate connected to ¢, and INV represent the inverter. Identify the gate or
gates that cause each of the four delays shown in Fig. 9.5-4b. If the delays are 3,
4, and 5 ns for the INV, NOR2, and NORI gates, respectively, find the nonoverlap
time following (a) ¢, and (b) ¢,.

If a pair of inverters is added between each NOR gate output and its feedback
connection in Fig. 9.5-4a, show the resulting clock waveforms as in Fig. 9.5-4b.
Assume unit delays for all gates and inverters. (Note that such inverter pairs could
be sized geometrically to increase clock drive capability.)

Section 9.6

9.14.

For an NMOS dynamic storage circuit with a pass transistor drain diffusion area of
20 w2, a metal interconnect area of 20 2, a non-gate polysilicon area of 10 x? and
an inverter gate area of 6 u2, calculate an equivalent dynamic storage time constant
if Cgigr = 0.04 fF/p?, Cpe = 0.03 fF/p?, Cooly = 0.03 fF/u?, Cox = 0.4 fF/ 2,
and the leakage current /. = 0.5 fA/u?.
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9.15. In what ways does the use of a CMOS transmission gate rather than an NMOS pass
transistor affect the storage time of a dynamic storage circuit? Explain.

9.16. The level restorer transistor of Fig. 9.6-1c must be sized above some minimum
value and below some maximum value. What limits the minimum and maximum
allowable resistances for this transistor?

9.17. Consider the linear shift register of Fig. 9.6-2. If the input to stage A is brought
high during ¢, of a first clock cycle and then left low, prepare a timing diagram
showing the clock signals ¢ and ¢» and the outputs of each of the four shift stages
for five consecutive clock cycles.

9.18. Prepare a symbolic layout diagram (see Fig. 9.6-4) that shows a clocked shift
register that provides a left shift, no shift, or a right shift for four parallel bits.

Section 9.7

9.19. Generate geometrical layouts for the shift register circuits of Figs. 9.7-1 and 9.7-
2. Compare the complexity of the two layouts, particularly noting the number of
contacts required.

9.20. Provide circuits to implement the following logic equations using complex P-E gate
structures as in Fig. 9.7-4.

R =AB + BC + AC
S =ABC +ABC

9.21. Assume the drain and source of each transistor in Fig. 9.7-4 contribute an equal
incremental capacitance at each node. If the node between the transistors gated by
signals E and F is low, the signals D, B, and A are each low, the gate output
is precharged high, the clock is high, and the input signal F is then driven high,
calculate the effect of charge sharing on the output voltage if load capacitance
caused by subsequent connections is ignored.

9.22 P-E logic stages cannot be directly cascaded. Consider alternating P-E stages of n-
channel logic clocked by clkl with P-E stages of p-channel logic clocked by clk2.
Can clkl and clk2 be complementary signals? What conditions must clk1 and clk2
satisfy for this cascade configuration to work correctly?

9.23. Is it possible to realize the exclusive-OR function using only domino logic circuits?
Why or why not?

9.24. Create a table to compare static NMOS, static CMOS, P-E CMOS, and domino
CMOS logic gates in terms of total transistor count, static power dissipation (yes
or no), and output availability (duty cycle).

Section 9.8

9.25. IEEE Spectrum publishes a technology update issue in January of each year. Prepare
a |-2-page summary of the state of the art in semiconductor memories based on
the most recent update issue.

9.26. Quantify the row and column decode circuitry required for a IM X 1-bit memory (a)
organized as a square array and (b) organized with four more address lines feeding
the row decoder than the number of address lines feeding the column decoder.

Section 9.9

9.27. Assume the charge on the gate of an EPROM cell is 10 X 107!° C. Assume the gate
loses charge exponentially with a time constant of 10 years. Calculate the equiva-
lent leakage resistance from the gate to ground if the gate capacitance is 4 fF.
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9.28.
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Provide the layout for a macro defining the repeatable layout for a ROM memory
cell in the technology of Appendix 2B. Now estimate the area required for a 256k-
bit memory based on your cell layout. Estimate the size of a repeatable memory
cell in a commercial 256k-bit memory area if the array size is 10 mm?.

Section 9.10

9.29.

9.30.

Consider a 256k SRAM with row lines fabricated as 2 u polysilicon runs. Assume
the row select transistors are 2 & X 4 u and the select lines are 5 mm long.
Assuming a square memory array organization, (a) provide a reasonable estimate
of the delay across the select line, and (b) provide a reasonable estimate of the
delay across the select line if the row decoder divides the memory array into two
equal parts to halve the select line length. Use parameters from Appendix 2B.
For a 256k SRAM that dissipates 0.4 W in the memory array, estimate the resistance
of the polysilicon load resistors for the memory cells.

Section 9.11

9.31.

9.32.

9.33.

If a IM DRAM is built from cells with 40 fF storage capacitance and the minimum
differential voltage that will reliably trigger the sense amplifiers is 80 mV, determine
the maximum allowable capacitance for the word lines.

Assume that a DRAM storage cell is built using a 50 fF capacitor and that a voltage
of at least 3.8 V can be reliably recognized as a logic high. If a memory refresh
period of 2 s is sufficient under average conditions, estimate the total leakage
resistance from the storage cell to ground. Assume a memory refresh charges the
capacitor to 5 V.

In the design of a DRAM memory array, it is found that the delay along the
polysilicon row select line is too great, and the suggestion is made to widen the
row select line to reduce its equivalent resistance. Will this solution help reduce
the select line delay? Why or why not? Will this have other, detrimental effects
on the memory array? Explain.

Section 9.12

9.34.
9.35.

9.36.

9.37.

Show how to modify Fig. 9.12-5 for dual-port read capability.

The data lines of a static register array are precharged to the supply voltage and
have much larger capacitances than the register cell output. If the select line couples
a logic low output of the register cell to the precharged data line during a read
operation, what may happen to the register cell contents? Explain.

For a static register cell, determine a constraint on the relative size of the inverter
pulldown transistors and the select transistors to prevent disturbing the register cell
state through charge sharing during a read operation with precharged data buses.
Using the cross-coupled NOR structure for the static register cell array, is it
reasonable to provide a dual-port write capability? Explain.

Section 9.13

9.38.

A Gray Code counter has the distinguishing feature that successive counts never
differ in more than one bit. Thus, a 2-bit Gray Code counter counts as 00, 01,
11, 10, 00, 01, etc. An application requires a Gray Code counter that can count
up when an UP control line is asserted or down when a DOWN control line is
asserted. If both controls are low, the counter remains in its present state. External
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circuitry prevents the condition of both control inputs being high simultaneously.
Provide a state diagram, a state transition table, logic equations, and a logic/circuit
diagram of a PLA FSM to implement this counter.

Section 9.14

9.39.

9.40.

9.41.

For a typical microROM such as that of Fig. 9.14-2, consider the number of unique
72-bit control words available. With an execution rate of 10 MHz, how long would
it take to execute each control word exactly once?

Considering the typical ROM organization described in previous sections, compare
the maximum number of rows and columns that must be traversed during a bit access
using the single-level microROM of Fig. 9.14-2 and the two-level microprogram
memory of Fig. 9.14-3. Explam how this would affect access time for the two
memories.

Using the description of Example 9.14-1, list the control words necessary to perform
the same add operation if the register array is single-port read rather than dual-port
read.

Section 9.15

9.42.

9.43.

9.44.

9.45.

Estimate and compare the percentages of total area consumed by regular structures
on the die photographs of Fig. 9.15-1 and Fig. 9.15-2.

Assume the data path of a microprocessor has a 32-bit by 16 register array, a 0 to
32-bit shift capability for the barrel shifter, and the ALU operations of Table 9.15-
1. Ignoring timing and temporary results storage, specify the control lines required
to operate this data path. »

Using the barrel shifter of Fig. 9.15-6, indicate the states of the control lines and
the source and destination buses necessary to perform (a) a shift left by 2 bits
(quadruple the magnitude of the input), and (b) a shift right by 1 bit (halve the
magnitude of the input).

Four flag bits are common for most microprocessor ALUs These 1nclude the C,
N, Z, and V bits (carry, negative, zero, and overflow, respectively).

(a) The Z bit is normally generated using a distributed NOR gate structure at the
ALU output. Show how this might be accomplished.

(b) Explain how the N bit could be generated.

(c) Explain how the C bit could be generated.

(d) The V bit can be generated as the exclusive-OR of the final carry bit and
the penultimate (next to the highest) carry bit. Demonstrate that this is loglcally
correct for two’s complement arithmetic.

Section 9.16°

9.46.

9.47.

9.48.

Using the systolic array of Fig. 9.16-1 as a guide, show the systohc array structure
required to multiply two 4 X 4 square arrays to produce a4 X 4 result. How many
processors are required?

For the serial-parallel multiplier of Fig. 9.16-3, how many steps are required to
multiply two 4-bit numbers? Show the value of the sum bits and the carry bits for
each step when multiplying 6 by 5.

Symbolically show the hand multiplication of two 4-bit numbers a and 5. Demon-
strate that the ith product bit is a function of only the ith and lower-order multipli-
cand and multiplier bits.



