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Catalog Course Description: 

E E 508. Filter Design and Applications. (3-3) Cr. 4. 
Prereq: 501. Filter design concepts. Approximation 
and synthesis. Transformations. Continuous-time and 
discrete time filters. Discrete, active and integrated 
synthesis techniques. 

Instructor:   Randy Geiger 

294-7745 
 
rlgeiger@iastate.edu 
 
course linked at:   www.randygeiger.org 

contact information: 

mailto:rlgeiger@iastate.edu


Course Coverage 
• Filter design process 
• Approximation Problem 
• Synthesis 
• Acitve and passive realizations 
• Integrated Applications 

– Discrete-time filters 
• (SC and digital) 

– Continutous-time filters 
• PLLs (if time permits) 

Major emphasis will be placed on methods for implementing filters on silicon 



COURSE INFORMATION 
  
Room:  Lecture -    1157 Sweeny  
  Labs  -  2046 Coover  
-      
Time:  Lecture -  MWF  10:00 – 10:50 
  Laboratory -  Arranged 
               
    
Lecture Instructor: 
  Randy Geiger     
2133 Coover   
  Voice: 294-7745 
  e-mail: rlgeiger@iastate.edu 
Office Hours:   I maintain an open-door policy,  will reserve 11:00 to 12:00 
MWF specifically for students in EE 508.  Appointments are welcomed too. 
  
  

mailto:rlgeiger@iastate.edu


  
Course Description:   
              Filter design concepts. Approximation and synthesis. 
Transformations. Continuous-time and discrete time filters. Discrete, active 
and integrated 
synthesis techniques 
  
Course Web Site     http:/class.ee.iastate.edu/ee508/ 
 Homework assignments, lecture notes, laboratory assignments, and 
other course support materials will be posted on this WEB site.  Students will 
be expected to periodically check the WEB site for information about the 
course. 
  
Required Test: 
 There is no required text for this course.  There are a large number 
of books that cover portions of the material that will be discussed in this 
course and some follow.  Part of these focus on the concepts of filter design 
and some of the best are not new.  Those that focus more on integrated 
applications are mostly rather narrow in scope. 

http://class.ee.iastate.edu/ee203/


Grading: Points will be allocated for several different parts of the 
course.  A letter grade will be assigned based upon the total points 
accumulated.  The points allocated for different parts of the course are as 
listed below: 
  
  2 Exams                100 pts each 
  Homework  100 pts.total 
  Lab and Lab Reports 100 pts.total 
  Design Project                 100 pts. total 
  
Laboratory: 
 There will be weekly laboratory experiments.  Students will be 
expected to bring parts kits such as those used in EE 230 and EE 330.  To 
the maximum extent possible, students will be expected to work individually 
in the laboratory. 
 The design project will be the design of an integrated filter structure.  
Expectations will be to carry the design through post layout simulation.  The 
option for fabricating this integrated circuit will be available to students in the 
class. 
  



  
Homework: 
 Homework assignments are due at the beginning of the class period 
on the designated due dates.  Late homework will be accepted, without 
penalty, up until 5:00 p.m. on the due date in Room 2133 Coover. 
  
Additional Comments 
  
 I encourage you to take advantage of  the e-mail system on campus 
to communicate about any issues that arise in the course.  I typically check 
my e-mail several times a day.  Please try to include “EE 508" in the subject 
field of any e-mail message that you send so that they stand out from what is 
often large volumes of routine e-mail messages. 















What is a filter? 

A filter is an amplifier or a system that has a 
frequency dependent gain 

Conceptual definition: 

Note: 
 Implicit assumption is made in this definition that the system is linear.  In this 
course, will restrict  focus to filters that are ideally linear 

XIN(t) XOUT(t)Filter
Continuous-Time

Filters can be continuous-time or discrete-time 

XIN(nT) XOUT(nT)Filter
Discrete-Time



XIN XOUT( )T s

Continuous-time filters 

Continuous-time filters are often characterized in the frequency domain 
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XIN(t) XOUT(t)Filter
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Discrete-time filters 

Discrete-time filters are often characterized in the frequency domain 
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• Some (if not most) filters will exhibit some undesired nonlinearities 
  

• Frequency response characteristics often of most interest in filters 
 but in some filters, other characteristics may be of interest 
 Time delay 
 Spectral leakage 
 Inter-modulation distortion 
 

• Some classes of nonlinear circuits that are also termed “filters” and 
that have fundamentally different operational characteristics exist (but are 
not covered in this course) 

 Median Filters 
 Log Domain Filters 
 … 

Observations: 



Most classical filter applications stipulate gain vs f or phase vs f as the 
desired operating characteristics 
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Discrete-Time

XIN(t) XOUT(t)Filter
Continuous-Time

XIN(z) XOUT(z)( )H z

( ) ( )
( )

OUT

IN

X s
T s  = 

X s

( ) ( )
( )

OUT

IN

X z
H z  = 

X z



ω

( )T jω

ω( )T jω∠

Representation of magnitude and phase 
characteristics of a filter: 



 
Transfer functions of continuous-time filters 

with finite number of lumped elements are 
rational fractions with real coefficients 
 

Key properties of filters: 
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Transfer functions of discrete-time filters 

with finite number of real additions are 
rational fractions with real coefficients 
 

Key properties of filters: 
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Transfer functions of any realizable filter (finite 

elements) have no discontinuities in either the 
magnitude or phase response 

Key properties of filters: 

Is this property good or bad? 

1

1

ω

( )LPT jω

BAD ! 
Often want filters that will perfectly 
pass a signal in some frequency 
range  and perfectly block it outside 
this range  

Ideal lowpass filter 



 
 

 
Transfer functions of any realizable filter (finite 

elements) have no discontinuities in either the 
magnitude or phase response 

Key properties of filters: 

Often system designer will “want” overly challenging 
specifications but really only “need” something somewhat 
less demanding 
 
Critical that the circuit and system designer agree upon an 
appropriate relaxed filter requirement so overall system 
performance is met and designg time and circuit cost is 
acceptable 



Observations: 

Filter applications often have strict requirements on where 
major changes in magnitude or phase occur 
 
Window of transition from “pass-band” to “stop-band” often 
very narrow 

1

1

ω

( )LPT jω

Ideal lowpass filter 

The closer the designer comes to realizing the ideal 
lowpass characteristics, the more complicated and 
expensive the design becomes 



Filter design field has received considerable 
attention by engineers for about 8 decades 

• Passive RLC  
• Vacuum Tube Op Amp RC 
• Active Filters (Integrated op amps, R,C) 
• Digital Implementation (ADC,DAC,DSP) 
• Integrated Filters (SC) 
• Integrated Filters (Continuous-time and SC) 



Filter specifications often given by bounds for 
acceptable characteristics in frequency domain 

 

Any circuit that has a transfer function that does not enter the 
forbidden region is an acceptable solution from a performance 
viewpoint 

Filter design must provide margins for component tolerance, 
temperature dependence, and aging 

ω

( )T jω

1 1+ε1

1
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This example characterized by the three parameters {ε1, ε2, ε3} 



Any circuit that has a transfer function that does not enter the 
forbidden region is an acceptable solution from a performance 
viewpoint 
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Any circuit that has a transfer function that does not enter the 
forbidden region is an acceptable solution from a performance 
viewpoint 

ω
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• Minor changes in specifications can have 
significant impact on cost and effort for 
implementing a filter 
 

• Work closely with the filter user to 
determine what filter specifications are 
really needed 
 

• This will become increasingly important as 
many (most) system designers in the 
future will have weak background in filter 
issues 
 



EE 508 
HW 1 

Fall 2012 
 

Short Assignment – due Friday of this week 
 

 The seemingly simple problem of obtaining a rational fraction that approximates a 
desired transfer function can become quite involved and, with the exception of a few 
standard approximations, there is still often no known technique for obtaining a transfer 
function.  In this assignment, you will be asked to use whatever techniques you have 
available to obtain a transfer function that approximates a given magnitude response.    A 
metric defined below will be used to assess how good your approximation is for this 
assignment. 
 
 Consider the desired “M” transfer function shown below where the frequency axis 
is linear. 
 
 

1 2

1

ω

0.5

TD(ω)

 





End of Lecture 1 



EE 508 

Lecture 2 

Filter Design Process 



Filter design field has received considerable 

attention by engineers for about 8 decades 

• Passive RLC  

• Vacuum Tube Op Amp RC 

• Active Filters (Integrated op amps, R,C) 

• Digital Implementation (ADC,DAC,DSP) 

• Integrated Filters (SC) 

• Integrated Filters (Continuous-time and SC) 

Review from Last Time 



Filter:  Amplifier or system that has a frequency-

dependent gain 

 
• Filters are ideally linear devices 

 

• Characteristics usually expressed as either desired frequency 

response or time domain response 

 

• Transfer functions filters with finite number of lumped elements are 

rational fractions with real coefficients 

 

• Transfer functions of any realizable filter (finite elements) have no 

discontinuities in either the magnitude or phase response 

Review from Last Time 



Review from Last Time 
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Review from Last Time 

Any circuit that has a transfer function that does not enter the 

forbidden region is an acceptable solution from a performance 

viewpoint 

ω
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• Minor changes in specifications can have 

significant impact on cost and effort for 

implementing a filter 

 

• Work closely with the filter user to 

determine what filter specifications are 

really needed 

Review from Last Time 



Is there a systematic way to design filters? 

• All filter circuits with a finite number of lumped 

elements have a transfer function that is a 

rational fraction in s  

• All digital filters have a transfer function that is a 

rational fraction in z 

• Most (ideally all) of the characteristics of a filter 

are determined by the transfer function 

Observations: 



Is there a systematic way to design filters? 
(Consider continuous-time first) 

 T s

gm

Specifications Transfer Function

Circuit

? ?

Filter Design Strategy:   Use the transfer function as an intermediate 

step between the Specifications and Circuit Implementation



Is there a systematic way to design filters? 
(Consider continuous-time first) 

 T s

gm

Specifications Transfer Function

Circuit

? ?

Filter Design Strategy:   Use the transfer function as an intermediate 

step between the Specifications and Circuit Implementation

Energy Storage 

Elements Create 

Frequency 

Dependence of T(s) 



Is there a systematic way to design filters? 

 H z

Specifications Transfer Function Computing 

System

? ?

Filter Design Strategy:   Use the transfer function as an intermediate 

step between the Specifications and Circuit Implementation

Delay Element 

Creates Frequency 

Dependence of H(z) 

k

Σ

Z
-1

(Consider discrete-time domain) 



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter

 T s

gm

Specifications Transfer Function

Circuit

? ?

Filter Design Strategy:   Use the transfer function as an 

intermediate step between the Specifications and Circuit 

Implementation



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter

Must understand the real performance 

requirements 

Obtain an acceptable approximating 

function 

Design (synthesize) a practical circuit or 

system that has a transfer function close to 

the acceptable transfer function 



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter

Must understand the real performance 

requirements 

Obtain an acceptable approximating 

function 

Design (synthesize) a practical circuit or 

system that has a transfer function close to 

the acceptable transfer function 

• Many acceptable specifications for a given   

application 

• Some much better than others 

• But often difficult to obtain even one that is useful 

• Many acceptable approximating functions for a  

given specification 

• Some much better than others 

• But often difficult to obtain even one! 

• Many acceptable circuits for a given  

approximating function 

Some much better than others 

• But often difficult to obtain even one! 

Important to make good decisions at each step in the filter design process  

because poor decisions will not be absolved in subsequent steps 



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter

• Order of approximating function directly affects 

cost of implementation 

 

• Number of energy storage elements in circuit is 

equal to the order of T(s)  (neglecting energy storage 

element loops) 

 

• High Q poles and zeros adversely affect cost 
(because component tolerances become tight) 

 

• Cost of implementation (synthesis) is essentially 

independent of the quality of the approximation if 

the order is fixed 

 

• Major effort over several decades was focused 

on the approximation problem 
 



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter

 

• Cost 

• Sensitivity 

• Tunability 

• Parasitic Effects 

• Linearity 

• Area 
• Major effort over several decades focused 

on  synthesis problem 

Some realizations are much better 

than others 
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Example:    

Design a filter that approximates the ideal lowpass filter 

Desired filter response 
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Example:    

Design a filter that approximates the ideal lowpass filter 

Desired filter response 
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Some additional approximating functions 
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Example:    

Design a filter that approximates the ideal lowpass filter 

Desired filter response 

A1

1
T =

s+1

A circuit that realize TA1 
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T s =
1+RCs

But not practical because C is too large! 
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Example:    

Design a filter that approximates the ideal lowpass filter 

Desired filter response 

A1

1
T =

s+1

A circuit that realize TA1 
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More practical (C must not be electrolytic)! 
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Example:    

Design a filter that approximates the ideal lowpass filter 

Desired filter response 

A1

1
T =

s+1

Some additional circuits that realize TA1 
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Time Domain and Frequency Domain Characterization 

XIN(t) XOUT(t)
Filter

XIN(s) XOUT(s)
 T s

Filters always operate in the time domain 

Filters often characterized/designed in the frequency domain 
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Time Domain and Frequency Domain Characterization 

Example: 
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Taking the Laplace transform of the differential equation, we obtain 

    OUT
IN OUT

1 1

1 1
 =  -  

b b

d

dt

    
    

     

V
V V L L L

OUT IN OUT

1 1

1 1
sV  = V  -  V

b b

   
   
   

  OUT

IN 1

V 1
T s  =  = 

V 1+b s



Time Domain and Frequency Domain Characterization 

Generalizing from the previous example: 

Time Domain 

XIN(t) XOUT(t)
Filter

Elements in filter are {R’s, C’s,L’s, indep sources, dep sources} 

The relationship between XOUT(t) and XIN(t) can always be expressed by a 

single time-domain differential equation as 

Assume n energy storage elements and no energy storage element loops in the circuit 

m n-1
 OUT  OUT IN

k k

k=0 k=0

 =  -  
n kk

n k k

d dd

dt dt dt
  

V VV

where the αk and βk are constants dependent on the values of the circuit elements 

Taking the Laplace transform of this differential equation, we obtain 

m n
n k k

 OUT k  IN k  OUT

k=1 k=1

s V  = s V  -  s V  



Time Domain and Frequency Domain Characterization 

Generalizing from the previous example: 

Time Domain 

XIN(t) XOUT(t)
Filter

m n-1
n k k

 OUT k  IN k  OUT

k=0 k=1

s V  = s V  -  s V  

If we define βn=1, this can be rewritten as 

n m
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Thus, the transfer function can be written as 



Time Domain and Frequency Domain Characterization 

Time Domain 
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How do the αk and βk parameters relate to the ak and bk paramaters? 

If we normalize the frequency-domain solution so that bn=1, then 

αk=ak and βk=bk for all k 



Time Domain and Frequency Domain Characterization 

Time Domain 

XIN(t) XOUT(t)
Filter
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Thus, the time-domain characterization of a filter which can be expressed as a 

single differential equation can be obtained directly from the transfer function 

T(s) obtained from a frequency-domain analysis of the circuit 

This differential equation does not contain any initial condition information 



Time Domain and Frequency Domain Characterization 

Time Domain 
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How do the αk and βk parameters relate to the ak and bk paramaters? 

If we normalize the frequency-domain solution so that bn=1, then 

αk=ak and βk=bk for all k 

XIN(kT)
Filter

XOUT(kT) XIN(z) XOUT(z)
 H z

If we define βn=1, this can be rewritten as 



Time Domain and Frequency Domain Characterization 

Time Domain Frequency Domain 

Thus, the time-domain characterization of a filter which can be expressed as a 

single difference equation can be obtained directly from the transfer function 

H(s) obtained from a frequency-domain analysis of the circuit 

This difference equation does not contain any initial condition information 

XIN(kT)
Filter

XOUT(kT) XIN(z) XOUT(z)
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EE 508 

Lecture 3 

Filter Concepts/Terminology 

Basic Properties of Electrical Circuits 
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Specifications Transfer Function

Circuit

? ?

Filter Design Strategy:   Use the transfer function as an 

intermediate step between the Specifications and Circuit 

Implementation

Energy Storage 

Elements Create 

Frequency 

Dependence of T(s) 

Is there a systematic way to design filters? 
Review from Last Time 



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter
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Filter Design Strategy:   Use the transfer function as an 

intermediate step between the Specifications and Circuit 

Implementation

Review from Last Time 



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter

Must understand the real performance 

requirements 

Obtain an acceptable approximating 

function 

Design (synthesize) a practical circuit that 

has a transfer function close to the 

acceptable transfer function 

• Many acceptable specifications for a given   

application 

• Some much better than others 

• But often difficult to obtain even one that is useful 

• Many acceptable approximating functions for a  

given specification 

• Some much better than others 

• But often difficult to obtain even one! 

• Many acceptable circuits for a given  

approximating function 

Some much better than others 

• But often difficult to obtain even one! 

Important to make good decisions at each step in the filter design process  

because poor decisions will not be absolved in subsequent steps 

Review from Last Time 



Filter Concepts and Terminology 

XIN(s) XOUT(s)
 T s

• A polynomial is said to be “integer monic” if the coefficient of the highest-

order term is 1 

 

• If D(s) is integer monic, then N(s) and D(s) are unique 

 

• If D(s) is integer monic, then the ak and bk terms are unique 

 

• The roots of N(s) are termed the zeros of the transfer function 

 

• The roots of D(s) are termed the poles of the transfer function 

 

• If N(s) and D(s) are of orders m and n respectively, then there are m 

zeros and n poles in T(s) 
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Filter Concepts and Terminology 

• A polynomial is said to be “integer monic” if the coefficient of the highest-

order term is 1 

 

• If D(z) is integer monic, then N(z) and D(z) are unique 

 

• If D(z) is integer monic, then the ak and bk terms are unique 

 

• The roots of N(z) are termed the zeros of the transfer function 

 

• The roots of D(z) are termed the poles of the transfer function 

 

• If N(z) and D(z) are of orders m and n respectively, then there are m 

zeros and n poles in H(z) 

XIN(z) XOUT(z)
 H z  
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Filter Concepts and Terminology 

XIN(s) XOUT(s)
 T s

• Key Theorem:  The continuous-time  filter is stable iff all poles lie in the 

open left half of the s-plane 

 

• Key Theorem:  The discrete-time  filter is stable iff all poles lie in the 

open unit circle 

 

• The zeros of T(s) need not lie in the left half plane to maintain stability 

 

• The zeros of H(z) need not lie in the open unit circle to maintain stability 
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XIN(z) XOUT(z)
 H z

 
 

 

m
i

i

i=0

n
i

i

i=0

a z
N z

H z  =  = 
D z

b z







• An s-domain rational fraction is termed minimum-phase if 
all poles and all zeros have a non-positive real part 

 

• An s-domain rational fraction is minimum-phase if it has no 
poles or zeros in the RHP or on the imaginary axis 

 

• A z-domain rational fraction is minimum-phase if the 
magnitude of all poles ad zeros are less that 1 

 

• A z-domain rational fraction is minimum-phase iff no poles 
or zeros lie on or outside of the unit circcle 

Filter Concepts and Terminology 

Minimum Phase Property 



Filter Concepts and Terminology 

XIN(s) XOUT(s)
 T s

Im

Re

s-plane

Im

Re

1

z-plane

Pole-zero Plots 

XIN(z) XOUT(z)
 H z



Filter Concepts and Terminology 

XIN(s) XOUT(s)
 T s

 

 

• If T(s) is a rational fraction with poles and/or zeros in the RHP, then         

obtained by reflecting all RHP roots around the imaginary axis back into the 

LHP has the following properties 
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 T s

a) minimum phase 

b) stable 

c)                                for all ω    
s=jωs=jω

T s T s

Note the phase of T(s) and            will differ   T s



Filter Concepts and Terminology 

If H(z) is a rational fraction with poles and/or zeros outside the unit circle, 

then         obtained by reflecting all roots outside  the unit circle back into 

the unit circle by the complex conguate reciprocal reflection and then 

scaling the transfer function by the magnitude of the reciprocal of the root  

has the following properties 

  

 H z

a) minimum phase 

b) stable 

c)                                       for all ω     j Tj T z=ez=e
H z H z




Note the phase of H(z) and            will differ  

XIN(z) XOUT(z)
 H z  
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Filter Concepts and Terminology 
XIN(s) XOUT(s)

 T s

Im
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s-plane Im

Re

s-plane
Im

Re

s-plane

Im
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1

z-plane
Im

Re

1

z-plane
Im

Re

1

z-plane

• Stable 

• Minimum Phase 

• Stable 

• Not minimum Phase 
• Not stable 

• Not minimum Phase 

XIN(z) XOUT(z)
 H z



Example:  Non-minimum Phase Transfer Function 

 
s-1

T s  = 
s+1  

 
22

1

2

2 2

ω + -1
T jω  = 

ω +1


 

-1

-1

ω
tan

-1
T jω  = 

ω
tan

1

 
 
 
 
 
 

Beware that arctan function in multi-valued and in CAD tools give “a” principle 

value that may or may not consider the quadrant of the two arguements 



Example:  Non-minimum Phase Transfer Function 

 
2

2

s -as+1
T s  = 

s +as+1  
 

   
1

2
2 2 2

2 22 2

1-ω +a ω
T jω  = 

1-ω + -a ω
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2

-1

2

-aω
tan

1-ω
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aω
tan

1-ω

 
 
 
 
 
 



Filter Concepts and Terminology 
XIN(s) XOUT(s)

 T s

Reflecting poles and zeros to maintain stability or establish minimum phase 

Im

Re

s-plane Im

Re

s-plane Im

Re

s-plane

Im

Re

s-plane Im

Re

s-plane Im

Re

s-plane

Not minimum Phase Minimum Phase Reflection 

Note:  magnitude of real part is preserved in reflection, imaginary part remains unchanged 



Filter Concepts and Terminology 

Reflecting poles and zeros to maintain stability or establish minimum phase 

XIN(z) XOUT(z)
 H z

Im

Re

1

z-plane
Im

Re

1

z-plane
Im

Re

1

z-plane

Im

Re

1

z-plane
Im

Re

1

z-plane
Im

Re

1

z-plane

Note:  complex conjugate reciprocal reflection maintains angle but magnitude of 

reflected root is the reciprocal of the magnitude of the original root 

Not minimum Phase Minimum Phase Reflection 



Complex Conjugate Reciprocal 

Reflection 

Im

Re

1

z-plane

eR jX 

e-1R j

CCRTX 

Express X in polar form as  

The complex conjugate reciprocal reflection is  



End of Lecture 3 
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Lecture 4 

Filter Concepts/Terminology 

Basic Properties of Electrical Circuits 



Filter Concepts and Terminology 
XIN(s) XOUT(s)

 T s

Reflecting poles and zeros to maintain stability or establish minimum phase 

Im

Re

s-plane Im

Re

s-plane Im

Re

s-plane

Im

Re

s-plane Im

Re

s-plane Im

Re

s-plane

Not minimum Phase Minimum Phase Reflection 

Note:  magnitude of real part is preserved in reflection, imaginary part remains unchanged 

Review from Last Time 



Filter Concepts and Terminology 

Reflecting poles and zeros to maintain stability or establish minimum phase 

XIN(z) XOUT(z)
 H z

Im

Re

1

z-plane
Im

Re

1

z-plane
Im

Re

1

z-plane

Im

Re

1

z-plane
Im

Re

1

z-plane
Im

Re

1

z-plane

Note:  complex conjugate reciprocal reflection maintains angle but magnitude of 

reflected root is the reciprocal of the magnitude of the original root 

Not minimum Phase Minimum Phase Reflection 

Review from Last Time 



Filter Concepts and Terminology 

• 2-nd order polynomial characterization 

• Biquadratic Factorization 

• Op Amp Modeling 

• Stability and Instability 

• Roll-off characteristics 

• Dead Networks 

• Root Characterization 

• Scaling, normalization, and transformation 



2-nd order polynomial 

characterization 
2s +as+b {a,b} 

2 2o

0

ω
s + s+ω

Q
{ωo,Q} 

2 2

0 0
s +2 ω s+ω {ζ, ωo} 

  2

1 2 1 2 1 2
s +(p +p )s+pp s+p s+p {p1,p2} 

  2 2 2s +2 s+ + s+ +j s+ -j       {α,β} 

    2 2 j θ -j θs +2rcos θ s+r s+re s+re {r,θ} 

with complex conjugate roots 



2-nd order polynomial 

characterization 

{a,b} {ωo,Q} {ζ, ωo} {p1,p2} 

{α,β} {r,θ} 

Alternate equivalent parameter sets 

 

Widely used interchangeably 

 

Easy mapping from one to another 

 

Defined irrespective of whether polynomial appears in numerator or 

denominator of transfer function 

 

If order is greater than 2, often multiple root pairing options so these 

parameter sets will not be unique for a given polynomial or transfer function 

 

If cc roots exist, these will almost always be paired together (unique) 



Biquadratic Factorization 

 
 

 

m
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n
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as N s
T s =

bs D s






If m or n is even, integer-monic polynomials N(s) or D(s)  can be expressed as 

 
k/2k

i 2

i 1i 2ii=0 i=1

P s  = c s  = (s +d s+d ) 

If m or n is odd, integer-monic polynomials N(s) or D(s)  can be expressed as 

   
(k-1)/2k

i 2

i 0 1i 2ii=0 i=1

P s  = c s  = s+d (s +d s+d ) 

• These are termed quadratic factorizations 

• If both N(s) and D(s) are expressed as quadratic 

factorizations,  quadratic pairs can be grouped to obtain a 

Biquadratic factorization  of T(s) 



Biquadratic Factorization 

In general, the biquadratic factorizations are not unique 

Pole and zero pairings can always be made so that all coefficients  

In the biquadratic factorizations are real 

-If roots are real, multiple choices for first-order factor and remaining roots  

can be partitioned into groups of 2 in different ways 

 

-Complex conjugate root pairs are generally grouped together so that all  

Coefficients are real 



Biquadratic Factorization 
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If n is even,  
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BQi 2

1i 0i

a s a s+a
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s b s+b





and where K is a real constant and all coefficients are real (some may be 0)  

If n is odd,  

 
 

m
i

n-1 /2
i 10 00i=1

n BQii i=1

i 00i=1

as a s+a
T s = K T (s)

bs s+b






 
   

 

where 

• Factorization is not unique 

• H(z) factorizations not restricted to have m<n 

• Each biquatratic factor can be represented by any of the 6 alternative  

parameter sets in the numerator or denominator 



Common Filter Architectures 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

αF

XOUT
XIN

α1
α2 αk

α0


Cascaded Biquads 

Leapfrog  

Multiple-loop Feedback 

• Three classical filter architectures are shown 

• The Cascaded Biquad and the Leapfrog approaches are most common 



Common Filter Architectures 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

Cascaded Biquads 

• Sequence in Cascade often affect performance 

• Different biquadratic factorizations will provide different performance 

• Although some attention was given to the different alternatives for biquadratic 

factorization, a solid general formulation of the cascade sequencing problem or 

the biquadratic factorization problem never evolved 

  1 2 mT s T T T



Gain, Bandwidth and GB 
Frequency Dependent Model of  Op Amps 

VOUT

V2

V1

 
GB

A s =
s

 1

A

GB
A s =

s+BW

Adequate model for 

most applications 

0 AGB =A BW

Most op amps are designed so that they behave as a first-order 

circuit at frequencies up to the unity gain frequency or beyond 

ω

A0

20dB/

decade

0dB

A(s)

BWA

A1(s)

Can usually model with a more-simplified gain expression 

A

0

GB
BW =  <<1

A
where 



Gain, Bandwidth and GB 
Effects of GB on closed-loop Amplifiers  
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Gain, Bandwidth and GB 
Effects of GB on closed-loop Amplifiers  
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most applications 
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Gain, Bandwidth and GB 
Summary of Effects of GB on Basic Inverting and Noninverting Amplifiers 
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Stability and Instability 

True or False? 

An unstable circuit will oscillate 

Achieving stability is a major goal of the filter designer 

Unstable circuits are of little use in designing filters 

False – unstable circuits will either latch up or oscillate.  Latch-up is often  

the consequence  of saturating nonlinearities of circuits that have positive 

real axis poles 

False – a filter is usually of little practical use if there are concerns about 

stability 

False – will discuss details later 



Theorem: 

If a circuit is unstable, then if this circuit is included as a subcircuit in a 

larger circuit structure, the larger circuit will also be unstable. 

Proof ?: 

Unstable 

Circuit
VOUTVIN

Unstable 

Circuit VOUTVIN

Larger Circuit 

Consider First Some Related Concepts  



Gain, Bandwidth and GB 
Consider “positive feedback” closed-loop amplifier  
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Feedback Amplifier is Unstable ! 



Gain, Bandwidth and GB 
Summary of Effects of GB on Basic Inverting and Noninverting Amplifiers with “Positive Feedback” 
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Both FB Amplifiers are Unstable 



Gain, Bandwidth and GB 
Consider Op Amp with RHP Pole (Unstable Op Amp) 
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Op Amp is Unstable, dc gain is negative 



Gain, Bandwidth and GB 
Consider Op Amp with RHP Pole (Unstable Op Amp) 
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• Feedback Amplifier is stable and performs very well! 

• Serves as counter-example for “Theorem”! 



 Consider another Filter Example:    

 

 

1 2 IN 2 2 OUT

2 1 1 OUT 1
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Consider Filter Example:    

VOUT
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R1
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RX (1+K)RX

Amplifier with gain K

VIN
VOUT

RX (1+K)RX

Amplifier with gain K

VIN
VOUT

• Stable Amplifier 

• But if used in above, filter will be unstable 

• Unstable Amplifier 

• But if used in above, filter will be stable 

• Serves as another counter example for 

“theorem” 



Theorem: 

If a circuit is unstable, then if this circuit is included as a subcircuit in a 

larger circuit structure, the larger circuit will also be unstable. 

Proof: 

Unstable 

Circuit
VOUTVIN

Unstable 

Circuit VOUTVIN

Larger Circuit 

This theorem is not valid though many circuit and filter 

designers believe it to be true !  



Filter Concepts and Terminology 

XIN(z) XOUT(z)
 H z

XIN(s) XOUT(s)
 T s

Stability Issues: 

 

   Is stability or instability good or bad? 

Often there is an impression that instability is bad  - but why? 

Some observations: 

• An unstable filter does not behave as a filter 

• Unstable filter circuits are often used as waveform generators 

• If an unstable circuit is embedded in a larger system, the larger system may 

 be stable or it may be unstable 

• If a stable circuit is embedded in a larger system, the larger system may be 

stable or it may be unstable 

• Digital latches, RAMs, etc. are unstable amplifiers 

• Some of the best filter circuits include an embedded unstable filter 

Stability or Instability is neither good or bad, but it is important for the designer 

to be aware of the opportunities and limitations associated with this issue 



End of Lecture 4 
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Lecture 5 

Filter Concepts/Terminology 

Basic Properties of Electrical Circuits 



2-nd order polynomial 

characterization 
2s +as+b {a,b} 
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0 0
s +2 ω s+ω {ζ, ωo} 
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s +(p +p )s+pp s+p s+p {p1,p2} 

  2 2 2s +2 s+ + s+ +j s+ -j       {α,β} 

    2 2 j θ -j θs +2rcos θ s+r s+re s+re {r,θ} 

with complex conjugate roots 

Review from Last Time 



Biquadratic Factorization 
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and where K is a real constant and all coefficients are real (some may be 0)  
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where 

• Factorization is not unique 

• H(z) factorizations not restricted to have m<n 

• Each biquatratic factor can be represented by any of the 6 alternative  

parameter sets in the numerator or denominator 

Review from Last Time 



Common Filter Architectures 
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Cascaded Biquads 

Leapfrog  

Multiple-loop Feedback 

• Three classical filter architectures are shown 

• The Cascaded Biquad and the Leapfrog approaches are most common 

Review from Last Time 



Gain, Bandwidth and GB 
Summary of Effects of GB on Basic Inverting and Noninverting Amplifiers 
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Single-pole roll-off characterization 
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Single-pole roll-off characterization 
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Roll-off characterization 

At frequencies well-past a pole or zero, each LHP pole (real or complex) 

causes a roll-off  in magnitude on a log-log axis of -20dB/decade and each 

LHP zero causes a roll-off of +20dB/decade 

 

At frequencies of magnitude comparable to that of a pole or zero, it is not easy 

to predict the roll-off in the magnitude characteristics by some simple 

expression 

 

 

 



Distortion in Filters 

• Magnitude Distortion 
– frequency dependent change in gain of a circuit 

(usuallybad if building amplifier but critical if building a 
filter) 

• Phase Distortion 
– a circuit has phase distortion if the phase of the 

transfer function is not linear with frequency 

• Nonlinear Distortion 
– Presence of frequency components in the outut that 

are not present in the input (generally considered bad 
in filters but necessary in many other circuits) 



Dead Networks 

XIN XOUT T s
XOUT T s

The “dead network” of any linear circuit is obtained by setting ALL 

independent sources to zero. 

• Replace independent current sources with opens 

• Replace independent voltage sources with shorts 

• Dependent sources remain intact 

 
 

 

N s
T s  = 

D s  D s

D(s) is characteristic of the dead network and is independent of where 

the excitation is applied or where the response is measured 

D(s) is the same for ALL transfer functions of a given “dead network” 



Dead Networks 

R
C

VIN

VOUT

R

C

iR

 
1

T s  = 
1+RCs

 D s  = 1+RCs

Example: 

Dead Network 



R
CiIN

VOUT

R
CiIN

iOUT

R

C

VOUT

iIN

Dead Networks 

  OUT

IN

R
 = T s  = 

1+RCs

V

i 

 D s  = 1+RCs

  OUT

IN

RCs
 = T s  = 

1+RCs

i

i 

 D s  = 1+RCs

  OUT

IN

1
 = T s  = 

Cs

V

i 

 D s  = Cs

Note:  This has a different dead network! 

R
C

Dead Network

R
C

Dead Network

R
C

Dead Network



XOUT
 D s

This is an important observation.  Why is it true?  

D(s) is the same for ALL transfer functions of a given “dead network” 

Plausibility argument: 

Yk1

Y
k2

Y
k
3

Y
kn Vk

Ik

V1

V2

V3

Vn

Consider a network with only admittance 

elements and independent current sources 

At node k, can write the equation 

 
1

ki k iY V -V I
n

k

i
i k







XOUT
 D s

D(s) is the same for ALL transfer functions of a given “dead network” 

Plausibility argument: 

Yk1

Y
k2

Y
k
3

Y
kn Vk

Ik

V1

V2

V3

Vn

11 12 1n

21 22 2n

n1 n2 nn

Y Y ..... Y

Y Y ..... Y

.

.

Y Y ..... Y
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2

V

V

.

.

.

Vn

 
 
 
 
 
 
 
 
  

1

2

n

I

I

.

.

.

I

 
 
 
 
 
 
 
 
  

=

Doing this at each node results in the set of equations 

Y V = I
In matrix form 

The nodal voltages are given by 

-1V=Y I



XOUT
 D s

D(s) is the same for ALL transfer functions of a given “dead network” 

Plausibility argument: 

Yk1

Y
k2

Y
k
3

Y
kn Vk

Ik

V1

V2

V3

Vn

The nodal voltage Vk in this solution is given by 

the ratio of two determinates where the one in 

the numerator is obtained by replacing the kth 

column with the excitation vector and the one in 

the denominator is the determinate of the 

indefinite admittance matrix Y 

-1V=Y I
11 12 1n

21 22 2n

n1 n2 nn

11 12 1n

21 2

1

2

n

2 2n

n1 n2 nn

Y Y .. . Y

Y Y .. . Y

.

.

Y Y .. . Y
V

Y Y ..... Y

Y Y ..... Y

.

.

Y Y ...

I

I

I

.. Y

k 

Note the denominator is the same for all nodal 

voltages and is independent of the excitations – 

that is, it is dependent only upon the dead network 



XOUT
 D s

D(s) is the same for ALL transfer functions of a given “dead network” 

Plausibility argument: 

Yk1

Y
k2

Y
k
3

Y
kn Vk

Ik

V1

V2

V3

Vn

11 12 1n

21 22 2n

n1 n2 nn

11 12 1n

21 2

1

2

n

2 2n

n1 n2 nn

Y Y .. . Y

Y Y .. . Y

.

.

Y Y .. . Y
V

Y Y ..... Y

Y Y ..... Y

.

.

Y Y ...

I

I

I

.. Y

k 

Note the denominator is the same for all nodal 

voltages and is independent of the excitations – 

that is, it is dependent only upon the dead network 

Thus all branch voltages and all branch currents have 

the same denominator and this (after multiplying through by the 

correct power of s to make Vk a rational fraction) is the characteristic 

polynomial D(s) 

This concept can be extended to include 

independent voltage sources as well as dependent 

sources 



Root characterization in s-plane 
(for complex-conjugate roots) 

For low Q,     θ is large 

For high Q,    θ is small 

1-1 relationship between angle θ and Q of root 

2 20
0s s

Q

w
w

 
  

 

θ

Im

Re

s-plane

ωo



Root characterization in s-plane 
(for complex-conjugate roots) 

for θ=90o,  Q=1/√2  

2 20
0s s

Q

w
w

 
  

 

θ

Im

Re

s-plane

ωo

2 2
20 0
0 0

1 1 1 1
4 4

2 2 2 2
s

Q Q Q Q

w w
w w

 
                  

 

 1 2tan 4 1Q  

roots located at 



End of Lecture 5 
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Lecture 6 

Scaling, Normalization and 

Transformation 



Dead Networks 

XIN XOUT T s
XOUT T s

The “dead network” of any linear circuit is obtained by setting ALL 

independent sources to zero. 

• Replace independent current sources with opens 

• Replace independent voltage sources with shorts 

• Dependent sources remain intact 

 
 

 

N s
T s  = 

D s  D s

D(s) is characteristic of the dead network and is independent of where 

the excitation is applied or where the response is measured 

D(s) is the same for ALL transfer functions of a given “dead network” 

Review from Last Time 



Root characterization in s-plane 
(for complex-conjugate roots) 

for θ=90o,  Q=1/√2  

2 20
0s s

Q




 
  

 

θ

Im

Re

s-plane

ωo

2 2
20 0
0 0

1 1 1 1
4 4

2 2 2 2
s

Q Q Q Q

 
 

 
                  

 

 1 2tan 4 1Q  

roots located at 

Review from Last Time 



Scaling, Normalization and 

Transformations 

• Frequency scaling 

• Frequency Normalization 

• Impedance scaling 

• Transformations 
– LP to BP 

– LP to HP 

– LP to BR 



Scaling, Normalization and 

Transformations 
Frequency normalization: 

0
n

s
s




Frequency scaling: 0 ns s

Purpose: 

ω0 independent approximations 

 

ω0 independent synthesis 

 

Simplifies analytical expressions for T(s) 

 

Simplifies component values in synthesis 

 

Use single table of normalized filter circuits for given normalized 

approximating function 

 
Note:   The normalization subscript “n” is often dropped 



Frequency normalization/scaling example 

 

0
n

s
s




 
6000

6000
T s

s




Define ω0=6000 

  0

0

T s
s








 
1

1
n n

n

T s
s




Normalized transfer function: 

 T jω

ω0 ω

 n nT jω

1 ωn



Frequency normalization/scaling example 

 
 

1

1
n n

n

T s
s




Synthesis of normalized function 

Vo

VIN

1

1  
1

1
T s

s




 nT jω

1 ωn



Frequency normalization/scaling example 

 
 

1

1
n n

n

T s
s




Frequency scaling by ω0 (of transfer function) 

Vo

VIN

1

1/ω0

 nT jω

1 ωn

0 ns = ω s

 
1

1
0

s

ω

T s 
 

 
 

  0

0

ω

s ω
T s 



Frequency scaling by ω0 (actually magnitude of ω0)   (scale all energy storage elements in circuit) 

 

n 0C = C /ω

  0

0

ω

s ω
T s 





Frequency normalization/scaling example 

 
 

1

1
n n

n

T s
s




 nT jω

1 ωn

  0

0

T s
s








 T jω

ω0 ω

Frequency scaling / normalization does not change the shape of the transfer 

function, it only scales the frequency axis linearly 

The frequency scaled circuit can be obtained from the normalized circuit simply 

by scaling the frequency dependent impedances (up or down) by the scaling 

factor 

This makes the use of filter design tables for the design of lowpass filters practical 

whereby the circuits  in the table all have a normalized band edge of 1 rad/sec. 





Frequency normalization/scaling 

 
1

1
n n

n

T s
s




 nT jω

1 ωn

Example:  Table for passive LC ladder Butterworth filter with 3dB band edge of 1 rad/sec 

and resistive source/load terminations 



Frequency normalization/scaling 
The frequency scaled circuit can be obtained from the normalized circuit simply 

by scaling the frequency dependent impedances (up or down) by the scaling 

factor 

Component denormalization by factor of ω0 

Component values of energy storage elements are scaled down by a factor of ω0 

R

C

L

Other 

Components

R

C/ωo

L/ωo

Unchanged

Normalized 

Component

Denormalized 

Component



Desgin Strategy 

Theorem:  A circuit with transfer function T(s) can be 

obtained from a circuit with normalized transfer function 

Tn(sn)  by denormalizing all frequency dependent 

components.   

C

L

C/ωo

L/ωo



Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

3-db band-edge of 1K rad/sec and equal source and load terminations. 

VIN

VOUT

RS L1 L3

C2
RL

VIN

VOUT

1 L3=1H

1

L1=1H

C2=2F

Denormalized filter 

Normalized filter 

Filter architecture 

VIN

VOUT

1 L3=1mH

1

L1=1mH

C2=2mF

C

L

C/θ

L/θ

  3 2

1
T s =

s +2s +2s+1

 
   

9

3 3 2 6 9

10
T s =K

s +2 10 s 2 10 s 10

  3 2

1
T s =K

s +2s +2s+1

(from the BW approximation which will be discussed later:) 



Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

band-edge of 1K Rad/Sec and equal source and load terminations. 

Is this solution practical? 

Some component values are too big and some are too small ! 

VIN

VOUT

1 L3=1mH

1

L1=1mH

C2=2mF

 
   

9

3 3 2 6 9

10
T s =K

s +2 10 s 2 10 s 10



Filter Concepts and Terminology 

• Frequency scaling 

• Frequency Normalization 

• Impedance scaling 

• Transformations 
– LP to BP 

– LP to HP 

– LP to BR 



Impedance Scaling 

Impedance scaling of a circuit is achieved by multiplying 

ALL impedances in the circuit by a constant  

C

L

C/θ

Lθ

R θR

A

θA  for transresistance gain

A    for dimensionless gain

A/θ for transconductance gain



Impedance Scaling 

Theorem:  If all impedances in a circuit are scaled by a 

constant θ, then  
 

a)  All dimensionless transfer functions are unchanged 

b)  All transresistance transfer functions are scaled by θ 

c)  All transconductance transfer functions are scaled by θ-1 



Impedance Scaling 
Example: 

VIN

VOUT

1

1

VIN

VOUT

100K

10uF

 
1

T s  = 
s+1

Impedances scaled by θ=105 

 
1

T s  = 
s+1

T(s) is dimensionless 

Note second circuit much more practical than the first 



Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

band-edge of 1K Rad/Sec and equal source and load terminations. 

Is this solution practical? 

Some component values are too big and some are too small ! 

VIN

VOUT

1 L3=1mH

1

L1=1mH

C2=2mF

Impedance scale by θ=1000 

C

L

C/θ

θL

R θR

VIN

VOUT

1K L3=1H

1K

L1=1H

C2=2uF

Component values more practical 

 
   

9

3 3 2 6 9

10
T s =K

s +2 10 s 2 10 s 10

 
   

9

3 3 2 6 9

10
T s =K

s +2 10 s 2 10 s 10



Typical approach to lowpass filter design 

1. Obtain normalized approximating function 

 

2. Synthesize circuit to realize normalized approximating function 

 

3. Denormalize circuit obtained in step 2 

 

4. Impedance scale to obtain acceptable component values 



End of Lecture 6 
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Lecture 7 

Degrees of Freedom 

The Approximation Problem 



Desgin Strategy 

Theorem:  A circuit with transfer function T(s) can be 

obtained from a circuit with normalized transfer function 

Tn(sn)  by denormalizing all frequency dependent 

components.   

C

L

C/ωo

L/ωo

Review from Last Time 



Frequency normalization/scaling 
The frequency scaled circuit can be obtained from the normalized circuit simply 

by scaling the frequency dependent impedances (up or down) by the scaling 

factor 

Component denormalization by factor of ω0 

Component values of energy storage elements are scaled down by a factor of ω0 

R

C

L

Other 

Components

R

C/ωo

L/ωo

Unchanged

Normalized 

Component

Denormalized 

Component

Review from Last Time 



Impedance Scaling 

Theorem:  If all impedances in a circuit are scaled by a 

constant θ, then  
 

a)  All dimensionless transfer functions are unchanged 

b)  All transresistance transfer functions are scaled by θ 

c)  All transconductance transfer functions are scaled by θ-1 

Review from Last Time 



Impedance Scaling 

Impedance scaling of a circuit is achieved by multiplying 

ALL impedances in the circuit by a constant  

C

L

C/θ

Lθ

R θR

A

θA  for transresistance gain

A    for dimensionless gain

A/θ for transconductance gain

Review from Last Time 



Typical approach to lowpass filter design 

1. Obtain normalized approximating function 

 

2. Synthesize circuit to realize normalized approximating function 

 

3. Denormalize circuit obtained in step 2 

 

4. Impedance scale to obtain acceptable component values 

Review from Last Time 



Degrees of Freedom 
Vo

VIN

R

C  
1

1
 



O

IN

V
T s

V RCs

 T jω

1/RC ωn

1
0.707

Circuit has two design variables:   {R,C} 

Circuit has one key controllable performance characteristic: 
0

1
ω

RC

If ω0 is specified for a design, circuit has  

2 design variables 

1 constraint 

 
1 Degree of Freedom 

Performance/Cost strongly affected by how degrees of freedom in a 

design are used ! 



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz 

Note:  We have not discussed the Butterworth approximation yet so some 

details here will be based upon concepts that will be developed later 

BWn 2

1
T  = •5

s + 2s+1

 
 
 

R0

R1RQ

R3

R3R2

C1 C2

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB band 

edge of 4KHz 

R0

R1RQ

R3

R3R2

C1 C2

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

  2 0 1 2

2

Q 1 2 1 1 2

1

R R C C
T s  = 

1 1
s +s +

R C R R C C

 
 
 

0

1 2 1 2

1
ω = 

R R C C
Q 1

21 2

R C
Q=

CR R

7 design variables and only two constraints (ignoring the gain right now) 

Circuit has 5 Degrees of Freedom! 



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB band 

edge of 4KHz 

R0

R1RQ

R3

R3R2

C1 C2

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

 
 

 

2

2

12

Q

1

RC
T s  = 

R 1
s +s +

R RC RC

 
 
 

If C1=C2 =C  and R1=R2=R0 =R, this reduces to 

R

RQR

R3

R3R
C C

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

How many degrees of freedom remain? 2 



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz 

 
 

 

2

2

12

Q

1

RC
T s  = 

R 1
s +s +

R RC RC

 
 
 

0

1
ω = 

RC

QR
Q=

R

Normalizing by the factor ω0, we obtain 

 n
2

1
T s  = 

1
s +s +1

Q

 
 
 

R

RQR

R3

R3R
C C

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

Setting R=C=R3=1 obtain the following normalized circuit 



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz 

 n
2

1
T s  = 

1
s +s +1

Q

 
 
 

1

1Q

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

1

1

1

1
1

0nω = 1

Now we can do frequency scaling  C

L

C/ωo

L/ωo

C=1 1/(2π●4K) = 39.8uF

Must now set  1

2
Q 



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz 

1

1.707

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

39.8uF

1 1
139.8uF

Denormalized circuit with bandedge of 4 KHz 

This has the right transfer function (but unity gain) 

Can now do impedance scaling to get more practical component values 

C

L

C/θ

θL

R θR

A good impedance scaling factor may be θ=1000 

C 39.8nF

R 1K



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz 

1K

1K707

VOLP

VIN

39.8nF

1K

1K
1K39.8nF

Denormalized circuit with bandedge of 4 KHz 

This has the right transfer function (but unity gain) 

To finish the design, preceed or follow this circuit with an amplifier 

with a gain of 5 to meet the dc gain requirements 



Filter Concepts and Terminology 

• Frequency scaling 

• Frequency Normalization 

• Impedance scaling 

• Transformations 
– LP to BP 

– LP to HP 

– LP to BR 

Review from Last Time 

It can be  shown the standard HP, BP, and BR approximations can be 

obtained by a frequency transformation of a standard LP approximating 

function 

 

Will address the LP approximation first, and then provide details about the 

frequency transformations 



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter



The Approximation Problem 

The goal in the approximation problem is simple, just want 

a function TA(s) or HA(z) that meets the filter requirements. 

1

1

ω

 LPT j

Will focus primarily on approximations of the standard 

normalized lowpass function 

• Frequency scaling will be used to obtain other LP band edges 

• Frequency transformations will be used to obtain HP, BP, and BR 

 responses 



The Approximation Problem 

1

1

ω

 LPT j

 AT s =?

TA(s) is a rational fraction in s 

 

Rational fractions in s have no discontinuities in 

either magnitude or phase response 

No natural metrics for TA(s) that relate to 

magnitude and phase characteristics  (difficult to 

meaningfully compare TA1(s) and TA2(s)) 

 

m
i

i

i=0

n
i

i

i=0

a s

T s  = 

b s







The Approximation Problem 

1

1

ω

 LPT j

• Magnitude Squared Approximating Functions 

• Inverse Transform 

• Collocation 

• Least Squares 

• Pade Approximatins 

• Other Analytical Optimization 

• Numerical Optimization 

• Canonical Approximations 
→Butterworth (BW) 

→Chebyschev (CC) 

→Elliptic 

→Thompson 

Approach we will follow: 

 2

AH ω

   2

A AH ω T s



Magnitude Squared Approximating Functions 
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n
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i=0

a s

T s  = 

b s
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n
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i
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a jω

T jω  = 

b jω




 

     

     

2 m

o 1 2 m

2 n

o 1 2 n

a  + a jω  + a jω +...+ a jω
T jω  = 

b  + b jω  + b jω +...+ b jω

 
.

.

2 4 3 5

o 2 4 1 3 5

2 4 3 5

o 2 4 1 3 5

a - a ω + a ω  +.  + j a ω - a ω + a ω  +...
T jω  = 

b - b ω + b ω  +.  + j b ω - b ω + b ω  +...

      

      

 

k k-1

k k

0 k m 0 k m
keven kodd

k k-1

k k

0 k n 0 k n
keven kodd

a ω  + j ω a ω

T jω  = 

b ω  + j ω b ω

   

   

   
   
   
      

   
   
   
      

 

 

 
   

   

2 2

1 2

2 2

3 4

F ω  + j ωF ω
T jω  = 

F ω  + j ωF ω

   
   

   
   

where F1, F2, F3 and F4 are even functions of ω 



Magnitude Squared Approximating Functions 
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i=0

n
i

i

i=0

a s

T s  = 

b s





 
   

   

2 2

1 2

2 2

3 4

F ω  + j ωF ω
T jω  = 

F ω  + j ωF ω

   
   

   
   

 
   

   

2

2

2
2 2 2

1 2

2
2 2 2

3 4

F ω  + ω  F ω
T jω  = 

F ω  + ω  F ω

   
   

   
   

Thus             is an even function of ω   T jω  

It follows that              is a rational fraction in ω2 with real coefficients   
2

T jω  

 
2

T jω  Since            is a real variable, natural metrics exist for comparing 

approximating functions to    
2

T jω  



Magnitude Squared Approximating Functions 

 

m
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i=0

n
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i=0

a s

T s  = 

b s





If a desired magnitude response is given, it is common to find a rational 

fraction in ω2 with real coefficients, denoted as HA(ω2), that approximates 

the desired magnitude squared response and then obtain a function TA(s) 

that satisfies the relationship    
2 2

A AT jω = H ω

HA(ω2) is real so natural metrics exist for obtaining HA(ω2)  

 

2l
2i

i
2 i=0

A 2k
2i

i

i=0

c ω

H ω  = 

d ω





Obtaining TA(s) from HA(ω2) is termed the inverse mapping problem  

But how is TA(s) obtained from HA(ω2)  ?    

  



 AT s  2

AH ω

 2

AH ω AT s

   
22

A AH ω T jω

?

Inverse mapping problem: 

well 

defined 

Consider an example: 
  11T s s 

  212

AH ω ω 

  11T s s 

Thus, the inverse mapping in this example is not unique ! 



 AT s  2

AH ω

 2

AH ω AT s

   
22

A AH ω T jω

?

Inverse mapping problem: 

• If an inverse mapping exists, it is not necessarily unique 

 

• If an inverse mapping exists, than a minimum phase inverse mapping 

exists and it is unique (within all-pass factors) 

 

• The mapping from TA(s) to HA(ω2) increases order by a factor of 2 

 

• Any inverse mapping from HA(ω2) to TA(s) will reduce order by a factor of 

2 (within all-pass factors) 

 

Some observations: 



Example: 

 
2

2

A 4 2

2ω +1
H ω

ω  + 2ω  + 1
  

  
A

2s+1
T s

s+1 s+1


Example: 

 
2

2

A 4 2

ω -1
H ω

ω  + 2ω  + 1


Inverse mapping does not exist ! 

? 

It can be shown that many even rational fractions in ω2 do not have an 

inverse mapping back to the s-domain ! 

 

Often these functions have a magnitude squared response that does a 

good job of approximating the desired filter magnitude response 

 

If an inverse mapping exists, there are often several inverse mappings that 

exist 
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Re

z

Im

Re

z

-z z*

-z*

Im

Re
z-z

Im

Re
z

Im

Re

z

z*

Im

Re

z

Observation:   If z is a zero (pole) of HA(ω2), then –z, z*, and –z* are also 

zeros (poles) of HA(ω2)  

Thus, roots come as quadruples if off of the axis and as pairs if they lay on the axis 



Im

Re

z

Im

Re

z

-z z*

-z*

Observation:   If z is a zero (pole) of HA(ω2), then –z, z*, and –z* are also 

zeros (poles) of HA(ω2)  

Proof: 

Consider an even polynomial in ω2 with real coefficients  
0

2 2i

iP ω aω
m
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At a root, this polynomial satisfies the expression  
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Replacing ω with –ω, we obtain  
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Taking the complex conjugate of P(ω2 )=0 we obtain 
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Recall (xy)*=x*y* and     
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*
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nx x

Since ai is real for all I, it thus follows that  
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–ω is a root of    2P ω

ω* is a root of    2P ω



Theorem:  If HA(ω2) is a rational fraction with real coefficients with no poles 

or zeros of odd multiplicity on the real axis, then there exists a real number 

H0 such that  the function 

 

 

 

is a minimum phase rational fraction with real coefficents that satisfies the 

relationship 

 

 

where {z1, z2, …zm} are the upper half-plane zeros of HA(ω2) and exactly 

half of the real axis zeros,  

and where where {p1, p2, …pn} are the upper half-plane poles of HA(ω2) and 

exactly half of the real axis poles. 
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Example: 

Inverse does not exist because zeros 

are of odd multiplicity on the real axis 

If inverse exists 
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Rotate roots by 90o Roots of TAM(s) 

If inverse exists 
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• Coefficients of TAM(s) are real 

 

• If x is a root of HA(ω2), then jx is a root of TAM(s) 

  

• Multiplying a root by j is equivalent to rotating it by 90o cc in the complex plane 

 

• Roots of TAM(s) are obtained from roots of HA(ω2) by multiplying by j 

 

• Roots of TAM(s) are upper half-plane roots and exactly half of real axis roots all 

rotated cc by 90o 

 

• If a root of HA(ω2) has odd multiplicity on the real axis, the inverse mapping 

does not exist 

 

• Other (often many) inverse mappings exist but are not minimum phase  
(These can be obtained by reflecting any subset of the zeros or poles around the imaginary axis into the RHP) 

Observations: 

If inverse exists 
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If inverse exists 
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All pass functions (and factors) 

• Must not allow cancellations to take place in HA(ω2) to obtain all-pass TA(s) 

• Must keep upper HP poles and lower HP zeros in HA(ω2) to obtain all-pass TA(s) 

• All-pass TA(s) is not minimum phase 

All pass TA(s) 

Pole-zero cancellation 

TA(s)=1 



End of Lecture 7 
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The Approximation Problem 



The Approximation Problem 

The goal in the approximation problem is simple, just want 

a function TA(s) or HA(z) that meets the filter requirements. 

1

1

ω

 LPT j

Will focus primarily on approximations of the standard 

normalized lowpass function 

• Frequency scaling will be used to obtain other LP band edges 

• Frequency transformations will be used to obtain HP, BP, and BR 

 responses 

Review from Last Time 



The Approximation Problem 

1

1

ω

 LPT j

 AT s =?

TA(s) is a rational fraction in s 

 

Rational fractions in s have no discontinuities in 

either magnitude or phase response 

No natural metrics for TA(s) that relate to 

magnitude and phase characteristics  (difficult to 

meaningfully compare TA1(s) and TA2(s)) 
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a s

T s  = 
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Magnitude Squared Approximating Functions 
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1 2

2
2 2 2

3 4

F ω  + ω  F ω
T jω  = 

F ω  + ω  F ω

   
   

   
   

Thus             is an even function of ω   T jω  

It follows that              is a rational fraction in ω2 with real coefficients   
2

T jω  

 
2

T jω  Since            is a real variable, natural metrics exist for comparing 

approximating functions to    
2

T jω  

Review from Last Time 



Magnitude Squared Approximating Functions 
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If a desired magnitude response is given, it is common to find a rational 

fraction in ω2 with real coefficients, denoted as HA(ω2), that approximates 

the desired magnitude squared response and then obtain a function TA(s) 

that satisfies the relationship    
2 2

A AT jω = H ω

HA(ω2) is real so natural metrics exist for obtaining HA(ω2)  

 

2l
2i

i
2 i=0

A 2k
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i

i=0

c ω

H ω  = 

d ω





Obtaining TA(s) from HA(ω2) is termed the inverse mapping problem  

But how is TA(s) obtained from HA(ω2)  ?    

  

Review from Last Time 
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Observation:   If z is a zero (pole) of HA(ω2), then –z, z*, and –z* are also 

zeros (poles) of HA(ω2)  

Thus, roots come as quadruples if off of the axis and as pairs if they lay on the axis 

Review from Last Time 



Theorem:  If HA(ω2) is a rational fraction with real coefficients with no poles 

or zeros of odd multiplicity on the real axis, then there exists a real number 

H0 such that  the function 

 

 

 

is a minimum phase rational fraction with real coefficents that satisfies the 

relationship 

 

 

where {z1, z2, …zm} are the upper half-plane zeros of HA(ω2) and exactly 

half of the real axis zeros,  

and where where {p1, p2, …pn} are the upper half-plane poles of HA(ω2) and 

exactly half of the real axis poles. 

 
    

    

...

...

0 1 2 m

AM

1 2 n

H s-jz s-jz s-jz
T s

s-jp s-jp s-jp

 


 

   2

AM AT jω H ω

Im

Re

Im

Re

Roots that Appear in TAM(s) Roots of HA(ω2) 

Example: 
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Roots that appear in TAM(s) Roots of HA(ω2) 

Example: 
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Example: 

Inverse does not exist because zeros 

are of odd multiplicity on the real axis 

If inverse exists 

Review from Last Time 
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Roots that appear in TAM(s) Roots of HA(ω2) 
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Rotate roots by 90o Roots of TAM(s) 

If inverse exists 

Review from Last Time 
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• Coefficients of TAM(s) are real 

 

• If x is a root of HA(ω2), then jx is a root of TAM(s) 

  

• Multiplying a root by j is equivalent to rotating it by 90o cc in the complex plane 

 

• Roots of TAM(s) are obtained from roots of HA(ω2) by multiplying by j 

 

• Roots of TAM(s) are upper half-plane roots and exactly half of real axis roots all 

rotated cc by 90o 

 

• If a root of HA(ω2) has odd multiplicity on the real axis, the inverse mapping 

does not exist 

 

• Other (often many) inverse mappings exist but are not minimum phase  
(These can be obtained by reflecting any subset of the zeros or poles around the imaginary axis into the RHP) 

Observations: 

If inverse exists 

Review from Last Time 
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If inverse exists 
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All pass functions (and factors) 

• Must not allow cancellations to take place in HA(ω2) to obtain all-pass TA(s) 

• Must keep upper HP poles and lower HP zeros in HA(ω2) to obtain all-pass TA(s) 

• All-pass TA(s) is not minimum phase 

All pass TA(s) 

Pole-zero cancellation 

TA(s)=1 

Review from Last Time 



The Approximation Problem 

1

1

ω

 LPT j

• Magnitude Squared Approximating Functions 

• Inverse Transform 

• Collocation 

• Least Squares 

• Pade Approximations 

• Other Analytical Optimization 

• Numerical Optimization 

• Canonical Approximations 
→Butterworth (BW) 

→Chebyschev (CC) 

→Elliptic 

→Thompson 

Approach we will follow: 

 2

AH ω

   2

A AH ω T s



Collocation 

Collocation is the fitting of a function to a set of points (or 

measurements) so that the function agrees with the 

sample at each point in the set. 

The function that is of interest for using collocation when addressing the 

approximation problem is    2ω
A

H

x

f(x)

x

f(x)

Collocating 

Function 
Often consider critically constrained functions 



Collocation 
Example:   Collocation points {(x1,y1), (x2,y2),(x3,y3)} 

Polynomial collocating function (critically constrained) 

  2

0 1 2f x  = a + a x + a x

Unknowns:  {a1,a2,a3} 

Set of equations: 2

1 0 1 1 2 1

2

2 0 1 2 2 2

2

3 0 1 3 2 3

y  = a + a x + a x

y = a + a x + a x

y = a + a x + a x

These equations are linear in the unknowns {a1,a2,a3} 

  

1

1

1

2

1 1 01

2

2 2 2 1

2
3 23 3

x x ay

y x x a

y ax x

    
    

     
        

Y = X• A -1
A = X • Y

Can be expressed in matrix form 
Solution: 

Closed form solution exists when collocating to a polynomial 



Collocation 

Is it possible to get a closed-form solution when collocating to a rational fraction? 

      1 1 2 2, , , ... ,k kx y x y x y  
2

0 1 2

2

1 2

...

1 ...

m

m

n

n

a a x a x a x
f x

b x b x b x

   


   

 where k=m+n+1 

The rational fraction is nonlinear in x ! 

 2 2

1 1 1 2 1 1 0 1 1 2 1 11 ... ...n n

n my b x b x b x a a x a x a x        

2 2

1 0 1 1 2 1 1 1 1 1 2 1 1 1 1... ...n n

m ny a a x a x a x b x y b x y b x y        

This can be expressed as 

Note this equation is linear in the unknowns {a0,a1,…am,b1,b2,…bn} 



Collocation 

Is it possible to get a closed-form solution when collocating to a rational fraction? 

      1 1 2 2, , , ... ,k kx y x y x y  
2

0 1 2

2
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1 ...

m

m

n

n

a a x a x a x
f x

b x b x b x

   


   

 where k=m+n+1 
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Collocation 

Is it possible to get a closed-form solution when collocating to a rational fraction? 

      1 1 2 2, , , ... ,k kx y x y x y  
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n
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x x x x y x y x yy
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b
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Y = Z•C

-1
C = Z • Y

Closed form solution when collocating to a rational fraction ! 



Collocation 

      1 1 2 2, , , ... ,k ky y y    
2 4 2

2 0 1 2
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A n

n

a a a a
H

b b b
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Y = Z•C

-1
C = Z • Y

Applying to   2

AH 



Collocation 
Example:  
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Collocation 
Example:  
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Collocation 
Example:  
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The approximation is reasonable but not too good 



Collocation 
Example:  
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• The problem was critically constrained from a function viewpoint (two 

variables and two equations)  

 

• Highly under-constrained as an approximation technique since the 

collocation points are also variables 



Collocation 
Example:  same              but with different collocation points 
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Collocation 

poles at 5s j 
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Choice of collocation points plays a big role on the approximation 

Example:  same              but with different collocation points  2
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Collocation 
Example:  same              but with different collocation points and different 

approximating function 
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a0=-80,  a1=20, b1=-16 

Inverse mapping does not exist because roots of odd multiplicity on real axis 



Collocation 
Example: 
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• This solution is equal to 1 at all frequencies except ω=3 where it is undefined 

• Thus there is no solution with these collocation points 
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a0=1,  a1=-27/243, b1=-27/243 



Collocation 
Example: 

In some situations, collocation causes a lot of ripple between the collocation points 
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Collocation Observations 

Fitting an approximating function to a set of data or points 
(collocation points) 
– Closed-form matrix solution for fitting to a rational fraction in ω2 

– Can be useful when somewhat nonstandard approximations are 
required 

– Quite sensitive to collocation points 

– Although function is critically constrained, since collocation 
points are variables, highly under constrained as an optimization 
approach 

– Although fit will be perfect at collocation points, significant 
deviation can occur close to collocation points 

– Inverse mapping to TA(s) may not exist 

– Solution may not exist at specified collocation points 

 

 



Collocation  

What is the major contributor to the limitations observed 

with the collocation approach?  

• Totally dependent upon the value of the desired response at a small but 

finite set of points  (no consideration for anything else) 

 

• Highly dependent upon value of approximating function at a single point or 

at a small number of points 

 

• Highly dependent upon the collocation points 



The Approximation Problem 

1

1

ω

 LPT j

• Magnitude Squared Approximating Functions 

• Inverse Transform 

• Collocation 

• Least Squares 

• Pade Approximations 

• Other Analytical Optimization 

• Numerical Optimization 

• Canonical Approximations 
→Butterworth (BW) 

→Chebyschev (CC) 

→Elliptic 

→Thompson 

Approach we will follow: 
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Least Squares Approximation 

To minimize the heavy dependence on a small number of points, will consider 

many points thus creating an over-constrained system 

x

x

ω

 2

AH ω

x

x x

x

x

x x

c1 c2

ck

C...

C...

Ck-1
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m
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i
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i=1
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H ω  = 
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k > m+n+1 

Approximating function can not be forced to go through all points 

But, it can be “close” to all points in some sense 



Least Squares Approximation 
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Define the error at point i by 

   i D i A iε  = H ω  - H ω

where HD(ωi) is the desired magnitude squared response at ωi and where 

HA(ωi) is the magnitude squared response of the approximating function 



Least Squares Approximation 
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   i D i A iε  = H ω  - H ω

Goal is to minimize some metrics associated with εi at a large number of points 
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wi a weighting function 

Some possible cost functions 

• Reduces emphasis on individual points 

• Some much better than others from performance viewpoint 

• Some much better than others from computation viewpoint 
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   i D i A iε  = H ω  - H ω

Least Mean Square (LMS) based cost functions have minimums that can be 

analytically determined for some useful classes of approximating functions 

HA(ω2) 
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Regression Analysis Review 
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F x  = a x

Consider an nth order polynomial in x 

Consider N samples of a function    F x

   ˆ
N

i
i=1

F x F x

Define the summed square difference cost function as 

    
N 2

i i

i=0

C = F x F x

where the sampling coordinate variables are 
N

i i=1
X = x

A standard regression analysis can be used to minimize C with respect 

to {a0,a1, …an} 

To do this, take the n+1 partials of C  wrt the ai variables 



Regression Analysis Review 
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Taking the partial of C wrt each coefficient and setting to 0, we obtain the set of equations 

This is linear in the aks. 
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A few details about regression analysis: 
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-1A X F 

• Closed form solution 

• Requires inversion of a (n+1) dimensional square matrix 

• Not highly sensitive to any single measurement 

• Widely used for fitting a set of data to a polynomial model 

• Points need not be uniformly distributed 

• Adding weights does not complicate solution 

Observations about  Regression Analysis: 
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The Approximation Problem 



Collocation 

Collocation is the fitting of a function to a set of points (or 

measuremetns) so that the functin agrees wth the sample 

at each point in the set. 

The function that is of interest for using collocation when addressing the 

approximation problem is    2ω
A

H

x

f(x)

x

f(x)

Collocating 

Function 
Often consider critically constrained functions 

Review from Last Time 
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Y = Z•C
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C = Z • Y

Applying to   2

AH 

Review from Last Time 



Collocation Observations 

Fitting an approximating function to a set of data or points 
(collocation points) 
– Closed-form matrix solution for fitting to a rational fraction in ω2 

– Can be useful when somewhat nonstandard approximations are 
required 

– Quite sensitive to collocation points 

– Although function is critically constrained, since collocation 
points are variables, highly under constrained as an optimization 
approach 

– Although fit will be perfect at collocation points, significant 
deviation can occur close to collocation points 

– Inverse mapping to TA(s) may not exist 

– Solution may not exist at specified collocation points 

 

 

Review from Last Time 



Collocation  

What is the major contributor to the limitations observed 

with the collocation approach?  

• Totally dependent upon the value of the desired response at a small but 

finite set of points   (no consideration for anything else) 

 

• Highly dependent upon value of approximating function at a single point or 

at a small number of points 

 

 

• Highly dependent upon which points are chosen 

Review from Last Time 



The Approximation Problem 
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 LPT j

• Magnitude Squared Approximating Functions 

• Inverse Transform 

• Collocation 

• Least Squares 

• Pade Approximations 

• Other Analytical Optimization 

• Numerical Optimization 

• Canonical Approximations 
→Butterworth (BW) 

→Chebyschev (CC) 

→Elliptic 

→Thompson 

Approach we will follow: 
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Least Squares Approximation 
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   i D i A iε  = H ω  - H ω

Goal is to minimize some metrics associated with εi at a large number of points 
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wi a weighting function 

Some possible cost functions 

• Reduces emphasis on individual points 

• Some much better than others from performance viewpoint 

• Some much better than others from computation viewpoint 
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where the sampling coordinate variables are 
N

i i=1
X = x

A standard regression analysis can be used to minimize C with respect 

to {a0,a1, …an} 

To do this, take the n+1 partials of C  wrt the ai variables 
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A few details about regression analysis: 
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-1A X F 

• Closed form solution 

• Requires inversion of a (n+1) dimensional square matrix 

• Not highly sensitive to any single measurement 

• Widely used for fitting a set of data to a polynomial model 

• Points need not be uniformly distributed 

• Adding weights does not complicate solution 

Observations about  Regression Analysis: 

Review from Last Time 



Least Squares Approximations of Transfer Functions 
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|T(jω)| is highly nonlinear in <ak> and <bk> 



Least Squares Approximations of Transfer Functions 
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<ak> and <bk> 

Closed form solution for optimal values of                              does not exist  <ak> and <bk> 



Least Squares Approximations of Transfer Functions 

 

m
i

i

i=0
WLOG b =10n

i

i

i=0

a s

T s  =  

b s





Consider the cost function 
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What about the sets of equations 
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Rewriting the cost function 
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is linear in <ck> 
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is highly nonlinear in <dk> 

Closed form solution for optimal values of                              does not exist  <ck> and <dk> 



Least Squares Approximations of Transfer Functions 
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is highly nonlinear in <dk> 

if               is fixed, optimal value of          can be easily obtained  
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<dk> <ck> 

 if  poles of HA(ω2) are fixed, optimal value of zeros of HA(ω2) can be easily obtained  

But 

equivalently, 

Is this observation useful? 



Least Squares Approximations of Transfer Functions 
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<dk> <ck> 

 if  poles of HA(ω2) are fixed, optimal value of zeros of HA(ω2) can be easily obtained  

Are these observations useful? 
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 if  poles of HA(ω2) are fixed in denominator of C, the partials of C wrt both         and 

are linear in             and  <dk> <ck> 

• Several optimization approaches can be derived from these observations 

• Some will provide a LMS optimization of HA(ω2) 

• No guarantee that inverse mapping exists 

• Some may provide a good approximation even though not truly LMS 

• Others may not be useful 



Least Squares Approximations of Transfer Functions 
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<dk> <ck> 

Possible uses of these observations (four algorithms) 

1. Guess poles and obtain optimal zero locations 

2. Start with a “good” T(s) obtained by any means and improve by selecting optimal 

zeros 

3. Guess poles and then update estimates of both poles and zeros, use new 

estimate of poles and again update both zeros and poles, continue until 

convergence or stop after fixed number of iterations 

4. Guess poles and obtain optimal zeros.  Then invert function and cost and obtain 

optimal zeros (which are actually poles).  Then invert again and obtain optimal 

zeros.  Process can be repeated.  - Weighting may be necessary to de-

emphasize stop-band values when working with the inverse function 

 



Least Squares Approximations of Transfer Functions 
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Comments/Observations about LMS approximations 

1. As with collocation, there is no guarantee that TA(s) can be obtained from HA(ω2) 

 

2. Closed-form analytical solutions exist for some useful mean square based cost functions 

 

3. Any of the LMS cost functions discussed that have an analytical solution can have the terms 

weighted by a weight wi.  This weight will not change the functional form of the equations but 

will affect the fit 

 

4. The best choice of sample frequencies is not obvious (both number and location) 

 

5. The LMS cost function is not a natural indicator of filter performance 

 

6. It is often used because more natural indicators are generally not mathematically tractable 

 

7. The LMS approach may provide a good solution for some classes of applications but does not 

provide a universal solution 



The Approximation Problem 

1
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ω

 LPT j

• Magnitude Squared Approximating Functions 

• Inverse Transform 

• Collocation 

• Least Squares 

• Pade’ Approximations 

• Other Analytical Optimization 

• Numerical Optimization 

• Canonical Approximations 
→Butterworth (BW) 

→Chebyschev (CC) 

→Elliptic 

→Thompson 

Approach we will follow: 
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Pade’ Approximations 

(from Wikipedia) 

Henri Eugène Padé (December 17, 1863 – July 9, 1953) was a French 

mathematician, who is now remembered mainly for his development of 

approximation techniques for functions using rational functions.  

The Pade’ approximations were discussed in his doctoral dissertation in 

approximately 1890 

http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Approximation
http://en.wikipedia.org/wiki/Rational_function


Pade’ Approximations 
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Consider the polynomial 

The rational fraction Rm,n(s) is said to be a (m,n)th order Pade’ approximation of 

TD(s) if TD(s)B(s) agrees with A(s) through the first m+n+1 powers of s 

Define the rational fraction Rm,n(s) by 

Note the Pade’ approximation applies to any polynomial with the argument being 

either real, complex, or even an operator s 

 

Can operate directly on functions in the s-domain 



Pade’ Approximations 
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Pade’ Approximations 
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Pade’ Approximations 

Example 
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Im

T(s) has a pair of cc poles in the RHP and is thus unstable! 

Poles can be reflected back into the LHP to obtain 

stability and maintain magnitude response 

Re



Pade’ Approximations 

 AT s  2

AH ω

 m,nR s  2

m,nR ω
?

If TA(s) is an all pole approximation, then the Pade’ approximation of 1/TA(s) 

is the reciprocal of the Pade’ approximation of TA(s) 

Pade’ approximations can be made for either TA(s) or HA(ω2). 

Is it better to do Pade’ approximations of TA(s) or HA(ω2)? 

 

What relationship, if any, exists between                  and                ?    m,nR s  m,nR s



Pade’ Approximations 

• Useful for order reduction of all-pole or all-zero approximations 

 

• Can map an all-zero approximation to a realizable rational fraction in the 

s-domain 

 

• Can extend concept to provide order reduction of higher-order rational 

fraction approximations 

 

• Can always maintain stability or even minimum phase by reflecting any 

RHP roots back into the LHP 

 

• Pade’ approximation is heuristic (no metrics associated with the approach) 

 

• No guarantees about how good the approximations will be 



The Approximation Problem 
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ω

 LPT j

• Magnitude Squared Approximating Functions 

• Inverse Transform 

• Collocation 

• Least Squares 

• Pade’ Approximations 

• Other Analytical Optimization 

• Numerical Optimization 

• Canonical Approximations 
→Butterworth (BW) 

→Chebyschev (CC) 

→Elliptic 

→Thompson 

Approach we will follow: 
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Other Analytical Approximations 

• Numerous analytical strategies have been 

proposed over the years for realizing a filter 

• Some focus on other characteristics (phase, 

time-domain response, group delay) 

• Almost all based upon real function 

approximations 

• Remember – inverse mapping must exist if a 

useful function T(s) is to be obtained 



Approximations 

• Magnitude Squared Approximating Functions – HA(ω2) 

• Inverse Transform - HA(ω2)→TA(s) 

• Collocation 

• Least Squares Approximations 

• Pade Approximations 

• Other Analytical Optimizations 

• Numerical Optimization 

• Canonical Approximations 
– Butterworth 

– Chebyschev 

– Elliptic 

– Bessel 

– Thompson 

 



Numerical Optimization 

• Optimization algorithms can be used to obtain approximations in 
either the s-domain or the real domain 

• The optimization problem often has a large number of degrees of 
freedom (m+n+1) 

 

 

 

 

• Need a good cost function to obtain good approximation 

• Can work on either coefficient domain or root domain or other 
domains 

• Rational fraction approximations inherently vulnerable to local 
minimums 

• Can get very good results 
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End of Lecture 9 
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Lecture 10 

The Approximation Problem 

Classical Approximations 



Least Squares Approximations of Transfer Functions 
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<dk> <ck> 

Possible uses of these observations (four algorithms) 

1. Guess poles and obtain optimal zero locations 

2. Start with a “good” T(s) obtained by any means and improve by selecting optimal 

zeros 

3. Guess poles and then update estimates of both poles and zeros, use new 

estimate of poles and again update both zeros and poles, continue until 

convergence or stop after fixed number of iterations 

4. Guess poles and obtain optimal zeros.  Then invert function and cost and obtain 

optimal zeros (which are actually poles).  Then invert again and obtain optimal 

zeros.  Process can be repeated.  - Weighting may be necessary to de-

emphasize stop-band values when working with the inverse function 

 

Review from Last Time 



Least Squares Approximations of Transfer Functions 
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Comments/Observations about LMS approximations 

1. As with collocation, there is no guarantee that TA(s) can be obtained from HA(ω2) 

 

2. Closed-form analytical solutions exist for some useful mean square based cost functions 

 

3. Any of the LMS cost functions discussed that have an analytical solution can have the terms 

weighted by a weight wi.  This weight will not change the functional form of the equations but 

will affect the fit 

 

4. The best choice of sample frequencies is not obvious (both number and location) 

 

5. The LMS cost function is not a natural indicator of filter performance 

 

6. It is often used because more natural indicators are generally not mathematically tractable 

 

7. The LMS approach may provide a good solution for some classes of applications but does not 

provide a universal solution 

Review from Last Time 



Pade’ Approximations 
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Consider the polynomial 

The rational fraction Rm,n(s) is said to be a (m,n)th order Pade’ approximation of 

TD(s) if TD(s)B(s) agrees with A(s) through the first m+n+1 powers of s 

Define the rational fraction Rm,n(s) by 

Note the Pade’ approximation applies to any polynomial with the argument being 

either real, complex, or even an operator s 

 

Can operate directly on functions in the s-domain 

Review from Last Time 



Pade’ Approximations 

• Useful for order reduction of all-pole or all-zero approximations 

 

• Can map an all-zero approximation to a realizable rational fraction in the 

s-domain 

 

• Can extend concept to provide order reduction of higher-order rational 

fraction approximations 

 

• Can always maintain stability or even minimum phase by reflecting any 

RHP roots back into the LHP 

 

• Pade’ approximation is heuristic (no metrics associated with the approach) 

 

• No guarantees about how good the approximations will be 

Review from Last Time 



Approximations 

• Magnitude Squared Approximating Functions – HA(ω2) 

• Inverse Transform - HA(ω2)→TA(s) 

• Collocation 

• Least Squares Approximations 

• Pade Approximations 

• Other Analytical Optimizations 

• Numerical Optimization 

• Canonical Approximations 
– Butterworth 

– Chebyschev 

– Elliptic 

– Bessel 

– Thompson 

 

All special cases of analytical approximations 



Approximations 

• Magnitude Squared Approximating Functions – HA(ω2) 

• Inverse Transform - HA(ω2)→TA(s) 

• Collocation 

• Least Squares Approximations 

• Pade Approximations 

• Other Analytical Optimizations 

• Numerical Optimization 

• Canonical Approximations 
– Butterworth 

– Chebyschev 

– Elliptic 

– Bessel 

– Thompson 

 





Butterworth Approximations 

• Analytical formulation: 
–   All pole approximation 

–    Magnitude response is maximally flat at ω=0 

–    Goes to 0 at ω=∞ 

–     Assumes value            at ω=1 

 

 

–     Assumes value of 1 at ω=0 

–     Characterized by {n,ε}    

• Emphasis almost entirely on performance at 
single frequency 

"On the Theory of Filter Amplifiers", Wireless  Engineer (also called 

Experimental Wireless and the Radio Engineer), Vol. 7, 1930, pp. 536-541.  
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Butterworth Approximations 
• Analytical formulation: 

–     Magnitude response is maximally flat at ω=0 

–     Goes to 0 at ω=∞ 

–     Assumes value            at ω=1 

 

–     Assumes value of 1 at ω=0     
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Stephen Butterworth (1885-1958) was a British physicist who invented the Butterworth filter[1], a class 

of electrical circuits that are used to filter electrical signals. 

 

Stephen Butterworth was born on 11 August 1885 in Rochdale, England (a town located about 10 miles 

north of the city of Manchester). He was the son of Alexander Butterworth, a postman, and Elizabeth 

(maiden name unknown).[2] He was the second of four children.[3] In 1904, he entered the University of 

Manchester, from which he received, in 1907, both a Bachelor of Science degree in physics (first class) 

and a teacher's certificate (first class). In 1908 he received a Master of Science degree in physics.[4] For 

the next 11 years he was a physics lecturer at the Manchester Municipal College of Technology. He 

subsequently worked for several years at the National Physical Laboratory, where he did theoretical and 

experimental work for the determination of standards of electrical inductance. In 1921 he joined the 

Admiralty's Research Laboratory. Unfortunately, the classified nature of his work prohibited the 

publication of much of his research there. Nevertheless, it is known that he worked in a wide range of 

fields; e.g., he determined the electromagnetic field around submarine cables carrying a.c. current,[5] 

and he investigated underwater explosions and the stability of torpedos. In 1939, he was a "Principal 

Scientific Officer" at the Admiralty Research Laboratory in the Admiralty's Scientific Research and 

Experiment Department.[6] During World War II, he investigated both magnetic mines and the 

degaussing of ships (as a means of protecting them from magnetic mines). 

He was a first-rate applied mathematician. He often solved problems that others had regarded as 

insoluble. For his successes, he employed judicious approximations, penetrating physical insight, 

ingenious experiments, and skillful use of models. He was a quiet and unassuming man. Nevertheless, 

his knowledge and advice were widely sought and readily offered. He was respected by his colleagues 

and revered by his subordinates. 

In 1942 he was awarded the Order of the British Empire.[7] In 1945 he retired from the Admiralty 

Research Laboratory. He died on 28 October 1958 at his home in Cowes on the Isle of Wight, 

England.[8][9 

http://en.wikipedia.org/wiki/British_people
http://en.wikipedia.org/wiki/Physicist
http://en.wikipedia.org/wiki/Butterworth_filter
http://en.wikipedia.org/wiki/Stephen_Butterworth
http://en.wikipedia.org/wiki/Electronic_filter
http://en.wikipedia.org/wiki/Stephen_Butterworth
http://en.wikipedia.org/wiki/Stephen_Butterworth
http://en.wikipedia.org/wiki/Stephen_Butterworth
http://en.wikipedia.org/wiki/Admiralty_Research_Laboratory
http://en.wikipedia.org/wiki/Stephen_Butterworth
http://en.wikipedia.org/wiki/Stephen_Butterworth
http://en.wikipedia.org/wiki/Naval_mine
http://en.wikipedia.org/wiki/Degaussing
http://en.wikipedia.org/wiki/Stephen_Butterworth
http://en.wikipedia.org/wiki/Stephen_Butterworth


In Wireless Engineer (also called Experimental Wireless and the Wireless 

Engineer), vol. 7, 1930, pp. 536–541 - "On the Theory of Filter Amplifiers"-S. 

Butterworth  

Butterworth had a reputation for solving "impossible" mathematical 

problems. At the time filter design was largely by trial and error because of 

their mathematical complexity. His paper was far ahead of its time: the filter 

was not in common use for over 30 years after its publication. Butterworth 

stated that; 

 

"An ideal electrical filter should not only completely reject the unwanted 

frequencies but should also have uniform sensitivity for the wanted 

frequencies." 

From:     http://en.wikipedia.org/wiki/Butterworth_filter 

http://www.expertran.com/butter/paper.pdf
http://www.expertran.com/butter/paper.pdf
http://www.expertran.com/butter/paper.pdf
http://www.expertran.com/butter/paper.pdf
http://en.wikipedia.org/wiki/Filter_design
http://en.wikipedia.org/wiki/Butterworth_filter


Butterworth Approximation 
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Butterworth Approximation 
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Butterworth Approximation 
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Roots of H(ω) are poles and are at 
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The 2n roots of -1 are uniformly spaced on a circle of radius 1 



Butterworth Approximation 
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Butterworth Approximation 
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Butterworth Approximation 
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Butterworth Approximation 
Poles of TBW(s) 
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Butterworth Approximation 
What is the Q of the highest Q pole for the BW approximation?   
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Butterworth Approximation 
What is the Q of the highest Q pole for the BW approximation?   
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Butterworth Approximation 
What order can be used if goal is to keep the highest Q BW pole less than 10?  
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Solving for n, obtain n=31 

What order can be used if goal is to keep the highest Q BW pole less than 2?  

1
2

2sin
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Solving for n, obtain n=6 

Observe the pole Q of the BW approximation is quite low, 

even for high order BW approximations! 



Butterworth Approximation 

Order needs to be rather high to get steep transition 

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak 



Butterworth Approximation 
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Phase is quite linear in passband (benefit unrelated to design requirements) 

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak 



Butterworth Approximation 
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Attenuation in stopband is quite gradual  

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak 



Butterworth Approximation 
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Pole locations and denominator polynomial   

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak 



Butterworth’s vision was a bit different than what we 

presented but the results are completely attributable to 

Butterworth 

From the seminal Butterworth paper: 



Butterworth used a trig identity to factor (1) into a product of 4th order terms 

and then synthesized a circuit that realized each factor (no mention made of 

inverse mapping to T(s))  



Butterworth Approximation 

• Widely Used Analytical Approximation 

• Characterized by {ε,n} 

• Maximally flat at ω=0 

• Almost all emphasis placed on characteristics at single frequency (ω=0) 

• Transition not very steep (requires large order for steep transition) 

• Pole Q is quite low 

• Pass-band phase is quite linear (no emphasis was placed on phase!) 

• Poles lie on a circle 

• Simple closed-form analytical expressions for poles and |T(jω)| 

Summary 



Butterworth Approximation 
What can be done to sharpen the transition of the BW approximation? 

Add zeros on imaginary axis  in stop band 

• May need to readjust the poles to get good transition region 

• Analytical expressions for poles may not be easy to obtain 
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End of Lecture 10 



EE 508 

Lecture 11 

The Approximation Problem 

Classical Approximations  

    – the Chebyschev and Elliptic Approximations 



Butterworth Approximations 

• Analytical formulation: 
–   All pole approximation 

–    Magnitude response is maximally flat at ω=0 

–    Goes to 0 at ω=∞ 

–     Assumes value            at ω=1 

 

 

–     Assumes value of 1 at ω=0 

–     Characterized by {n,ε}    

• Emphasis almost entirely on performance at 
single frequency 

"On the Theory of Filter Amplifiers", Wireless  Engineer (also called 

Experimental Wireless and the Radio Engineer), Vol. 7, 1930, pp. 536-541.  
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Butterworth Approximation 
Poles of TBW(s) 
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Butterworth Approximation 
What is the Q of the highest Q pole for the BW approximation?   
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Review from Last Time 



Butterworth Approximation 

Order needs to be rather high to get steep transition 

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak 
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Butterworth Approximation 
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Phase is quite linear in passband (benefit unrelated to design requirements) 

Figure from Passive and Active 

Network Analysis and 

Synthesis, Budak 
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Butterworth Approximation 

• Widely Used Analytical Approximation 

• Characterized by {ε,n} 

• Maximally flat at ω=0 

• Almost all emphasis placed on characteristics at single frequency (ω=0) 

• Transition not very steep (requires large order for steep transition) 

• Pole Q is quite low 

• Pass-band phase is quite linear (no emphasis was placed on phase!) 

• Poles lie on a circle 

• Simple closed-form analytical expressions for poles and |T(jω)| 

Summary 
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Approximations 

• Magnitude Squared Approximating Functions – HA(ω2) 

• Inverse Transform - HA(ω2)→TA(s) 

• Collocation 

• Least Squares Approximations 

• Pade Approximations 

• Other Analytical Optimizations 

• Numerical Optimization 

• Canonical Approximations 
– Butterworth 

– Chebyschev 

– Elliptic 

– Bessel 

– Thompson 
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Pafnuty Lvovich Chebyshev 

Born   May 16, 1821 

Died December 8,1894 

Nationality  Russian 

FieldsMathematician 

http://en.wikipedia.org/wiki/Image:Flag_of_Russia.svg
http://en.wikipedia.org/wiki/Russia
http://en.wikipedia.org/wiki/Mathematician


Chebyshev Approximations 

• Analytical formulation: 
–   All pole approximation 

–    Magnitude response bounded between 1 and  

       in the pass band 

–    Assumes the value of               at ω=1 

 

–    Goes to 0 at ω=∞ 

–     Assumes extreme values maximum no times in [0 1]  

–    Characterized by {n,ε}    

• Based upon Chebyshev  Polynomials 
Chebyshev polynomials were first presented in: P. L. Chebyshev (1854) "Théorie des 

mécanismes connus sous le nom parallelogrammes," Mémoires des Savants 

étrangers présentes à l'Academie de Saint-Pétersbourg, vol. 7, pages 539-586.  
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2
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Type I Chebyshev Approximations 
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Chebyshev Approximations 

• Analytical formulation: 

–    Magnitude response bounded between 0     and            

in the stop band 

–    Assumes the value of               at ω=1 

 

–    Value of 1 at ω=0 

–    Assumes extreme values maximum times 

 in [1 ∞] 

–    Characterized by {n,ε}    

• Based upon Chebyshev  Polynomials 

21
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Type II Chebyshev Approximations  (not so common) 
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Chebyshev Approximations 
Chebyshev Polynomials 

The Chebyshev polynomials are 

characterized by the property that  

the polynomial assumes the extremum 

values of 0 and 1 a maximum number of 

times in the interval [0,1] and go to ∞ for 

x large.  

In polynomial form they can be expressed as 

C0(x)=1 

C1(x)=x 

Cn+1(x)=2xCn(x) - Cn-1(x) 

Or, equivalently, in trigonometric form as 
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     Figure from Wikipedia 



Chebyshev Approximations 
Chebyshev Polynomials 

Figure from Wikipedia 
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The first 9 CC polynomials: 

• Even-indexed polynomials are functions of x2 

• Odd-indexed polynomials are product of x and function of x2 

• Square of all polynomials are function of x2 (i.e. an even function of x) 



Chebyshev Approximations 
Type 1 
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Butterworth A General Form 

Fn(ω
2) close to 1 in the pass band and gets very large in stop-band 

Observation: 

The square of the Chebyshev polynomials have this property 
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This is the magnitude squared approximating function of the Type 1 CC approximation 



Chebyshev Approximations 
Type 1 
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Poles of HCC(ω) lie on an ellipse with none on the real axis 



Chebyshev Approximations 
Type 1 
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Chebyshev Approximations 
Type 1 Im

Re

2 2

1
1 1

sinh cosh
1 1

sinh sinh
n n

k k

arc arc

 

 

   
   
    

         
                  

Ellipse Intersect Points for select n and ε 



Chebyshev Approximations 
Type 1 Im

Re

Poles of TCC(s) 
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Chebyshev Approximations 
Type 1 

ω
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 CCT ω

Even order
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 CCT ω

Odd order

• |TCC(0)| alternates between 1 and                 with index number  

• Substantial pass band ripple 

• Sharp transitions from pass band to stop band 
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Chebyshev Approximations 
Type 1 

Sharp transitions from pass band to stop band 

Fig from Allen and Huelsman 



Chebyshev Approximations 
Type 1 

  CC transition is much steeper than BW transition 

From Budak Text 



Comparison of BW and CC 

Responses 

• CC slope at band edge much steeper than that 
of BW 

 

• Corresponding pole Q of CC much higher than 
that of BW 

• Lower-order CC filter can often meet same 
band-edge transition as a given BW filter 

• Both are widely used 

• Cost of implementation of BW and CC for same 
order is about the same 
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Chebyshev Approximations 
Type 1 

From Budak Text 

Analytically, it can be shown that, at the band-edge 

 

 

2

3
2 21

BWd T j
n

d

 




 



 

 

2

3
2 2

2

1

CCd T j
n

d

 




 



CC slope is n times steeper than that of the BW slope 



Chebyshev Approximations 
Type 1 

  CC phase is much more nonlinear than BW phase  

From Budak Text 



Chebyshev Approximations 
Type 1 
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Maximum pole Q of CC approximation can be obtained by 

considering pole with index k=0 
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Chebyshev Approximations 
Type 1 

Comparison of maximum pole Q of CC approximation with that of BW approximation 
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Example – compare the Q’s for n=10 and ε=1 

QBW=3.19               QCC=35.9 

For large n, the CC filters have a very high pole Q ! 



Chebyshev Approximations 
Type 2 
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Another General Form 
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Note:  The second general form is not limited to use of the  Chebyshev 

polynomials  



Chebyshev Approximations 
Type 2 
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• Equal-ripple in stop band 

• Monotone in pass band 

• Both poles and zeros present 

• Poles of Type II CC are reciprocal of poles of Type I 

• Zeros of Type II are inverse of the zeros of the CC Polynomials 
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Chebyshev Approximations 
Type 2 
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Chebyshev Approximations 
Type 2 
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• Transition region not as steep as for Type 1 

• Considerably less popular 



Chebyshev Approximations 
Type 2 
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• Pole Q expressions identical since poles are reciprocals 

• Maximum pole Q is just as high as for Type 1  
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Transitional BW-Chebyshev Approximations 
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• Other transitional approximations are possible 

• Transitional approximations have some of the properties of both “parents” 



Transitional BW-CC filters 
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0 1 
Other transitional BW-CC approximations exist as well 



Transitional BW-CC filters 
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Transitional filters will exhibit flatness at ω=0, passband ripple, and 

intermediate slope characteristics at band-edge 



Chebyshev Approximations 
from Spectrum Software: 

• Note that this is introduced as a Chebyshev filter, the source correctly points out that it implements the CC 

filter in a specific filter topology  

• It is important to not confuse the approximation from the architecture and this Tow-Thomas Structure can 

be used to implement either BW or CC functions only differing in the choice of the component values 



End of Lecture 11 
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Lecture 12 

Classical  Approximating Functions  
 - Elliptic Approximations 

 - Thompson and Bessel Approximations 

The Approximation Problem 



Chebyshev Approximations 

• Analytical formulation: 

–    Magnitude response bounded between 0   and            

in the stop band 

–    Assumes the value of               at ω=1 

 

–    Value of 1 at ω=0 

–    Assumes extreme values maximum times 

 in [1 ∞] 

–    Characterized by {n,ε}    

• Based upon Chebyshev  Polynomials 

21
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Type II Chebyshev Approximations  (not so common) 
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1

ω

 LPT j

Review from Last Time 



Chebyshev Approximations 
Chebyshev Polynomials 

Figure from Wikipedia 
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The first 9 CC polynomials: 

• Even-indexed polynomials are functions of x2 

• Odd-indexed polynomials are product of x and function of x2 

• Square of all polynomials are function of x2 (i.e. an even function of x) 

Review from Last Time 



Chebyshev Approximations 
Type 1 

 BW 2 2n

1
H ω =

1+ ω

 
 2 2

n

1
H ω =

1+ F ω

Butterworth A General Form 

Fn(ω
2) close to 1 in the pass band and gets very large in stop-band 

Observation: 

The square of the Chebyshev polynomials have this property 

 
 

CC 2 2
n

1
H ω =

1+ C ω

This is the magnitude squared approximating function of the Type 1 CC approximation 

Review from Last Time 



Chebyshev Approximations 
Type 1 

 
 

CC 2 2
n

1
H ω =

1+ C ω

Im

Re

Im

Re

Poles of TCC(s) 

Inverse 

Mapping 

Review from Last Time 



Chebyshev Approximations 
Type 1 

ω

1

2

1

1 

 CCT ω

Even order

1

2

1

1 

ω1

 CCT ω

Odd order

• |TCC(0)| alternates between 1 and                 with index number  

• Substantial pass band ripple 

• Sharp transitions from pass band to stop band 

2

1

1 

Review from Last Time 



Comparison of BW and Type 1 CC 

Responses 

• CC slope at band edge much steeper than that 
of BW 

 

• Corresponding pole Q of CC much higher than 
that of BW 

• Lower-order CC filter can often meet same 
band-edge transition as a given BW filter 

• Both are widely used 

• Cost of implementation of BW and CC for same 
order is about the same 

1 1
2 2

( ) [ ( )]
CC BW

n
Slope n Slope 

 
    

 

Review from Last Time 



Chebyshev Approximations 
Type 2 

 BW 2 2n

1
H ω =

1+ ω

 
 2 2

n

1
H ω =

1+ F ω

Butterworth A General Form 

 

 1

CC2

2 2
n

1
H ω =

1
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C
ω



Another General Form 

 

 2 2
n

1
H ω =

1
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F 1/ω

Review from Last Time 



Chebyshev Approximations 
Type 2 

 

 1

CC2

2 2
n

1
H ω =

1
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C
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 CCT ω

Odd order

2
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1
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1

 CCT ω
Even order

Review from Last Time 



Chebyshev Approximations 
Type 2 

 

 1

CC2

2 2
n

1
H ω =

1
1+

C
ω



1
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1

1
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 CCT ω

• Transition region not as steep as for Type 1 

• Considerably less popular 

Review from Last Time 



Chebyshev Approximations 
Type 2 

 

 1

CC2

2 2
n

1
H ω =

1
1+

C
ω



• Pole Q expressions identical since poles are reciprocals 

• Maximum pole Q is just as high as for Type 1  

1
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Review from Last Time 



Transitional BW-CC filters 
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Transitional filters will exhibit flatness at ω=0, passband ripple, and 

intermediate slope characteristics at band-edge 

Review from Last Time 



Chebyshev Approximations 
from Spectrum Software: 

• Note that this is introduced as a Chebyshev filter, the source correctly points out that it implements the CC 

filter in a specific filter topology  

• It is important to not confuse the approximation from the architecture and this Tow-Thomas Structure can 

be used to implement either BW or CC functions only differing in the choice of the component values 
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Approximations 

• Magnitude Squared Approximating Functions – HA(ω2) 

• Inverse Transform - HA(ω2)→TA(s) 

• Collocation 

• Least Squares Approximations 

• Pade Approximations 

• Other Analytical Optimizations 

• Numerical Optimization 

• Canonical Approximations 
– Butterworth 

– Chebyshev 

– Elliptic 

– Bessel 

– Thompson 

 



Elliptic Filters 
Can be thought of as an extension of the CC approach by 

adding complex-conjugate zeros on the imaginary axis to 

increase the sharpness of the slope at the band edge 
Im
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1

 ET jω

1 ΩS ω

2

1
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ω

 2

AT ω

Concept Actual effect of adding zeros 



Elliptic Filters 

• Basic idea comes from the concept of a 

Chebyschev Rational Fraction 

• Sometimes termed Cauer filters 



Chebyshev Rational Fraction 

A Chebyshev Rational Fraction is a rational 

fraction that is equal ripple in [-1,1] and 

equal ripple in [-∞,-1] and [1,∞] 

 



Chebyshev Rational Fractions 

1

1
x

f(x)

Even-order CC rational fraction 

1

1

f(x)

x

Odd-order CC rational fraction 



Chebyshev Rational Fractions 

Even-order CC rational fraction 
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Odd-order CC rational fraction 
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Elliptic Filters 

 
 

E 2 2
Rn

1
H ω =

1+ C ω

Magnitude-Squared Elliptic Approximating Function 

Inverse mapping to TE(s) exists 

• For n even, n zeros on imaginary axis 

• For n odd, n-1 zeros on imaginary axis 

• Equal ripple in both pass band and stop band 

• Analytical expression for poles and zeros not available 

• Often choose to have less than n or n-1 zeros on imaginary axis 

   (No longer based upon CC rational fractions) 

Termed here “full order” 



Elliptic Filters 

1

2

1

1 

AS

1 ΩS ω

 ET jω

•  If of full-order, response completely 

characterized by {n,ε,AS.ΩS} 

 

•  Any 3 of these paramaters are 

independent 

 

•  Typically ε,ΩS, and AS are fixed by 

specifications (i.e. must determine n) 



Elliptic Filters 

1 ΩS ω

1

 ET jω

1

 ET jω

1 ΩS ω

2

1

1 
2

1

1 

n odd n even

• (n-1)/2 peaks in pass band 

• (n-1)/2 peaks in stop band 

• Maximum occurs at ω=0 

• |T(j∞)|=0 

For full-order elliptic approximations 

• n/2 peaks in pass band 

• n/2 peaks in stop band 

• |T(j0)|=1/sq(1+ε2)  

• |T(j∞)|=AS 



Elliptic Filters 
1

2

1

1 

AS

1 ΩS ω

 ET jω

• Simple closed-form expressions for poles, zeros, and |TE(jω)| do not exist 

• Simple closed form expressions for relationship between {n,ε,AS, and ΩS} 

do not exist 

• Simple expressions for max pole Q and slope at band edge do not exist 

• Reduced-order elliptic approximations could be viewed as CC filters with 

zeros added to stop band 

• General design tables not available though limited tables for specific 

characterization parameters do exist 



Elliptic Filters 1

2

1

1 

AS

1 ΩS ω

 ET jω

Observations about  Elliptic Filters 

• Elliptic filters have steeper transitions than CC1 filters 

• Elliptic filters do not roll off as quickly in stop band as CC1 or even BW 

• Highest Pole-Q of elliptic filters is larger than that of CC filters 

• For a given transition requirement, order of elliptic filter typically less 

than that of CC filter 

• Cost of implementing elliptic filter is comparable to that of CC filter if 

orders are the same 

• Cost of implementing a given filter requirement is often less with the 

elliptic filters 

• Often need computer to obtain elliptic approximating functions though 

limited tables are available 

• Some authors refer to elliptic filters as Cauer filters 



Canonical  Approximating Functions 

Butterworth 

Chebyschev 

Transitional BW-CC 

Elliptic 

Thompson 

Bessel 

Thompson and Bessel Approximating Functions are 

Two Different Names for the Same Approximation 



Thompson and Bessel 

Approximations 

-  All-pole filters 

-  Maximally linear phase at ω=0 



Thompson and Bessel 

Approximations 
Consider T(jω) 
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D jω D jω +jD jω
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• Phase expressions are difficult to work with 

 

• Will first consider group delay and frequency distortion 



Linear Phase 
Consider T(jω) 

 
 

 

   

   
R IM

R IM

N jω N jω +jN jω
T jω  =  = 

D jω D jω +jD jω

Defn:  A filter is said to have linear phase if the phase is given by the expression 

                                

       where θ is a constant that is independent of ω 
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   θωT j 



Distortion in Filters 

Types of Distortion 

Frequency Distortion 

• Amplitude Distortion 

• Phase Distortion 

 

Nonlinear Distortion 

Although the term “distortion” is used for these two basic classes, 

there is little in common between these two classes 



Distortion in Filters 
Frequency Distortion 

• Amplitude Distortion 

   A filter is said to have frequency (magnitude) 

distortion if the magnitude of the transfer 

function changes with frequency 

• Phase Distortion 

  A filter is said to have phase distortion if the 

phase of the transfer function is not equal to 

a constant times ω 

Nonlinear Distortion 

  A filter is said to have nonlinear distortion if 

 there is one or more spectral components in 

 the output that are not present in the input 



Distortion in Filters 
• Phase and frequency distortion are concepts that apply to linear circuits 

 

• If frequency distortion is present, the relative magnitude of the spectral 

components that are present will be different than the spectral components in 

the output 

 

• If phase distortion is present, at least for some inputs, waveshape will not be 

preserved 

 

• Nonlinear distortion does not exist in linear networks and is often used as a 

measure of the linearity of a filter. 

 

• No magnitude distortion will be present in a specific output of a filter if all 

spectral components that are present in the input are in a flat passband 

 

• No phase distortion will be present in a specific output of a filter if all spectral 

components that are present in the input are in a linear phase passband 

 

• Linear phase can occur even when the magnitude in the passband is not flat 

 

• Linear phase will still occur if the phase becomes nonlinear in the stopband 



ω

 T jω

ω

 T jω

ω

 T jω

 T jω

ω

 T jω

ω

 T jω

ω

Flat Passband

Non-Flat Passband

Filter Passband and Stopband 

• Frequencies where gain is ideally 0 or very small is termed the stopband 

• Frequencies where the gain is ideally not small is termed the passband 

• Passband is often a continuous region in ω though could be split 



ω

 T jω

ω

 T jω

 T jω ω

 T jω ω

 T jω ω

 T jω ω

 T jω ω

 T jω ω

 T jω ω

 T jω ω

 T jω ω

 T jω ω

Linear Passband Phase

Nonlinear Passband Phase

Linear and Nonlinear Phase 



Example:  Consider a signal x(t)=sin(ω1t) +  0.25sin(3ω1t) 

Note the wave shape and spectral magnitude of x(t) 
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sin(ω1t)

0.25*sin(3ω1t)

x(t) = sin(ω1t)+0.25*sin(3ω1t)

Preserving the Waveshape: 



Preserving the waveshape 

A filter has no frequency distortion for a 

given input if the output wave shape is 

preserved  (i.e. the output wave shape is a 

magnitude scaled and possibly time-shifted version of 

the input) 

VOUT(t)=KVIN(t-tshift) 

Mathematically, no frequency distortion for VIN(t) if  

Could have frequency distortion for other inputs 
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Nonlinear distortion evidenced by 

presence of spectral components 

in output that are not in the input 



Frequency Distortion 

In most audio applications (and many other signal processing 

applications) there is little concern about phase distortion but some 

applications do require low phase distortion 

 

 

In audio applications, any substantive magnitude distortion in the pass 

band is usually not acceptable 

 

Any substantive nonlinear distortion in the pass band is unacceptable in 

most audio applications 



End of Lecture 12 
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Lecture 13 

Classical  Approximating Functions  
 - Thompson and Bessel Approximations 

The Approximation Problem 



Elliptic Filters 
Can be thought of as an extension of the CC approach by 

adding complex-conjugate zeros on the imaginary axis to 

increase the sharpness of the slope at the band edge 
Im

Re

1

 ET jω

1 ΩS ω

2

1

1 

ω

 2

AT ω

Concept Actual effect of adding zeros 

Review from Last Time 



Elliptic Filters 

 
 

E 2 2
Rn

1
H ω =

1+ C ω

Magnitude-Squared Elliptic Approximating Function 

Inverse mapping to TE(s) exists 

• For n even, n zeros on imaginary axis 

• For n odd, n-1 zeros on imaginary axis 

• Equal ripple in both pass band and stop band 

• Analytical expression for poles and zeros not available 

• Often choose to have less than n or n-1 zeros on imaginary axis 

   (No longer based upon CC rational fractions) 

Termed here “full order” 

Review from Last Time 



Elliptic Filters 

1

2

1

1 

AS

1 ΩS ω

 ET jω

•  If of full-order, response completely 

characterized by {n,ε,AS.ΩS} 

 

•  Any 3 of these paramaters are 

independent 

 

•  Typically ε,ΩS, and AS are fixed by 

specifications (i.e. must determine n) 

Review from Last Time 



Elliptic Filters 1

2

1

1 

AS

1 ΩS ω

 ET jω

Observations about  Elliptic Filters 

• Elliptic filters have steeper transitions than CC1 filters 

• Elliptic filters do not roll off as quickly in stop band as CC1 or even BW 

• Highest Pole-Q of elliptic filters is larger than that of CC filters 

• For a given transition requirement, order of elliptic filter typically less 

than that of CC filter 

• Cost of implementing elliptic filter is comparable to that of CC filter if 

orders are the same 

• Cost of implementing a given filter requirement is often less with the 

elliptic filters 

• Often need computer to obtain elliptic approximating functions though 

limited tables are available 

• Some authors refer to elliptic filters as Cauer filters 

Review from Last Time 



Thompson and Bessel 

Approximations 

-  All-pole filters 

-  Maximally linear phase at ω=0 

Review from Last Time 



Thompson and Bessel 

Approximations 
Consider T(jω) 
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N jω N jω +jN jω
T jω  =  = 

D jω D jω +jD jω

  
 

 

 

 
1 1tan tanphase I I

R R

N j D j
T j

N j D j

 


 

    
      

   

• Phase expressions are difficult to work with 

 

• Will first consider group delay and frequency distortion 

Review from Last Time 



Linear Phase 
Consider T(jω) 
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R IM

N jω N jω +jN jω
T jω  =  = 

D jω D jω +jD jω

Defn:  A filter is said to have linear phase if the phase is given by the expression 

                                

       where θ is a constant that is independent of ω 
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Preserving the waveshape 

A filter has no frequency distortion for a 

given input if the output wave shape is 

preserved  (i.e. the output wave shape is a 

magnitude scaled and possibly time-shifted version of 

the input) 

VOUT(t)=KVIN(t-tshift) 

Mathematically, no frequency distortion for VIN(t) if  

Could have frequency distortion for other inputs 

Review from Last Time 
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Preserving wave-shape in pass band 

 A filter is said to have linear passband phase if the phase in the passband of 

the filter is given by the expression                                    where θ is a constant 

that is independent of ω 
   θωT j 

VOUT(t)=KVIN(t-tshift) 

If a filter has linear passband phase in a flat passband, then the waveshape is 

preserved provided all spectral components of the input are in the passband 

and the output can be expressed as an amplitude scaled and time shifted 

version of the input by the expression  



Preserving wave-shape in pass band 

Example: 

XIN(s) XOUT(s)
 T s

Consider a linear network with transfer function T(s)  

     in 1 1 1 2 2 2X t  = A sin ω t+θ  + A sin ω t+θ

In the steady state 

           OUT 1 1 1 1 1 2 2 2 2 2X t  = A T jω sin ω t+θ T jω  + A T jω sin ω t+θ T jω 

Assume 

   
 

 
 1 2

OUT 1 1 1 1 2 2 2 2

1 2

T jω T jω
X t  = A T jω sin ω t+ +θ  + A T jω sin ω t+ +θ

ω ω

       
         

      

Rewrite as: 

If ω1 and ω2 are in a flat passband,   T jω

1ω 2ω

ω

   1 2T jω  =  T jω

   
   1 2

OUT 1 1 1 1 2 2 2

1 2

T jω T jω
X t  = T jω A sin ω t+ +θ  + A sin ω t+ +θ

ω ω

         
          

        

Can express as: 



Preserving wave-shape in pass band 

Example: 

XIN(s) XOUT(s)
 T s

     in 1 1 1 2 2 2X t  = A sin ω t+θ  + A sin ω t+θ

If ω1 and ω2 are in a flat passband,  

 T jω

1ω 2ω

ω

   1 2T jω  =  T jω

   
   1 2

OUT 1 1 1 1 2 2 2

1 2

T jω T jω
X t  = T jω A sin ω t+ +θ  + A sin ω t+ +θ

ω ω

         
          

        

If ω1 and ω2 are in a linear phase passband,  

   1 1 2 2T jω  = kω and  T jω = kω 

 T jω

ω
1ω 2ω

k

1

    1 2
OUT 1 1 1 1 2 2 2

1 2

kω kω
X t  = T jω A sin ω t+ +θ  + A sin ω t+ +θ

ω ω

        
          

        

          OUT 1 1 1 1 2 2 2X t  = T jω A sin ω t+k +θ  + A sin ω t+k +θ

     OUT 1 inX t  = T jω x t+k



Preserving wave-shape in pass band 

Example: 

XIN(s) XOUT(s)
 T s

     in 1 1 1 2 2 2X t  = A sin ω t+θ  + A sin ω t+θ

 T jω

1ω 2ω

ω

   1 2T jω  =  T jω

 T jω

ω
1ω 2ω

k

1

     OUT 1 inX t  = T jω x t+k

This is a magnitude scaled and time shifted version ot the input so 

waveshape is preserved 

 

 

1 1

2 2

T jω  = kω

 T jω = kω





A weaker condition on the phase relationship will also preserve waveshape with 

two spectral components present  

 

 
1 1

2 2

T jω ω

 T jω ω








Amplitude (Magnitude) Distortion, Phase Distortion and 

Preserving wave-shape in pass band 

XIN(s) XOUT(s)
 T s

 T jω

1ω 2ω

ω

 T jω

ω
1ω 2ω

k

1

If ω1 and ω2 are any two spectral components of an input signal in which 

                                   then the filter exhibits amplitude distortion for this input.    1 2T jω    T jω

If ω1 and ω2 are any two spectral components of an input signal in which 

                                   then the filter exhibits phase distortion for this input.  

 
1 1

2 2

T jω ω

 T jω ω






If ω1 and ω2 are any two spectral components of an input signal that exhibits 

either amplitude or phase distortion for these inputs, then the waveshape will 

not be preserved 

                                    

   OUT inX t   H x t+k 



Amplitude (Magnitude) Distortion, Phase Distortion and 

Preserving wave-shape in pass band 

XIN(s) XOUT(s)
 T s

Amplitude and phase distortion are often of concern in filter applications 

requiring a flat passband and a flat zero-magnitude stop band 

Amplitude distortion is usually of little concern in the stopband of a filter 

Phase distortion is usually of little concern in the stopband of a filter 

A filter with no amplitude distortion or phase distortion in the passband and 

a zero-magnitude stop band will exhibit waveform distortion for any input 

that has a frequency component in the passband and another frequency 

component in the stopband  

It can be shown that the only way to avoid magnitude and phase distortion 

respectively for signals that have energy components in the interval ω1<ω< ω2  is 

to have constants k1 and k2 such that 
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2

T jω k
       for ω < ω < ω

T jω k ω

 


  



Group Delay 
Defn:  Group Delay is the negative of the phase derivative with respect to ω 

 d T jω

dω
G


 

Recall, by definition,  the phase is linear iff   T jω kω 

Thus, the phase is linear iff the group delay is constant 

If the phase is linear,     d T jω d kω
- k

dω dω
G


    

But, of what use is the group delay? 

The group delay and the phase of a transfer function carry the same information 



Group Delay 

 d T jω

dω
G


 

Recall the identity 

The phase of T(s) is analytically very complicated  

   -1d -tan ωd T jω

dω dω
G


   

Example:  Consider what is one of the simplest transfer functions 
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s+1
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jω+1
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Thus 

Note that the group delay is a rational fraction in ω2 



Group Delay 

Theorem:  The group delay of any transfer function is a rational fraction in ω2 

But, of what use is the group delay? 

The phase of almost all useful transfer functions are complicated functions involving 

Sums of arctan functions and these are difficult to work with analytically 

 

From this theorem, it can be observed that the group delay is much more suited 

for analytical investigations than is the phase 

Proof of Theorem: 

(for notational convenience, will consider only all-pole transfer functions) 

  n
k

k

k=0

1
T s  = 

a s



Group Delay 

Theorem:  The group delay of any transfer function is a rational fraction in ω2 

Proof of Theorem:   n
k

k

k=0

1
T s  = 

a s

 
   2 4 2 4

2 4 1 3 5

1
T jω  = 

1- a ω + a ω +... +jω a - a ω + a ω +...

 
   2 2

1 2

1
T jω  = 

F ω +jωF ω where F1 and F2 are even polynomials in ω 
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Group Delay 

Theorem:  The group delay of any transfer function is a rational fraction in ω2 

Proof of Theorem:  
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but from identity 
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Now consider the right-most term in the product 



Group Delay 

Theorem:  The group delay of any transfer function is a rational fraction in ω2 

Proof of Theorem:  
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Even 

Odd 

Even 

Thus this term is an even rational fraction in ω 



Group Delay 

Theorem:  The group delay of any transfer function is a rational fraction in ω2 

Proof of Theorem: 
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Even 

It follows that           is the product of rational fractions in ω2 so it is also a 

rational fraction in ω2  
G

Although tedious, the results can be extended when there are zeros present 

in T(s) as well 



Thompson and Bessel 

Approximations 

-  All-pole filters 

-  Maximally linear phase at ω=0 

-  All-pole filters 

- Maximally constant group delay at ω=0 

-            at ω=0 1G 

 d T jω

dω
G


 since 

These criteria can be equivalently expressed as 



Thompson and Bessel Approximations 

 A n
k

k

k=0

1
T s  = 

a s

 
   2 4 2 4

2 4 1 3 5

1
T jω  = 

1- a ω + a ω +... +jω a - a ω + a ω +...

Must find the coefficients a0, a1,… an to satisfy the constraints 

Theorem:    If                              then       is given by the expression   
1

T jω  = 
x + jy

G

2 2

dy dx
x  - y

dω dω  
x  + y

G 

This theorem is easy to prove using the identity given above, 

 proof will not be given here 



Thompson and Bessel Approximations 

 A n
k

k

k=0

1
T s  = 

a s

 
   2 4 2 4

2 4 1 3 5

1
T jω  = 

1- a ω + a ω +... +jω a - a ω + a ω +...

Must find the coefficients a0, a1,… an to satisfy the constraints 

From this theorem, it follows that  

   

   

2 4

1 1 2 3 5 1 4 2 3

2 2 4 2

1 2 2 1 3 4

a + ω a a -3a +ω 5a -3a a +a a + ...
 

 1+  ω a - 2a +  ω a -2a a +2a + ...
G 

from the constraint                  at ω=0, it follows that  a1=1 1G 

To make          maximally constant at ω=0, want to match as many coefficients in  

the numerator and denominator as possible starting with the lowest powers of ω2 
G

2

1 2 3 1 2a a -3a a - 2a  

2

5 1 4 2 3 2 1 3 45a -3a a +a a a -2a a +2a  

from  ω2 terms 

from  ω4 terms 
…. 



Thompson and Bessel Approximations 

 A n
k

k

k=0

1
T s  = 

a s

Must find the coefficients a0, a1,… an to satisfy the constraints 

It can be shown that the aks are given by  

 

 
k n-k
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where 



Thompson and Bessel Approximations 

 A n
k

k

k=0

1
T s  = 

a s

Must find the coefficients a0, a1,… an to satisfy the constraints 

Alternatively, if we define the recursive polynomial set by   

 

...

1

2

2

2

k k-1 k-2

B s+1

B = s + 3s + 3

B = 2k-1 B +s B



Then the n-th order Thompson approximation is given by 

 
 

 
n

An

n

B 0
T s  = 

B s

Since the recursive set of polynomials are termed Bessel functions, this is 

often termed the Bessel approximation 



Thompson and Bessel Approximations 

 
 

 
n

An

n

B 0
T s  = 

B s

• Poles of Bessel Filters lie on circle 

• Circle does not go through the origin 

• Poles not uniformly space on circumference 

http://www.rfcafe.com/references/electrical/bessel-poles.htm 



Thompson and Bessel Approximations 

 
 

 
n

An

n

B 0
T s  = 

B s

Observations: 

The Thompson approximation has relatively poor magnitude characteristic (at 

least if considered as an approximation to the standard lowpass function) 

 

The normalized Thompson approximation has a group delay of 1 or a phase 

of ω at ω=0 

 

Frequency scaling is used to denormalize the group delay or the phase to 

other values 



Thompson and Bessel Approximations 

Use of Bessel Filters: XIN(s) XOUT(s)
 T s

Consider:   -shT s  = e (not realizable but can be approximated) 

 T jω  = 1

  -jωhT jω  = e

 T jω  = -hω

     T jω  = cos -ωh +jsin -ωh

If     IN Mt X sin ωt+θx

   OUT Mt X sin ωt+θ-hωx

    OUT Mt X sin ω t-h +θx

This is simply a delayed version of the input 

   OUT INt t-hx x
But 

 T jω
 = h

ω
G

d

d


 
    OUT IN Gt t-x x

So, output is delayed version of input and the delay is the group delay 



Thompson and Bessel Approximations 

Use of Bessel Filters: XIN(s) XOUT(s)
 T s

  -shT s  = e

 T jω  = 1  T jω  = -hω  = hG

A filter with a constant group delay and unity magnitude introduces a constant delay 

Bessel filters are filters that are used to approximate a constant delay 

Bessel filters are attractive for introducing constant delays in digital systems 

Some authors refer to Bessel filters as “Delay Filters” 

An ideal delay filter would  

   - introduce a time-domain shift of a step input by the group delay 

   - introduce a time-domain shift each spectral component by the group delay 

   - introduce a time-domain shift of a square wave by the group delay   

 

It is challenging to build filters with a constant delay 



Thompson and Bessel Approximations 

From Introduction to the Theory and Design of Active Filters by Huelsman and Allen, p. 94-96 

Characterization of the step response of a filter 



Thompson and Bessel Approximations 

Step Response of Butterworth Filter 

Delay is not constant 

Overshoot present and increases with order 

BW filters do not perform well as delay filters 
From Introduction to the Theory and Design of Active Filters by Huelsman and Allen, p. 94-96 



Thompson and Bessel Approximations 

Delay is not constant 

Overshoot and ringing present and increases with order 

CC filters do not perform well as delay filters 

Step Response of Chebyschev Filter 

From Introduction to the Theory and Design of Active Filters by Huelsman and Allen, p. 94-96 



Thompson and Bessel Approximations 

Delay becomes more constant as order increases 

No overshoot or ringing present  

Bessel filters widely used as delay filters 

Bessel filters often designed to achieve time-domain performance 

Step Response of Bessel Filters 

From Introduction to the Theory and Design of Active Filters by Huelsman and Allen, p. 94-96 



Thompson and Bessel Approximations 

Comparison of Step Response of 3rd-order Bessel, BW and CC filters 

From Continuous-Time Active Filter Design by Deliyannis, Sun and Fidler 



Thompson and Bessel Approximations 

Harmonics in passband of 

Bessel Filter increase with n 

Attenuation of amplitude for Bessel 

does not compare favorably wth 

BW, CC, or Eliptic filters 

From Design of Analog Filters by Schaumann and Van Valkenburg, p405 



Thompson and Bessel Approximations 

Phase of Bessel filters becomes very 

linear in passband as order increases 

From Continuous-Time Active Filter Design by Deliyannis, Sun and Fidler 

Magnitude of Bessel filters does 

not drop rapidly at band edge 



Thompson and Bessel Approximations 

Comparison of Phase Response of 3rd-order Bessel, BW and CC filters 

From Continuous-Time Active Filter Design by Deliyannis, Sun and Fidler 



End of Lecture 13 
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Lecture 14 

Statistical Characterization of 

Filter Characteristics 



R 

L 
C 

Components used to build filters are not precisely 

predictable 

• Temperature Variations 

• Manufacturing Variations 

• Aging 

• Model variations 
 

 Different approaches are used to address each of these problems 

 Manufacturing variations is one of the most challenging and will be the 

focus of this lecture 



R(t1) 

Wafers are processed in “batches” or “lots” of 20 to 40 wafers 

and variations occur over time or over location 

These variations are often the major contributor to process 

variability and can be in the               range or larger 30%

R(t2) 

R(t3) 

These variations often look like random variations 



Within a batch, individual wafers are subjected to some 

variability during processing 

Temperature may vary with position of wafer in the boat during diffusion 

 

Environment may vary with position of wafer in boat during diffusion or other 

processing steps 

This variation causes characteristics  of components to vary from wafer-to-wafer  

These variations often look like random variations 



Environment may vary across individual wafers due to 

gradients in environmental variables during processing 

This variation causes characteristics  of components to vary from die to 

die on  a wafer  

These variations often look like random variations 

+ 

+ 



Smaller variations may occur across individual die due to 

gradients in environmental variables during processing 

This variation causes characteristics  of components to vary across a die  

These variations often look like random variations 

+ 

+ 



Even smaller variations may occur across individual closely 

placed devices due to local gradients and local random 

processing variations 

This variation introduces local gradients in device characteristics as well as 

local random variations  

The direction and magnitude of the local gradients are random variables 

 

The local random variations are also random variables 

+ 

+ 



R 

L 
C 

Effects of manufacturing variations on components 

 A rigorous statistical analysis can be used to analytically predict how 

components vary and how component variations impact circuit 

performance 

 

 Montecarlo simulations are often used to simulate effects of component 

variations  

 

 

 

 Often key statistical information is not readily available from the foundry 

 

• Requires minimal statistical knowledge to use MC simulations 

• Simulation times may be prohibitively long to get useful results 

• Gives little insight into specific source of problems 

• Must be sure to correctly include correlations in setup 



NOM RPROC RWAFER RDIE RLGRAD RLVARX = X + + + + +x x x x x

R 

Modeling process variations in semiconductor processes  

XNOM is the nominal value of the parameter (typically TT) and is a constant 

and part of the standard device model 

xRPROC is a random variable that changes from one “lot” of wafers to another 

xRWAFER is a random variable that changes from one wafer to another in a batch 

xRDIE is a random variable that changes from die to another on a wafer 

 
xRLGRAD is a random variable that is comprised of a magnitude and direction 

which are themselves both random variables and characterizes very local 

variations on a die 

xRLVAR is a random variable that characterizes very local variations on a die 



xRPROC is a random variable that changes from one “lot” of wafers to another 

uncorrelated 

Correlated 

(and equal) 

Correlated 

(and equal) 

xRWAFER is a random variable that changes from one wafer to another in a batch 

uncorrelated 

Correlated 

(and equal) 

Correlated 

(and equal) 



uncorrelated 

Correlated 

(and equal) 

Correlated 

(and equal) 

xRDIE is a random variable that changes from die to another on a wafer 

 



uncorrelated 

XRLGRAD Correlated (and equal) 

xRLGRAD is a random variable that is comprised of a magnitude and direction 

which are themselves both random variables and characterizes very local 

variations on a die 

xRLVAR is a random variable that characterizes very local variations on a die 

xRLGRAD    xRLVAR 

XRLGRAD Correlated (and equal) 

XRLVAR Uncorrelated  XRLVAR Uncorrelated  



NOM RPROC RWAFER RDIE RLGRAD RLVARX = X + + + + +x x x x x

R 

Modeling process variations in semiconductor processes  

xRPROC, xRWAFER, xRDIE, xRLVAR often assumed to be Gausian with zero mean 

Magnitude of  xRLGRAD is usually assumed Gaussian with zero mean, direction 

is uniform from 0o to 360o 

PROC WAFER DIE

DIE LVAR

DIE GRAD

  

 

 

 





LVAR Strongly dependent upon area and layout 

1

Area

Perimeter

LVAR

LVAR





Relative size between σLVAR and σ|GRAD| dependent upon A, P, and process 



W
L

Actual

Channel

              

Drawn and Actual Features for MOS Transistor 

Effects of layout on local random variations  

Variations also occur vertically in both oxide thickness and doping 

levels/profiles and often these will dominate the lateral effects 



R 

Modeling process variations in semiconductor processes  

• Statistics associated with matching/sensitive dimensionless parameters 

such as voltage or current gains, component ratios, pole Q, …  (almost 

always closely placed) dominated by xRLGRAD and xRLVAR   (because locally xRPROC, 

xRWAFER, xRDIE are all correlated and equal) 

 

• Statistics associated with value of dimensioned parameters (poles, GB, 

SR,R,C,transresistance gains, transconductance gains, … dominated by 

xRPROC) 

• Special layout techniques using common centroid approaches can be 

used to eliminate (or dramatically reduce) linear gradient effects so, if 

employed, matching/sensitive parameters dominated by xRLVAR  but 

occasionally common centroid layouts become impractical or areas 

become too large so that gradients become nonlinear and in these cases 

gradient effects will still limit performance 

• Gradients are dominantly linear if spacing is not too large 

• Higher-order gradient effects can be eliminated with layout approaches that 

cancel higher “moments” but area and effort may not be attractive 



R 

Be sure correct statistical information is available when doing 

a statistical analysis using either analytical or Montecarlo 

methods  

• Some statistics associated with making many measurements over many 

devices over many lots of wafers 

 

• Some statistics associated with many measurements in a particular 

process run 

 

• Some statistics associated with making many measurements across a 

wafer 

 

• Some statistics associated with making many measurements on closely-

placed devices 

 

• Some statistics associated with making many measurements on closely-

placed devices that have common-centroid layouts 

 

• Some statistics presented (particularly in literature or occasionally in PDK) 

with limited information about how data was gathered 



Statistical Modeling of dimensioned 

parameters - example 

Determine the standard deviation of the pole frequency (or band edge) of 

the first-order passive filter. 

Assume the process variables are zero mean with standard deviations given by  

0.2 0.1
PROC PROC

NOM NOM

R C

R C

  



Since R and C are random variables, the pole p is also a random variable  

1
p = 

RC

Theorem:  The sum of uncorrelated Gaussian random variables is a 

multivariate Gaussian random variable 

Theorem:  If X1 … Xm are uncorrelated random variables with standard  

deviations σ1, σ2, … σm, and a1,a2, … am are constants, then the standard  

 

deviation of the random variable                     is given by the expression                    

 

 

1

i iy a X
m

i



1

2 2

y i ia
m

i

 


 



Since R and C are random variables, the pole p is also a random variable  

1
p = 

RC

  NOM NOM

1
p = 

R CRAN RANR C 

Unfortunately the pdf  p which is the reciprocal of the product of Gaussian 

variables is very difficult to obtain 

Observe can express p as 

  
1 1

1 1NOM NOM NOM NOM

NOM NOM

1
p = 

R C R C

R C

RAN RAN RAN RAN
R C R C

 
 

                  
    



End of Lecture 14 
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Lecture 15 

Statistical Characterization of 

Filter Characteristics 



R 
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Effects of manufacturing variations on components 

 A rigorous statistical analysis can be used to analytically predict how 

components vary and how component variations impact circuit 

performance 

 

 Montecarlo simulations are often used to simulate effects of component 

variations  

 

 

 

 Often key statistical information is not readily available from the foundry 

 

• Requires minimal statistical knowledge to use MC simulations 

• Simulation times may be prohibitively long to get useful results 

• Gives little insight into specific source of problems 

• Must be sure to correctly include correlations in setup 

Review from last lecture 



NOM RPROC RWAFER RDIE RLGRAD RLVARX = X + + + + +x x x x x

R 

Modeling process variations in semiconductor processes  

xRPROC, xRWAFER, xRDIE, xRLVAR often assumed to be Gausian with zero mean 

Magnitude of  xRLGRAD is usually assumed Gaussian with zero mean, direction 

is uniform from 0o to 360o 

PROC WAFER DIE

DIE LVAR

DIE GRAD

  

 

 

 





LVAR Strongly dependent upon area and layout 

1

Area

Perimeter

LVAR

LVAR





Relative size between σLVAR and σ|GRAD| dependent upon A, P, and process 

Review from last lecture 



W
L

Actual

Channel

              

Drawn and Actual Features for MOS Transistor 

Effects of layout on local random variations  

Variations also occur vertically in both oxide thickness and doping 

levels/profiles and often these will dominate the lateral effects 

Review from last lecture 



R 

Modeling process variations in semiconductor processes  

• Statistics associated with matching/sensitive dimensionless parameters 

such as voltage or current gains, component ratios, pole Q, …  (almost 

always closely placed) dominated by xRLGRAD and xRLVAR   (because locally xRPROC, 

xRWAFER, xRDIE are all correlated and equal) 

 

• Statistics associated with value of dimensioned parameters (poles, GB, 

SR,R,C,transresistance gains, transconductance gains, … dominated by 

xRPROC) 

• Special layout techniques using common centroid approaches can be 

used to eliminate (or dramatically reduce) linear gradient effects so, if 

employed, matching/sensitive parameters dominated by xRLVAR  but 

occasionally common centroid layouts become impractical or areas 

become too large so that gradients become nonlinear and in these cases 

gradient effects will still limit performance 

• Gradients are dominantly linear if spacing is not too large 

• Higher-order gradient effects can be eliminated with layout approaches that 

cancel higher “moments” but area and effort may not be attractive 

Review from last lecture 



Statistical Modeling of dimensioned 

parameters - example 

Determine the standard deviation of the pole frequency (or band edge) of 

the first-order passive filter. 

Assume the process variables are zero mean with standard deviations given by  

0.2 0.1
PROC PROC

NOM NOM

R C

R C

  

Review from last lecture 



Since R and C are random variables, the pole p is also a random variable  

1
p = 

RC

Theorem:  The sum of uncorrelated Gaussian random variables is a 

multivariate Gaussian random variable 

Theorem:  If X1 … Xm are uncorrelated random variables with standard  

deviations σ1, σ2, … σm, and a1,a2, … am are constants, then the standard  

 

deviation of the random variable                     is given by the expression                    
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Review from last lecture 



Since R and C are random variables, the pole p is also a random variable  

1
p = 

RC

  NOM NOM

1
p = 

R CRAN RANR C 

Unfortunately the pdf  p which is the reciprocal of the product of Gaussian 

variables is very difficult to obtain 

Observe can express p as 

  
1 1

1 1NOM NOM NOM NOM

NOM NOM

1
p = 

R C R C

R C

RAN RAN RAN RAN
R C R C

 
 

                  
    

Review from last lecture 



1
p = 

RC

  
1 1

1 1NOM NOM NOM NOM

NOM NOM

1
p = 

R C R C

R C

RAN RAN RAN RAN
R C R C

 
 

                  
    

But RRAN<<RNOM and CRAN<<CNOM 

It thus follows from a truncated power series expansion of the two-variable fraction 

that  

1
1 1

1
1

NOM NOM NOM NOM

NOM NOM NOM NOM

p  
R C R C

p
R C R C

RAN RAN

RAN RAN

R C

R C

      
        

      

  
   

  

These operations were used to linearize p in terms of the random variables ! 

Note that p is the sum of two Gaussian random variables that are assumed to be 

uncorrelated so p is also Gaussian 



1
p = 

RC
1

1
NOM NOM NOM NOM

p
R C R C

RAN RANR C  
   

  

It thus follows from the theorem that 

2 21

NOM NOM

p

NOM NOM R C
R C RAN RANR C  
 

 
 

2 2

NOM NOM NOM

p

p R C
RAN RANR C  

But the nominal value of the pole is    
1

NOM

NOM NOM

p
R C

It thus follows that  

1,

NOM

p

NOM p

p
N

p


 
 
 
 

Observe: 



1
p = 

RC

2 2

NOM NOM NOM

p

p R C
RAN RANR C  

But RRAN and CRAN are approximately RPROC and CPROC  

0.2 0.1
PROC PROC

NOM NOM

R C

R C

  

2 2

NOM NOM NOM

p

p R C
PROC PROCR C  

recall 

2 20.2 0.1 0.22

NOM

p

p

  



1
p = 

RC

2 20.2 0.1 0.22

NOM

p

p

  

1.  Determine the 3σ range in the pole location  

2.  Determine the percent of the process lots that will have a pole with   

     mean that is within  10% of the nominal value 

3.  What can the designer do to tighten the band edge of this filter? 



1
p = 

RC

2 20.2 0.1 0.22

NOM

p

p

  

1.  Determine the 3σ range in the pole location  

The 3σ range is simply    0.34 1.66
NOM

p

p
 

So, if the nominal pole location is 10KHz, the average value of the pole 

location from lot to lot will vary between 3.4KHz and 16.6KHz  



1
p = 

RC

2 20.2 0.1 0.22

NOM

p

p

  

2.  Determine the percent of the process lots that will have a pole with   

     mean that is within  10% of the nominal value 

Observe a 10% window is   
.1

0.45
.22

NOM NOM

p p

p p

 
 

 
 

x

f(x)

1-kσ 1+kσ1

Recall                                          For a kσ 

  

window the probability of being inside that 

window is the area under the pdf curve 

between 1– kσ and 1+kσ 

1,

NOM

p

NOM p

p
N

p


 
 
 
 

 
1

0,1

NOM

NOM

p

p

p

p
p N







Observe 
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p = 

RC

2 20.2 0.1 0.22

NOM

p

p

  

2.  Determine the percent of the process lots that will have a pole with   

     mean that is within  10% of the nominal value 

Observe a 10% window is   
.1

0.45
.22

NOM NOM

p p

p p

 
 

 
 

For a Gaussian variable, this area is given by 

    1prob N(0,1) N(0,1)θ = 2F k  -1 = 2F 0.45 

1 0.45 1 0.45

NOM NOM

p p

p p

p     0.45 0.45p  

1

NOM

NOM

p

p

p

p
p







x

f(x)

-1 1
-.45 .45



Offset Voltage Distribution 
Pdf of zero-mean Gaussian distribution 

Percent between: ±σ 68.3% 

±2σ 95.5% 

±3σ 99.73% 

x

f(x)

-kσ kσ





1
p = 

RC

2 20.2 0.1 0.22

NOM

p

p

  

2.  Determine the percent of the process lots that will have a pole with   

     mean that is within  10% of the nominal value 

  1prob N(0,1)θ = 2F 0.45 

x

f(x)

-1 1
-.45 .45

1 0.347probθ = 2 .6736  

Thus, approximately 35% of the wafer lots will 

have a pole within 10% of the nominal value 



1
p = 

RC

2 20.2 0.1 0.22

NOM

p

p

  

3.  What can the designer do to tighten the band edge of this filter? 



Statistical Modeling of Dimensionless Parameters 

VIN

VOUT

R2

R1

2

1

R
K = 1+

R

A

1A 1A

1
p =

R C1

1
p =

RC A 1

1

p -p
θ = 

p



VIN

VOUT

R2

R1

Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 

 

Determine the yield if the nominal gain is 10   1%

2

1

R
K = 1+

R

Aρ=.01µm  

Assume a common centroid layout of R1 and R2 has been used and 

the area of R1 is 100u2 and both resistors have the same resistance 

density and R2 is comprised of K-1 copies of R1  . Neglect variable 

edge effects in the layout 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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2 2 2 2 R RPROC RFRAD RLVARR R R R 

1 1 1 1 R RPROC RFRAD RLVARR R R R 

But R2RPROC and R1RPROC are correlated  

R2RGRAD and R1RGRAD are correlated  

And, since a common centroid layout is 

used,  

 2 11 RPROC N RPROCR K R 

 2 11 RGRAD N RGRADR K R 

R2RLVAR and R1RLVAR are uncorrelated  

  2 11
2N 1NN N R R

K  K + K R RR R
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Since R2N=(KN-1)R1N 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Theorem:   If the perimeter variations and contact resistance are neglected, 

the standard deviation  of the local random variations of a resistor of area A is 

given by the expression 

N

R

R

A
 =

A




Theorem:   If the perimeter variations are neglected, the standard deviation  of 

the local random variations of a capacitor of area A is given by the expression 

N

C

C

A
 =

A

C

Theorem:   If the perimeter variations are neglected, the variance of the local 

random variations of the normalized threshold voltage of a rectangular MOS 

transistor of dimensions W and L  is given by the expression 

WLV

A
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VTO2

V

V
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T
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VT2

V

V

NT

T
or as 



Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized  COX of a rectangular MOS transistor of 

dimensions W and L  is given by the expression 

WL

ACOX

C

C

OXN

OX

2
2 

WL

A2

2

N

R





 

Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized mobility  of a rectangular MOS transistor 

of dimensions W and L  is given by the expression 

where the parameters AX are all constants characteristic of the process 

(i.e. model parameters) 

• The effects of edge roughness on the variance of resistors, capacitors, and 

transistors can readily be included but for most layouts is dominated by the 

area dependent variations 

• There is some correlation between the model parameters of MOS transistors but 

they are often ignored to simplify calculations 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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R
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 

 

2

1

R
K = 1+

R

 1K N N

R1

A
 K K

A


  Aρ=.01u  AR1=100u2 
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 K K K K   
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N

K

NK

1
 1-

K


• Note the standard deviation of the normalized gain is much smaller 

than the standard deviation of the process variations 

• The standard deviation can be improved by increasing area but a 4X 

increase in area is needed for a 2X reduction in sigma 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Determine the yield if the nominal gain is 10   
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parameters - example 

2
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R
K = 1+

R

Determine the yield if the nominal gain is 10   1%

 
N

K
 N 1,  0.00095

K

9.9  < K < 10.1

N

K
.99  <  < 1.01

K

N

K
 -1

K
-10<  < 10

.00095

 
1

N

K

K
 N 0,1

0.00095



N

K
-.01<  -1< .01

K

The gain yield is essentially 100% 

Could substantially decrease area or increase 

gain accuracy if desired 
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Statistical Modeling of dimensionless 

parameters - example 

 

Determine the yield if the nominal gain is 10   1%

2

1

R
K = 1+

R

Aρ=.025µm  

Assume a common centroid layout of R1 and R2 has been used and 

the area of R1 is 10u2 and both resistors have the same resistance 

density and R2 is comprised of K-1 copies of R1  . Neglect variable 

edge effects in the layout 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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  Aρ=.025u  AR1=10u2 

0.2
PROC

NOM

R

R

 

   1 .0079 1
10

K N N N N

.025
 K K K K   

.0079

N

K

NK

1
 1-

K




VIN

VOUT

R2

R1

Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Determine the yield if the nominal gain is 10   

.0079 .0075
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parameters - example 

2

1

R
K = 1+

R

Determine the yield if the nominal gain is 10   1%

 
N

K
 N 1,  0.0075

K

9.9  < K < 10.1

N

K
.99  <  < 1.01

K

N

K
 -1

K
-1.33<  < 1.33

.00095

 
1

N

K

K
 N 0,1

0.0075



N

K
-.01<  -1< .01

K

 N(0,1)Y = 2F 1.33 -1 = 2*.9082-1  = 0.8164

Dramatic drop from 100% yield to about 82% yield! 



End of Lecture 15 
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Lecture 16 

Filter Transformations 

Lowpass to Bandpass 

Lowpass to Highpass 

Lowpass to Band-reject 



Theorem:   If the perimeter variations and contact resistance are neglected, 

the standard deviation  of the local random variations of a resistor of area A is 

given by the expression 

N

R

R

A
 =

A




Theorem:   If the perimeter variations are neglected, the standard deviation  of 

the local random variations of a capacitor of area A is given by the expression 

N

C

C

A
 =

A

C

Theorem:   If the perimeter variations are neglected, the variance of the local 

random variations of the normalized threshold voltage of a rectangular MOS 

transistor of dimensions W and L  is given by the expression 
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A
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T

2
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V

V
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T
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VT2
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V

NT

T
or as 

Review from Last Time 



Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized  COX of a rectangular MOS transistor of 

dimensions W and L  is given by the expression 

WL

ACOX
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C

OXN

OX

2
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Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized mobility  of a rectangular MOS transistor 

of dimensions W and L  is given by the expression 

where the parameters AX are all constants characteristic of the process 

(i.e. model parameters) 

• The effects of edge roughness on the variance of resistors, capacitors, and 

transistors can readily be included but for most layouts is dominated by the 

area dependent variations 

• There is some correlation between the model parameters of MOS transistors but 

they are often ignored to simplify calculations 

Review from Last Time 
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Statistical Modeling of dimensionless 

parameters - example 
2

1

R
K = 1+

R

Determine the yield if the nominal gain is 10   1%

 
N

K
 N 1,  0.00095

K

9.9  < K < 10.1

N

K
.99  <  < 1.01

K

N

K
 -1

K
-10<  < 10

.00095

 
1

N

K

K
 N 0,1

0.00095



N

K
-.01<  -1< .01

K

The gain yield is essentially 100% 

Could substantially decrease area or increase 

gain accuracy if desired 

Assume common centroid layout 

area of R1 is 100u2  Aρ=.01µm  

Review from Last Time 
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Statistical Modeling of dimensionless 

parameters - example 

 

Determine the yield if the nominal gain is 10   1%

2

1

R
K = 1+

R

Aρ=.025µm  

Assume a common centroid layout of R1 and R2 has been used and 

the area of R1 is 10u2 and both resistors have the same resistance 

density and R2 is comprised of K-1 copies of R1  . Neglect variable 

edge effects in the layout 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Determine the yield if the nominal gain is 10   

.0079 .0075

N
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K

1
 1-
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K
 N 1,  0.0075

K
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Statistical Modeling of dimensionless 

parameters - example 

2

1

R
K = 1+

R

Determine the yield if the nominal gain is 10   1%

 
N

K
 N 1,  0.0075

K

9.9  < K < 10.1

N

K
.99  <  < 1.01

K

N

K
 -1

K
-1.33<  < 1.33

.0075

 
1

N

K

K
 N 0,1

0.0075



N

K
-.01<  -1< .01

K

 N(0,1)Y = 2F 1.33 -1 = 2*.9082-1  = 0.8164

Dramatic drop from 100% yield to about 82% yield! 

Review from Last Time 



Filter Transformations 

Lowpass to Bandpass      (LP to BP) 

Lowpass to Highpass       (LP to HP) 

Lowpass to Band-reject   (LP to BR) 

 

Approach will be to take advantage of the results obtained for the 

standard LP approximations  

 

Will focus on flat passband and zero-gain stop-band transformations 

 

Will focus on transformations that map passband to passband and 

stopband to stopband 



 Filter Transformations 

 

 

If the imaginary axis in the s-plane is mapped to the imaginary axis in the s-plane 

with a variable mapping function, the basic shape of the function T(s) will be 

preserved in the function F(T(s)) but the frequency axis may be warped and/or 

folded in the magnitude domain 

Claim:   

Preserving basic shape, in this context, constitutes maintaining features in the 

magnitude response of F(T(s)) that are in T(s) including, but not limited to,  the 

peak amplitude, number of ripples, peaks of ripples,  

XIN XOUT T s
XIN XOUT

 MT s s  f s

    MT s T f s



Example:  Shape Preservation   

ω

A

B

C

ω

A

B

C

ω

A

B

C

ω

Original Function 

Shape Preserved 

Shape Preserved 



Example:  Shape Preservation   

ω

A

B

C

Original Function 

Shape Not Preserved 

A

B

C

ω



Flat Passband/Stopband Filters 

ω

 T j

ω

 T j

ω

 T j

ω

 T j

Lowpass Bandpass

Highpass Bandreject



Filter Transformations 

Lowpass to Bandpass      (LP to BP) 

Lowpass to Highpass       (LP to HP) 

Lowpass to Band-reject   (LP to BR) 

 
•   Approach will be to take advantage of the results obtained for the 

standard LP approximations  

 

•   Will focus on flat passband and zero-gain stop-band 

transformations 

 

•   Will focus on transformations that map passband to passband and 

stopband to stopband 

 



LP to BP Filter Transformations 

 

 

XIN XOUT

 LPNT s
XIN XOUT

 BPT s s  f s

    BP LPNT s T f s

ω

 
LP

T j

ω

 
BP

T j

Lowpass Bandpass

 

T
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m

Ti
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n
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=0

a s

f s  = 

b s

i

i

i
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Will consider rational fraction mappings 

• Not all rational fraction mappings will map Im axis to the Im axis 

• Not all rational fraction mappings will map passband to passband and 

     stopband to stopband 

• Consider only that subset of those mappings with these properties 



 

 LP to BP Transformation 

 

 
Mapping Strategy:  Consider first a mapping to a normalized BP approximation 

1

1

ω
1

1

ωωAN ωBN

 
LPN

T j  
BPN

T j

BWN

N BN AN
BW   

1
AN BN

  

Normalized

-1

 s f s



 LP to BP Transformation 

 

 
Mapping Strategy:  Consider first a mapping to a normalized BP approximation 

 

1

1

ω
1

1

ωωAN ωBN

 T j  
BP

T j

BWN

N BN AN
BW   

1
AN BN

  

Normalized

-1
-1

- ωAN - ωBN

BWN

 s f s

Thus, must consider both positive and negative frequencies.  Since          is a 

function of ω2, the magnitude response on the negative ω axis will be a 

mirror image of that on the positive ω axis  

A mapping from s → f(s) will map the entire imaginary axis in the frequency domain 

 T jω



 

Standard LP to BP Transformation 

 

 

Normalized LP to Normalized BP mapping Strategy: 

map s=j0 to s= j1 

map s=j1 to s=jωBN 

map s= –j1 to s= jωAN 

TLPN(f(s)) map ω=0 to ω=1 

map  ω=1 to ω=ωBN 

map ω= –1 to ω=ωAN 

TLPN(s) TBPN(s)
TLPN(f(s))

Variable Mapping Strategy to Preserve Shape of LP function: 

1

1

ω
1

1

ωωAN ωBN

 T j  
BP

T j

BWN

N BN AN
BW   

1
AN BN

  

Normalized

-1
-1

- ωAN - ωBN

BWN

 s f s

s-domain ω-domain 
consider: 

This mapping will introduce 3 constraints 



Standard LP to BP Transformation 

 

 
Mapping Strategy: 

Consider variable mapping  

2

N

s +1
s

s•BW


map s=0 to s= j1 

map s=j1 to s=jωBN 

map s= –j1 to s= jωAN 

map ω=0 to ω=1 

map  ω=1 to ω=ωBN 

map ω= –1 to ω=ωAN 

s-domain ω-domain 

 
2

T2 T1 T0

T1 T0

a s a s+a
f s  = 

b s+b



With this mapping, there are  5 D.O.F and 3 mathematical constraints and the 

additional constraints that the Im axis maps to the Im axis and maps PB to PB 

and SB to SB 

Will now show that the following mapping will meet these constraints 

 
2

N

s +1
f s

s•BW
 or 

equivalently 

This is the lowest-order mapping that will meet these constraints and it doubles 

the order of the approximation 

TLPN(f(s)) 

TLPN(s) TBPN(s)
TLPN(f(s))



 

Standard LP to BP Transformation 

 

 

Verification of mapping Strategy: 
2

N

s +1
s

s•BW


1

0 0 1
2

N

s +1

s•BW
j

j  

 
1

2 2 22

BN BN BN

BN2 2

N BN BN AN BN AN BN BN

BN
jω

1-ω ω -1 ω -1s +1
j ω

s•BW jω ω -ω ω -ω ω ω -1
j j j j     

 

2 2 22

AN AN AN

AN2 2

N AN BN AN AN BN AN AN
AN

1-ω ω -1 ω -1s +1
j j -j j1 jω

s•BW jω ω -ω ω ω -ω 1-ωωj

      

Must still show that the Im axis maps to the Im axis and maps PB to PB and 

SB to SB 

map s=0 to s= j1 

map s=j1 to s=jωBN 

map s= –j1 to s= jωAN 

map ω=0 to ω=1 

map  ω=1 to ω=ωBN 

map ω= –1 to ω=ωAN 

s-domain ω-domain 

TLPN(f(s)) 



 

Standard LP to BP Transformation 

 

 

Verification of mapping Strategy: 
2

N

s +1
s

s•BW


The mapping                              is termed the standard LP to BP transformation 

2

N

s +1
s

s•BW


map s=0 to s= j1 

map s=j1 to s=jωBN 

map s= –j1 to s= jωAN 

map ω=0 to ω=1 

map  ω=1 to ω=ωBN 

map ω= –1 to ω=ωAN 

s-domain ω-domain 

TLPN(f(s)) 

Image of Im axis: 
2

N

s +1
jω =

s•BW

   
2 2

N N N N
jω•BW ± BW jω - 4 ω•BW ± BW ω + 4

s j
2 2

  
  
 
 

solving for s, obtain 

this has no real part so the imaginary axis maps to the imaginary axis 

Can readily show this mapping maps PB to PB and SB to SB 



 

Standard LP to BP Transformation 

 

 
2

N

s +1
s

s•BW
The standard LP to BP transformation 

Question:   Is this mapping dimensionally consistent ? 

2

x

N

s +1
s

s•BW


If we add a subscript to the LP variable for notational convenience, can express this mapping as 

•  The dimensions of BWN must be set so that this is dimensionally consistent 

•  The dimensions of the constant “1” in the numerator must be set so that this 

is dimensionally consistent 



 

Standard LP to BP Transformation 

 

 

ω

1

1

ω

1

1

ωAN ωBN

 
LP

T j

 
BP

T j

BWN

-1

-1
- ωAN - ωBN

BWN

TLPN(s)

TBPN(s)

2

N

    s

s +1

s•BW





 

Standard LP to BP Transformation 

 

 

Frequency and s-domain Mappings 

(subscript variable in LP approximation for notational convenience) 

TLPN(sx)

TBPN(s)

X
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s +1

s•BW



2

X

N

s +1
s

s•BW


2

X

N

ω -1
ω

ω•BW


 
2

X N N X
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ω
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solving for s or ω 

Exercise:  Resolve the dimensional consistency in the last equation 



 

Standard LP to BP Transformation 
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Denormalized Mapping 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain  Mappings - Denormalized 

(subscript variable in LP approximation for notational convenience) 
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Exercise:  Resolve the dimensional consistency in the last equation 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain  Mappings - Denormalized 

(subscript variable in LP approximation for notational convenience) 

All three approaches give same approximation 
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Which is most practical to use? Often none of them ! 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain  Mappings - Denormalized 

(subscript variable in LP approximation for notational convenience) 

TLPN(sx)

TBPN(sN)

X
    s

 
2

N

N N

s +1
  

s •BW

Often most practical to synthesize directly from the TBPN and then do the 

frequency scaling of components at the circuit level rather than at the 

approximation level 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain Mappings 

(subscript variable in LP approximation for notational convenience) 

2
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s •BW ± BW s - 4

s
2

 


solving for s  

Poles and Zeros of the BP approximations 

Since this relationship maps the complex plane to the complex plane, it also 

maps the poles and zeros of the LP approximation to the poles and zeros of 

the BP approximation 

  0LPN xT p 

    BP LPNT s T f s

   0LPNT f p 

     0BP LPNT p T f p 



 

Standard LP to BP Transformation 

 

 

Pole Mappings 
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s +1

s•BW



2

X

N

p +1
p

p•BW


 
2

X N N X
p •BW ± BW p - 4

p
2




Claim:  With a variable mapping transform, the variable mapping naturally 

defines the mapping of the poles of the transformed function 

Exercise:  Resolve the dimensional consistency in the last equation 



 

Standard LP to BP Transformation 

 

 

Pole Mappings 

 
2

X N N X
p •BW ± BW p - 4

p
2




Re

Im

Re

Im

 0BPH LBPHω ,Q

 0LP LPω ,Q

 0BPL LBPLω ,Q

Image of the cc pole pair is the two pairs of poles 



 

Standard LP to BP Transformation 

 

 

Pole Mappings 

Can show that the upper hp pole maps to one upper hp pole and one lower hp pole 

as shown.  Corresponding mapping of the lower hp pole is also shown 

Re

Im
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Im

 0BPH LBPHω ,Q

 0LP LPω ,Q

 0BPL LBPLω ,Q



 

Standard LP to BP Transformation 

 

 

Pole Mappings 

 
2

X N N X
p •BW ± BW p - 4

p
2




Re

Im

Re

Im

multipliity 6

Note doubling of poles, addition of zeros, and likely Q enhancement 



End of Lecture 16 
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Lecture 17 

Filter Transformations 

Lowpass to Bandpass 

Lowpass to Highpass 

Lowpass to Band-reject 



Flat Passband/Stopband Filters 

ω

 T j

ω

 T j

ω

 T j

ω

 T j

Lowpass Bandpass

Highpass Bandreject

Review from Last Time 



 

Standard LP to BP Transformation 

 

 

Verification of mapping Strategy: 
2

N

s +1
s

s•BW


The mapping                              is termed the standard LP to BP transformation 

2

N

s +1
s

s•BW


map s=0 to s= j1 

map s=j1 to s=jωBN 

map s= –j1 to s= jωAN 

map ω=0 to ω=1 

map  ω=1 to ω=ωBN 

map ω= –1 to ω=ωAN 

s-domain ω-domain 

TLPN(f(s)) 

Image of Im axis: 
2

N

s +1
jω =

s•BW

   
2 2

N N N N
jω•BW ± BW jω - 4 ω•BW ± BW ω + 4

s j
2 2

  
  
 
 

solving for s, obtain 

this has no real part so the imaginary axis maps to the imaginary axis 

Can readily show this mapping maps PB to PB and SB to SB 

Review from Last Time 



 

Standard LP to BP Transformation 

 

 

ω

1

1

ω

1

1

ωAN ωBN

 
LP

T j

 
BP

T j

BWN

-1

-1
- ωAN - ωBN

BWN

TLPN(s)

TBPN(s)

2

N

    s

s +1

s•BW



Review from Last Time 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain  Mappings - Denormalized 

(subscript variable in LP approximation for notational convenience) 

All three approaches give same approximation 

TLPN(sx)

TBPN(sN)

X
    s

N
 s

N

s

W

 

TBP(s)

 
2

N

N N

s +1
  

s •BW

TLPN(sx)

TLP(s)

TBP(s)

TLPN(sx)

TBP(s)

X

2 2

M

    s

s +ω

s•BW



N
 s

N

s

W

 

    s

 
2

N

s +1
  

s•BW

Which is most practical to use? Often none of them ! 

Review from Last Time 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain  Mappings - Denormalized 

(subscript variable in LP approximation for notational convenience) 

TLPN(sx)

TBPN(sN)

X
    s

 
2

N

N N

s +1
  

s •BW

Often most practical to synthesize directly from the TBPN and then do the 

frequency scaling of components at the circuit level rather than at the 

approximation level 

Review from Last Time 



 

Standard LP to BP Transformation 

 

 

Pole Mappings 

 
2

X N N X
p •BW ± BW p - 4

p
2
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Im

Re

Im

 0BPH LBPHω ,Q

 0LP LPω ,Q

 0BPL LBPLω ,Q

Image of the cc pole pair is the two pairs of poles 

Review from Last Time 



 

Standard LP to BP Transformation 

 

 

Pole Mappings 

 
2

X N N X
p •BW ± BW p - 4

p
2




Re

Im

Re

Im

multipliity 6

Note doubling of poles, addition of zeros, and likely Q enhancement 

Review from Last Time 



 

 LP to BP Transformation 

 

 

TLPN(sx)

TBPN(s)

X

2

    s

f (s)



Claim:  Other variable mapping transforms exist that  satisfy the 

 imaginary axis mapping properties needed to obtain the LP to BP 

 transformation but are seldom, if ever, discussed.  The Standard  

LP to BP transform Is by far the most popular  and most authors  

treat it as if it is unique.   



 

 LP to BP Transformation 

 

 

Pole Q of BP Approximations 

ω

 
LPN

T j

ω

 
BP

T j

1

1

ωM

BW

ωL ωH

H LBW = ω - ω

M H Lω ω ω

Consider a pole in the LP approximation characterized by {ω0LP,QLP} 

It can be shown that the corresponding BP poles have the same Q 
(i.e. both bp poles lie on a common radial line) 
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Im
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Im

 0BPH LBPHω ,Q

 0LP LPω ,Q

 0BPL LBPLω ,Q



 

 LP to BP Transformation 

 

 

Pole Q of BP Approximations 

Define: 0LP

M

BW
ω

ω


 
  
 

ω

 
LPN

T j

ω

 
BP

T j

1

1

ωM

BW

ωL ωH

H LBW = ω - ω

M H Lω ω ω

Re

Im

Re

Im

 0BPH BPHω ,Q

 0LP LPω ,Q

 0BPL BPLω ,Q

It can be shown that  

2

2 2 2

4 4 4
1 1

2

LP
BPL BPH 2

2LP

Q
Q Q

Q  

 
      

 

For  d small, LP
BP

2Q
Q



It can be shown that  
2

4
2

M BP BP
0BP

LP LP

ω Q Q
ω

Q Q
 
 

 
    
  
 

Note for d small, QBP can get very large   



 

 LP to BP Transformation 

 

 

Pole Q of BP Approximations 

2

2 2 2

4 4 4
1 1

2

LP
BPL BPH 2

2LP

Q
Q Q
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0LP

M

BW
ω
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 LP to BP Transformation 

 

 
Pole locations vs QLP and  

0LP

M

BW
ω

ω


 
  
 





 

 LP to BP Transformation 

 

 

Classical BP Approximations 

ω

 
LPN

T j

ω

 
BP

T j

1

1

ωM

BW

ωL ωH

Butterworth 

Chebyschev 

Elliptic 

Bessel 

Obtained by the LP to BP transformation of the corresponding LP approximations 



 

Standard LP to BP Transformation 

 

 
– Standard LP to BP transform is a variable mapping transform 

– Maps jω axis to jω axis 

– Maps LP poles to BP poles 

– Preserves basic shape but warps frequency axis 

– Doubles order 

– Pole Q of resultant band-pass functions can be very large for 
narrow pass-band 

– Sequencing of frequency scaling and transformation does not 
affect final function  

 

 

2
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s

s•BW




Example 1:  Obtain an approximation that meets the following specifications 

ω

AM

AR

AS

ωMωA ωB ωBHωAL

2 2 2 2

M AL BH M

AL BH

ω -ω  ω - ω

ω •BW ω •BW


B A
BW=ω -ω

M B A
ω = ω ω

Assume that ωAL, ωBH and ωM satsify 



Example 1:  Obtain an approximation that meets the following specifications 

2 2 2 2

M AL BH M

AL BH

ω -ω  ω - ω

ω •BW ω •BW


B A
BW=ω -ω

M B A
ω = ω ω

R

2
M

A1
=

A1+ε

2

M
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A
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A
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M

A
A =

A

2 2

M AL

S
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ω -ω  
ω

ω •BW


S

SN

M

A
A =

A

1 ω

ω

AM

AR

AS

ASN

ωS

ωMωA ωB ωBHωAL

1
ARN

(actually  –ωA and –ωAL that map to 1 and ωS respectively but show ωA and ωAL for convenience)  



Example 2:  Obtain an approximation that meets the following specifications 

2 2 2 2

M AL BH M

AL BH

ω -ω  ω - ω

ω •BW ω •BW


B A
BW=ω -ω

M B A
ω = ω ω

ωMωA ωB ωBHωAL ω

AM

AR

ASH

ASL

In this example,  



Example 2:  Obtain an approximation that meets the following specifications 

B A
BW=ω -ω

M B A
ω = ω ω

ωMωA ωB ωBHωAL ω

ω ω

ASN

1
ARN

ASN

1
ARN

1 ωS1 1 ωS2
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=
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2 2
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ω - ω  
ω

ω •BW


2 2

BH M

S2
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ω - ω
ω

ω •BW


SH SL

SN
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A A
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 SN S1 S2
ω min ω ,ω



Example 2:  Obtain an approximation that meets the following specifications 

B A
BW=ω -ω

M B A
ω = ω ω
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A =

A
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2
M

A1
=

A1+ε
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A
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2 2

M AL

S1
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ω -ω  
ω

ω •BW


2 2

BH M

S2
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ω - ω
ω

ω •BW


SH SL

SN

M M

A A
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 SN S1 S2
ω min ω ,ω
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1
ARN

ASN

1
ARN

1 ωS1 1 ωS2

ω

ASN

1
ARN

1 ωSN

 SN S1 S2
ω min ω ,ω



Filter Transformations 

Lowpass to Bandpass      (LP to BP) 

Lowpass to Highpass       (LP to HP) 

Lowpass to Band-reject   (LP to BR) 

 

•   Approach will be to take advantage of the results obtained for the 

standard LP approximations  

 

•   Will focus on flat passband and zero-gain stop-band 

transformations 



 LP to BS Transformation 

 

 Strategy:  As was done for the LP to BP approximations, will use a variable 

mapping strategy that maps the imaginary axis in the s-plane to the imaginary 

axis in the s-plane so the basic shape is preserved.  

XIN XOUT

 LPNT s
XIN XOUT

 BST s s  f s

    BS LPNT s T f s

 

T

T

m

Ti

=0

n

Ti

=0
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f s  = 

b s
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 LP to BS Transformation 

 

 

1

1

ω
1

1

ω

 T j  
BS

T j

Normalized

BWN

ωBNωAN

1

1

ω
1

1

ω

 T j  
BS

T j

Normalized

-1
-1

BWNBWN

ωBN-ωBN ωAN-ωAN

N BN ANBW =ω -ω

1AN BNω ω 



 

Standard LP to BS Transformation 

 

 

Mapping Strategy: 

map s=0 to s=± j∞ 

map s=0 to s= j0 

map s=j1 to s=jωA 

map s=j1 to s=-jωB 

map s=-j1 to s=jωB 

map s=-j1 to s=-jωA 

 

FN(s) should  

map ω=0 to ω = ±∞ 

map ω=0 to ω = 0 

map  ω=1 to ω = ωA 

map  ω=1 to ω= -ωB 

map ω= –1 to ω= ωB 

 map ω= –1 to ω= -ωA 

 

Variable Mapping Strategy to Preserve Shape of LP function: 

1

1

ω
1

1

ω

 T j  
BS

T j

Normalized

-1
-1

BWNBWN

ωBN-ωBN ωAN-ωAN



ω

1

1

ω

1

 T j

 
BS

T j

-1

ω = ∞
ω = - ∞

ω0-ω0 1-1

 

Standard LP to BS Transformation 

 

 
map ω=0 to ω = ±∞ 

map ω=0 to ω = 0 

map  ω=1 to ω = ωA 

map  ω=1 to ω= -ωB 

map ω= –1 to ω= ωB 

 map ω= –1 to ω= -ωA 

 



 

Standard LP to BS Transformation 

 

 

Mapping Strategy: consider variable mapping transform 

TLPN(s) TBSN(s)
FN(s)

FN(s) should  

Consider variable mapping  

   
1

N
2

s BWLPN BSN

s

T ( ) =T
N s

F s s 




1
N

2

s BW
s

s






map s=0 to s=± j∞ 

map s=0 to s= j0 

map s=j1 to s=jωA 

map s=j1 to s=-jωB 

map s=-j1 to s=jωB 

map s=-j1 to s=-jωA 

 

map ω=0 to ω = ±∞ 

map ω=0 to ω = 0 

map  ω=1 to ω = ωA 

map  ω=1 to ω= -ωB 

map ω= –1 to ω= ωB 

 map ω= –1 to ω= -ωA 

 



Comparison of Transforms 
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LP to BS 
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1
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ωL ωH



 

Standard LP to BS Transformation 

 

 

Frequency and s-domain Mappings 

(subscript variable in LP approximation for notational convenience) 

TLPN(sx)

TBSN(s)

1

X

N

2

s

s BW
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1
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X 2
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X 2
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Standard LP to BS Transformation 

 

 

Un-normalized Frequency and s-domain Mappings 

(subscript variable in LP approximation for notational convenience) 

TLPN(sx)

TBS(s)

X

2 2

M

s

s BW

s ω







X 2 2
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M
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4

2 2
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ω ω
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Standard LP to BS Transformation 

 

 

Pole Mappings 

Can show that the upper hp pole maps to one upper hp pole and one lower hp pole 

as shown.  Corresponding mapping of the lower hp pole is also shown 
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 0BPH LBPHω ,Q

 0LP LPω ,Q

 0BPL LBPLω ,Q



 

 LP to BS Transformation 

 

 

Pole Q of BS Approximations 

Define: 
M 0LP

BW

ω ω


 
  
 

BN ANBW = ω - ω

M AN BNω ω ω

It can be shown that  

2

2 2 2

4 4 4
1 1

2

LP
BSL BSH 2
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Q
Q Q
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For  γ small, LP
BS

2Q
Q


It can be shown that  

2

4
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BS BSM
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LP LP

Q Qω
ω
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Note for γ small, QBS can get very large   
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Im
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 0BPH LBPHω ,Q

 0LP LPω ,Q

 0BPL LBPLω ,Q
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Standard LP to BS Transformation 

 

 

Pole Mappings 

 
2

N N

X X

BW BW
± - 4

p p
p

2


Note doubling of poles, addition of zeros, and likely Q enhancement 

Re

Im

Re

Im

multipliity 6

multipliity 6



 

Standard LP to BS Transformation 

 

 

•   Standard LP to BS transformation is a variable mapping transform 

 

•  Maps jω axis to jω axis in the s-plane 

 

•  Preserves basic shape of  an approximation but warps frequency axis 

 

•  Order of BS approximation is double that of the LP Approximation 

 

•  Pole Q and ω0 expressions are identical to those of the LP to BP transformation 

 

•  Pole Q of BS approximation can get very large for narrow BW  

 

•  Other variable transforms exist but the standard is by far the most popular 

X 2 2

M

s BW
s

s ω








Filter Transformations 

Lowpass to Bandpass      (LP to BP) 

Lowpass to Highpass       (LP to HP) 

Lowpass to Band-reject   (LP to BR) 

 

•   Approach will be to take advantage of the results obtained for the 

standard LP approximations  

 

•   Will focus on flat passband and zero-gain stop-band 

transformations 



 LP to HP Transformation 

 

 Strategy:  As was done for the LP to BP approximations, will use a variable 

mapping strategy that maps the imaginary axis in the s-plane to the imaginary 

axis in the s-plane so the basic shape is preserved.  

XIN XOUT

 LPNT s
XIN XOUT

 HPT s s  f s

    HP LPNT s T f s
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Normalized

 

 LP to HP Transformation 

 

 

1

1

ω
1

1

ω

 T j  
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Normalized

-1
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Standard LP to HP Transformation 

 

 
Mapping Strategy: 

map s=0 to s=± j∞ 

map s=j1 to s=-j1 

map s= –j1 to s=j1 

FN(s) should  

map ω=0 to ω=∞ 

map  ω=1 to ω=-1 

map ω= –1 to ω=1 

Variable Mapping Strategy to Preserve Shape of LP function: 
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Normalized
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Standard LP to HP Transformation 

 

 

Mapping Strategy: consider variable mapping transform 

TLPN(s) THPN(s)
FN(s)

FN(s) should  

Consider variable mapping  

    1LPN LPN
s

T ( ) =T
s

F s s


1
s

s


map s=0 to s=± j∞ 

map s=j1 to s=-j1 

map s= –j1 to s=j1 

map ω=0 to ω=∞ 

map  ω=1 to ω=-1 

map ω= –1 to ω=1 



Comparison of Transforms 
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 LP to HP Transformation 
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(Normalized Transform) 



 

Standard LP to HP Transformation 

 

 

Frequency and s-domain Mappings 

(subscript variable in LP approximation for notational convenience) 

TLPN(sx)

THPN(s)
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Standard LP to HP Transformation 

 

 

Pole Mappings 

TLPN(sx)
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X
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1
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1
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Claim:  With a variable mapping transform, the variable mapping naturally 

defines the mapping of the poles of the transformed function 



 

Standard LP to HP Transformation 

 

 

Pole Mappings 
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Standard LP to HP Transformation 

 

 

Pole Mappings 
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If pX=α+jβ 
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1 α-jβ
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α+jβ α +β

and pX=α-jβ 

2 2
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p= =
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Highpass poles are scaled in magnitude 

but make identical angles with imaginary  

axis 

 

HP pole Q is same as LP pole Q 

 

Order is preserved 



 

Standard LP to HP Transformation 
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(Un-normalized variable mapping transform) 
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Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter



End of Lecture 17 
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Lecture 18 

Basic Biquadratic Active Filters 

Second-order Bandpass 

Second-order Lowpass 

Effects of Op Amp on Filter Performance 
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Standard LP to BS Transformation 

 

 
map ω=0 to ω = ±∞ 

map ω=0 to ω = 0 

map  ω=1 to ω = ωA 

map  ω=1 to ω= -ωB 

map ω= –1 to ω= ωB 

 map ω= –1 to ω= -ωA 

 

Review from Last Time 



 

 LP to BS Transformation 

 

 

Pole Q of BS Approximations 

Define: 
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ω ω
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It can be shown that  
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Note for γ small, QBS can get very large   
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Review from Last Time 



 

Standard LP to BS Transformation 

 

 

•   Standard LP to BS transformation is a variable mapping transform 

 

•  Maps jω axis to jω axis in the s-plane 

 

•  Preserves basic shape of  an approximation but warps frequency axis 

 

•  Order of BS approximation is double that of the LP Approximation 

 

•  Pole Q and ω0 expressions are identical to those of the LP to BP transformation 

 

•  Pole Q of BS approximation can get very large for narrow BW  

 

•  Other variable transforms exist but the standard is by far the most popular 
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Review from Last Time 



 

 LP to HP Transformation 
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(Normalized Transform) 

Review from Last Time 



Comparison of Transforms 
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Review from Last Time 



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter



Filter Design/Synthesis 

Considerations 

There are many different filter architectures that can realize a 

given transfer function 

Considerable effort has been focused over the years on 

“inventing” these architectures and on determining which is 

best suited for a given application  



Filter Design/Synthesis Considerations 
Most even-ordered designs today use one of the following three basic architectures 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

  1 2 mT s T T T

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tm(s)

Biquad

αF

XOUT
XIN

α1
α2 αm

α0


Cascaded Biquads 

Leapfrog 

Multiple-loop Feedback (less popular) 

What’s unique in all of these approaches? 



Filter Design/Synthesis Considerations 
Most odd-ordered designs today use one of the following three basic architectures 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

  1 2 mT s T T T

Tm+1(s)
First 

Order

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tm(s)

Biquad

αF

XOUT
XIN

α1
α2 αm

α0
 Tm+1(s)

First 

Order

αm+1

Cascaded Biquads 

Leapfrog 

Multiple-loop Feedback (less popular) 

What’s unique in all of these approaches? 



Filter Design/Synthesis Considerations 

T(s)

Biquad

XOUTXIN

α1

α2
αk

α0


What’s unique in all of these approaches? 

I(s)

Integrator

• Most effort on synthesis can focus on synthesizing these four blocks 

          (the summing function is often incorporated into the Biquad or Integrator) 

 

• Some issues associated with their interconnections 

 

 

• And, in many integrated structures, the biquads are made with integrators 

          (thus, much filter design work simply focuses on the design of integrators) 

 
2

2 1 0

2

1 0

a s +a s+a
T s  = 

s +b s+b

Tm+1(s)
First 

Order

  0II s  = 
s

  1 0

0

a s+a
T s  = 

s+b

(the first-order block is much less challenging to design than the biquad) 

 

k

OUT i

i=0

X  = α



Biquads 

T(s)

Biquad

How many biquad filter functions are there?  

 
2

2 1 0

2

1 0

a s +a s+a
T s  = 

s +b s+b

 
2

2 1
2 12

1 0

a s +a s
T s  = a 0, a 0

s +b s+b
 

  0
02

1 0

a
T s  = a 0

s +b s+b


  1
12

1 0

a s
T s  = a 0

s +b s+b


 
2

2
22

1 0

a s
T s  = a 0

s +b s+b


 
2

2 0
0 22

1 0

a s +a
T s  = a 0, a 0

s +b s+b
 

  1 0
0 12

1 0

a s+a
T s  = a 0, a 0

s +b s+b
 

  ,
2

2 1 0
0 1 22

1 0

a s +a s+a
T s  = a 0, a 0 a 0

s +b s+b
  



Filter Design/Synthesis Considerations 

 2BPT jω

ω
ω0

H

2

H

ωA ωB

Review:  Second-order bandpass transfer function 

  H

0

2BP
2 20

0

ω
s

Q
T s

ω
s  + s  + ω

Q

 
 
 
 
 
 

0
B A

ω
BW = ω -ω  = 

Q

PEAK 0ω  = ω

XIN XOUT T s



Filter Design/Synthesis Considerations 

There are many different filter architectures that can realize a given transfer 

function 

Will first consider second-order Bandpass filter structures 

XIN XOUT T s

  H

0

2 20
0

ω
s

Q
T s

ω
s  + s  + ω

Q

 
 
 
 
 
 

0
B A

ω
BW = ω -ω  = 

Q

PEAK 0ω  = ω



Filter Design/Synthesis Considerations 

There are many different filter architectures that can realize a given transfer function 

Example 1: 

 OUT

2IN

V 1 s
T s

1 1V RC
s +s  + 

RC LC

 
 
 
 

Second-order Bandpass Filter 

3 degrees of freedom 

R

LCVIN

VOUT

0 ?ω  Q = ? BW = ?

Will first consider second-order Bandpass filter structures 

2 degrees of freedom for determining dimensionless transfer function 

   (impedance values scale) 



Example 1: 

 OUT

2IN

V 1 s
T s

1 1V RC
s +s  + 

RC LC

 
 
 
 

R

LCVIN

VOUT

0

1
ω

LC


C
Q = R

L

1
BW = 

RC

Can realize an arbitrary 2nd order bandpass function within a gain factor 

Simple design process (sequential but not independent control of ω0 and Q) 



Example 2: 

C1

C2

R2

R1

VIN

VOUT
K

R3

 OUT

2IN 1 1 1 2

1 1 3 1 3 2 2 1 1 2 3 1 2

V K s
T s

V R C R +R1 1 1 1-K
s +s + + +  + 

R C R C R C R C R R R C C

 
 
 
 

Second-order Bandpass Filter 

6 degrees of freedom  (effectively 5 because dimensionless) 

Denote as a +KRC filter 

0 ?ω  Q = ? BW = ?



Example 2: 

C

C

R
R

VIN

VOUT
K

R

 

 

OUT

2IN
2

V K s
T s

4-K 2V RC
s +s  + 

RC RC

 
 
 
 

Equal R, Equal C Realization 

0 ?ω  Q = ? BW = ?



Example 2: 

C

C

R
R

VIN

VOUT
K

R

 

 

OUT

2IN
2

V K s
T s

4-K 2V RC
s +s  + 

RC RC

 
 
 
 

3 degrees of freedom (effectively 2 since dimensionless) 

Equal R, Equal C Realization 

0

2
ω

RC
 2

Q = 
4-K

• Can satisfy arbitrary 2nd=order BP constraints within a gain factor with this circuit 

• Very simple circuit structure 

4-K
BW = 

RC

• Can actually move poles in RHP by making K >4 

• Independent control of ω0 and Q but requires tuning more than one component 



Example 2: 

C1

C2

R
R

VIN

VOUT
1

R

Unity Gain, Equal R 

0 ?ω  Q = ? BW = ?

 
1

OUT

IN 1 2

2

1 2 1 2

V 1 s
T s

V R C 2 1 2
s +s +  + 

R C C R C C

 
   
   
    



Example 2: 

C1

C2

R
R

VIN

VOUT
1

R

Unity Gain, Equal R 

0

1 2

2
ω

R C C


1 2

1 2 1
BW =  

R C C

  
  

   

 
1

OUT

IN 1 2

2

1 2 1 2

V 1 s
T s

V R C 2 1 2
s +s +  + 

R C C R C C

 
   
   
    

2 1

1 2

C C1
Q 2 +

C C2




Example 3: 

5 degrees of freedom  (4 effective since dimensionless) 

C1

C2

R2

R1

VIN

VOUT
-K

 
 

   

OUT

IN 1 1 2

1 1 2 2 2 1 1 2 1 2

V K s
T s

V 1+K R C 1 1 1 1 1
s +s + +  + 

R C R C R C 1+K 1+K R R C C

  
  
  
  

Second-order Bandpass Filter 

Denote as a -KRC filter 

0 ?ω  Q = ? BW = ?



Example 3: 

3 degrees of freedom 

C

C
R

R
VIN

VOUT
-K

 
 

    

OUT

IN 2

2

V K s
T s

V 1+K RC 3 1 1
s +s  + 

RC 1+K 1+K RC

  
  
  
  

Equal R, Equal C Realization 

0 ?ω  Q = ? BW = ?



Example 3: 

3 degrees of freedom  (2 effective since dimensionless) 

C

C
R

R
VIN

VOUT
-K

 
 

    

OUT

IN 2

2

V K s
T s

V 1+K RC 3 1 1
s +s  + 

RC 1+K 1+K RC

  
  
  
  

Equal R, Equal C Realization 

0

1
ω

RC 1+K
 1+K

Q = 
3

• Can satisfy arbitrary 2nd=order BP constraints within a gain factor with this circuit 

• Very simple circuit structure 

 
3

BW = 
RC 1+K

• Simple design process (sequential but not independent control of ω0 and Q, 

requires tuning of more than 1 component if Rs used) 



Observation: 

These are often termed Sallen and Key filters 

C1

C2

R2

R1

VIN

VOUT
K

R3

C1

C2

R2

R1

VIN

VOUT
-K

Sallen and Key introduced a host of filter structures 

1955

These filters were really ahead of their time and appeared long before 

practical implementations were available 

Sallen and Key structures comprised of summers, 

RC network, and finite gain amplifiers 



Example 4: 

 OUT

IN 1 1 2

2 1 2 1 2 1 2

V 1 s
T s

V R C 1 1 1 1
s +s +  + 

R C C R R C C

  
  
  

  

Second-order Bandpass Filter 

4 degrees of freedom  (3 effective since dimensionless) 

Denote as a bridged T feedback structure 

VOUT

VIN

R1

R2

C1
C2



Example 4: 

 OUT

2IN 1

2

2 1 2

V 1 s
T s

V R C 2 1
s +s  + 

CR R R C

  
 
 
 

VOUT

VIN

R1

R2

CC
Equal C 

implementation 

3 degrees of freedom  (2 effective since dimensionless) 

  

0 ?ω 
Q = ? BW = ?



Example 4: 

 OUT

2IN 1

2

2 1 2

V 1 s
T s

V R C 2 1
s +s  + 

CR R R C

  
 
 
 

VOUT

VIN

R1

R2

CC
Equal C 

implementation 

0

1

1 2

ω
C R R

 2

1

R1
Q = 

2 R 2

2
BW = 

R C

Simple circuit structure 

More tedious design/calibration process for ω0 and Q (iterative if C is fixed) 

Resistor ratio is 4Q2 



Example 4: 

VOUT

VIN

R1

R2

CC

VOUT

VIN

R1

R2

C1
C2

K

VOUT

VIN

R1 R2

C1

C2

VOUT
VIN

R1 R2

C1

C2

K

Some variants of the bridged-T feedback structure 



Are there more 2nd order bandpass filter structures? 

Yes, many other 2nd-order bandpass filter structures exist 

But, if we ask the question differently 

Are there more 2nd-order bandpass filter structures comprised of one 

amplifier and four passive components?  

Yes, but not too many more 

Are there more 2nd-order bandpass filter structures comprised of one 

amplifier, two capacitors, and three resistors?   

Yes, but not too many more 

Similar comments can be made about 2nd-order LP, BP, and BR 

 
2

0

2 20
0

Hω
T s

ω
s  + s  + ω

Q


 
 
 

 
2

2 20
0

Hs
T s

ω
s  + s  + ω

Q


 
 
 

 
 2 2

0

2 20
0

H s ω
T s

ω
s  + s  + ω

Q




 
 
 

Similar comments can be made about full  2nd-order biquadratic function 

 

2 20N
0N

N

2 20
0

ω
s  + s  + ω

Q
T s H

ω
s  + s  + ω

Q

 
 
 
 
 
 



End of Lecture 18 



EE 508 

Lecture 19 

Sensitivity Functions 
• Comparison of Filter Structures 

• Performance Prediction 

• Design Characterization 

Basic Biquadratic Active Filters 



Filter Design/Synthesis Considerations 
Most odd-ordered designs today use one of the following three basic architectures 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

  1 2 mT s T T T

Tm+1(s)
First 

Order

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tm(s)

Biquad

αF

XOUT
XIN

α1
α2 αm

α0
 Tm+1(s)

First 

Order

αm+1

Cascaded Biquads 

Leapfrog 

Multiple-loop Feedback (less popular) 

What’s unique in all of these approaches? 

Review from last time 



Filter Design/Synthesis Considerations 

T(s)

Biquad

XOUTXIN

α1

α2
αk

α0


What’s unique in all of these approaches? 

I(s)

Integrator

• Most effort on synthesis can focus on synthesizing these four blocks 

          (the summing function is often incorporated into the Biquad or Integrator) 

 

• Some issues associated with their interconnections 

 

 

• And, in many integrated structures, the biquads are made with integrators 

          (thus, much filter design work simply focuses on the design of integrators) 

 
2

2 1 0

2

1 0

a s +a s+a
T s  = 

s +b s+b

Tm+1(s)
First 

Order

  0II s  = 
s

  1 0

0

a s+a
T s  = 

s+b

(the first-order block is much less challenging to design than the biquad) 

 

k

OUT i

i=0

X  = α

Review from last time 



Filter Design/Synthesis Considerations 

There are many different filter architectures that can realize a given transfer 

function 

Will first consider second-order Bandpass filter structures 

XIN XOUT T s

  H

0

2 20
0

ω
s

Q
T s

ω
s  + s  + ω

Q

 
 
 
 
 
 

0
B A

ω
BW = ω -ω  = 

Q

PEAK 0ω  = ω

Review from last time 



Example 1: 

 OUT

2IN

V 1 s
T s

1 1V RC
s +s  + 

RC LC

 
 
 
 

R

LCVIN

VOUT

0

1
ω

LC


C
Q = R

L

1
BW = 

RC

Can realize an arbitrary 2nd order bandpass function within a gain factor 

Simple design process (sequential but not independent control of ω0 and Q) 

Review from last time 



Example 2: 

C

C

R
R

VIN

VOUT
K

R

 

 

OUT

2IN
2

V K s
T s

4-K 2V RC
s +s  + 

RC RC

 
 
 
 

3 degrees of freedom (effectively 2 since dimensionless) 

Equal R, Equal C Realization 

0

2
ω

RC
 2

Q = 
4-K

Can satisfy arbitrary 2nd=order BP constraints within a gain factor with this circuit 

Very simple circuit structure 

4-K
BW = 

RC

Can actually move poles in RHP by making K >4 

Independent control of ω0 and Q but requires tuning more than one component 

Review from last time 



Example 3: 

3 degrees of freedom  (2 effective since dimensionless) 

C

C
R

R
VIN

VOUT
-K

 
 

    

OUT

IN 2

2

V K s
T s

V 1+K RC 3 1 1
s +s  + 

RC 1+K 1+K RC

  
  
  
  

Equal R, Equal C Realization 

0

1
ω

RC 1+K
 1+K

Q = 
3

Can satisfy arbitrary 2nd=order BP constraints within a gain factor with this circuit 

Very simple circuit structure 

 
3

BW = 
RC 1+K

Simple design process (sequential but not independent control of ω0 and Q, 

requires tuning of more than 1 component if Rs used) 

Review from last time 



Example 4: 

VOUT

VIN

R1

R2

CC

VOUT

VIN

R1

R2

C1
C2

K

VOUT

VIN

R1 R2

C1

C2

VOUT
VIN

R1 R2

C1

C2

K

Some variants of the bridged-T feedback structure 

Review from last time 



Example 5: 

 OUT

IN 0 2 2

Q 2 1 2 1 2

V 1 s
T s

V R C 1 1
s +s  + 

R C R R C C

  
 
 
 

Second-order Bandpass Filter 

8 degrees of freedom  (effectively 7 since dimensionless) 

Denote as a two-integrator-loop structure 

R0

R1RQ

RA

RAR2

C1 C2

VOUT

VIN



Example 5: 

 

 
2

OUT

IN 2

Q

V 1 s
T s

V RC R 1 1
s +s  + 

R RC RC

  
  
   
  

3 degrees of freedom (effectively 2 since dimensionless) 

R

RRQ

RA

RAR
C C

VOUT

VIN
Equal R Equal C 

(except RQ) 

0 ?ω 
Q = ? BW = ?



Example 5: 

 

 
2

OUT

IN 2

Q

V 1 s
T s

V RC R 1 1
s +s  + 

R RC RC

  
  
   
  

3 degrees of freedom (effectively 2 since dimensionless) 

R

RRQ

RA

RAR
C C

VOUT

VIN
Equal R Equal C 

(except RQ) 

0

1
ω

RC
 QR

Q = 
R Q

R 1
BW = 

R RC

 
 
 

Simple design process (sequential but not independent control of ω0 and Q with Rs, 

requires more tuning more than one R if Cs fixed ) 

Modest component spread even for large Q 



Example 5: 

R0

R1RQ

R3

R3R2

C1 C2

VOUT

VIN

INT1 INT2

R0

R1RQ

RA

RAR2

C1 C2

VOUT

VIN

Two Integrator Loop Representation 



Example 5: 

R0

R1RQ

R3

R3R2

C1 C2

VOUT

VIN

INT1 INT2

Two Integrator Loop Representation 

0I

s

0I

s
XIN

XOUT

α

0I

s+

0I

s
XIN

XOUT

0I

s+

0I

s


XIN

XOUT

Integrator and Lossy Integrator Loop 

Inverting and Noninverting Integrator Loop 

Integrator and Lossy Integrator Loop 



How does the performance of these bandpass filters compare? 

R

LCVIN

VOUT

R

RRQ

RA

RAR
C C

VOUT

VIN

VOUT

VIN

R1

R2

CC

C

C
R

R
VIN

VOUT
-K

C

C

R
R

VIN

VOUT
K

R

Ideally, all give same performance (within a gain factor) 



How does the performance of these bandpass filters compare? 

R

LCVIN

VOUT

R

RRQ

RA

RAR
C C

VOUT

VIN

VOUT

VIN

R1

R2

CC

C

C
R

R
VIN

VOUT
-K

C

C

R
R

VIN

VOUT
K

R

• Component Spread 

• Number of Op Amps 

• Is the performance strongly dependent upon how DOF are used? 

• Ease of tunability/calibration (but practical structures often are not calibrated) 

• Total capacitance or total resistance 

• Power Dissipation 

• Sensitivity  

• Effects of Op Amps 

 



C

C

R
R

VIN

VOUT
K

R

0

2
ω

RC
 2

Q = 
4-K

Consider effects of Op Amp on +KRC Bandpass with Equal R, Equal C 

RX (1+K0)RX

Amplifier with gain H

VIN
VOUT

Assume K realized with standard Op Amp Circuit 

  0

0

K
K s

K
1+ s

GB



• Significant shift in peak frequency 

• BW does not change very much 

• Some drop in gain at peak frequency 

Practically, GB/ω0 must be must less than 100 

  0

+ -

V GB
A s  = 

V -V s


OV
+V

-V



Consider 2nd Order Lowpass Biquads 

  H
2
0

2 20
0

ω
T s

ω
s  + s  + ω

Q


 
 
 

0
B A

ω
BW = ω -ω   

Q


PEAK 0ω   ω

XIN XOUT T s



Consider 2nd Order Lowpass Biquads 



Consider 2nd Order Lowpass Biquads 



C1

C2

R2R1

VIN

VOUT
K

Example:  2nd Order +KRC Lowpass 

C

C

RR

VIN

VOUT
K

0

1
ω

RC
 1

Q
3-K



Equal R, Equal C 

  1 2 1 2

2

1 1 2 1 2 2 1 2 1 2

1

R R C C
T s =K

1 1 1-K 1
s +s + + +

R C R C R C R R C C

 
 
 

 
 

2 2

2

2 2

1

R CT s =K
3-K 1

s +s +
RC R C

 
 
 



C1

C2

R2R1

VIN

VOUT
K

Example:  2nd Order +KRC Lowpass 

C1

C2

RR

VIN

VOUT
K=1

0

1 2

1
ω

R C C
 1

2

1

2

C
Q

C


Equal R, K=1 

RX (1+K0)RX

Amplifier with gain H

VIN
VOUT

  0

0

K
K s

K
1+ s

GB



  0

+ -

V GB
A s  = 

V -V s


OV
+V

-V

 
2

1 2

2

2

1 1 2

1

R C C
T s =K

2 1
s +s +

RC R C C

 
 
 



Example:  2nd Order +KRC Lowpass 

C1

C2

RR

VIN

VOUT
K=1

C

C

RR

VIN

VOUT
K

Equal R, K=1 

Equal R, Equal C 

3%p

6%p

n

0

GB
GB =  = .01

ω

consider 



C1 C2

R2R1

VIN

VOUT
-K

R3

R4

C C

RR

VIN

VOUT
-K

R

R

0

5+K
ω  = 

RC

5+K
Q = 

5

Example:  2nd Order -KRC Lowpass 

Equal R, Equal C 

 
         

1 2 1 2

1 3 1 4 2 3 2 12 1 2

1 1 3 4 2 2 2 1 1 2 1 2

1

R R C C
T s = -K

1+ R R 1+K + R R 1+ R R + R RR C1 1 1
s +s 1+ + + 1+ +

R C R R C R C C R R C C

     
     

       

 
2 2

2

2 2

1

R CT s = -K
5 5+K

s +s +
RC R C

   
   
   



C C

RR

VIN

VOUT
-K

R

R

0

5+K
ω  = 

RC

5+K
Q = 

5

Example:  2nd Order -KRC Lowpass 

n

0

GB
GB =  = .01

ω

consider 

70%p

Even very large values of GB will cause instability 

Poles “move” towards RHP as GB degrades 

VIN VOUT

RB

RA

-K
VOUTVIN

2

1

R
K = -

R

  0

+ -

V GB
A s  = 

V -V s


OV
+V

-V

 
 

0

0

K
K s  = -

1+K s
1+

GB



VOUT

VIN

R3 R1 R2

C2

C1

VOUT

VIN

R R R

C2

C1

0

1 2

1
ω

R C C
 1

2

1

2

C
Q

C


Example:  2nd Bridged-T FB Lowpass 

Equal R 

  2 3 1 2

2

1 1 2 3 1 2 1 2

1

R R C C
T s = - 

1 1 1 1 1
s +s + + +

C R R R R R C C

 
 
 

 
2

1 2

2

2

1 1 2

1

R C C
T s = - 

3 1
s +s +

RC R C C

 
 
 



VOUT

VIN

R R R

C2

C1

0

1 2

1
ω

R C C
 1

2

1

2

C
Q

C


Example:  2nd Bridged-T FB Lowpass 

n

0

GB
GB =  = .01

ω

consider 

8.5%p

  0

+ -

V GB
A s  = 

V -V s


OV
+V

-V



R0

R1 RQ

RA2

RA1R2

C1 C2

VOUT

VIN

R

R RQ

RA

RAR
C C

VOUT

VIN

0

1
ω

RC
 QR

Q
R



Example:  2nd Two-Integrator-Loop  Lowpass 

Equal R, Equal C 

(except RQ) 

  0 2 1 2

2 A2 A1

2 Q 1 2 1 2

1

R R C C
T s = - 

R /R1
s +s +

C R R R C C

 
 
 

 
2 2

2

2 2

Q

1

R CT s = - 
1 1

s +s +
CR R C

 
 
 



R

R RQ

RA

RAR
C C

VOUT

VIN

0

1
ω

RC
 QR

Q
R



Example:  2nd Two-Integrator-Loop  Lowpass 

n

0

GB
GB =  = .01

ω

consider 

1%p
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Comparison of 4 second-order LP filters 



Some Observations 

• Seemingly similar structures have dramatically different 
sensitivity to frequency response of the Op Amp 

 

• Critical to have enough GB if filter is to perform as desired 

 

• Performance strongly affected by both magnitude and 
direction of pole movement 

 

• Some structures appear to be totally impractical – at least 
for larger Q 

 

• Different use of the Degrees of Freedom produces 
significantly different results 

 
Sensitivity analysis is useful for analytical characterization of 

the performance of a filter 
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Lecture 20 

Sensitivity Functions 
• Comparison of Filter Structures 

• Performance Prediction 

• Design Characterization 
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What causes the dramatic differences in performance between these two structures? 

How can the performance of different structures be compared in general? 

Equal R, Equal C, Q=10 Pole 

Locus vs GBN 
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How can the performance of different structures be compared in general? 

• Equations for key performance parameters give little insight into the differences 

• Expressions for key performance parameters quite complicated 
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How can the performance of different structures be compared in general? 

Equal R, Equal C implementations 

• Equations for key performance parameters give little insight into the differences 

 

•  GB effects absent in this analytical formulation   

•  Effects of individual components is obscured in these expressions 

•   Analytical expressions for ω0 and Q much simpler 



Modeling of the Amplifiers 
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Different implementations of the amplifiers are possible 

Have used the op amp time constant in these models  
-1 = GB
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ω0 and Q in these expressions are for ideal op amp 

DI(s) is the D(s) if the OA is ideal 

DRC0(s) is the D(s) of RC circuit with K=0 
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GB effects in -KRC Lowpass Filter 

ω0 and Q in these expressions are for ideal op amp 
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All linear performance effects can be obtained from this formulation  

Op amp introduced an additional pole and moves the desired poles 



Effects of GB on poles of  KRC and -KRC Lowpass Filters 

Im

Re

Over-order 

pole

Actual “desired” poles   

Desired poles   



 
         

 
        

1 2 1 2
0

1 3 0 1 4 2 3 2 12 1 2

1 1 3 4 2 2 2 1 1 2 1 2

1 3 1 4 2 3 2 12 1 2
0

1 1 3 4 2 2 2 1

1

R R C C
T s = -K

1+ R R 1+K + R R 1+ R R + R RR C1 1 1
s +s 1+ + + 1+ +

R C R R C R C C R R C C

1+ R R + R R 1+ R R + R RR C1 1 1
s 1+K s +s 1+ + + 1+ +

R C R R C R C C R


      
               

    
     

    1 2 1 2R C C

  
  
    

GB effects in KRC and -KRC Lowpass Filter 
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• Analytical expressions for ω0, Q, poles, zeros, and other key parameters are 

unwieldly in these circuits and as bad or worse in many other circuits  

• Sensitivity metrics give considerable insight into how filters perform and widely used 

to assess relative performance 

• Need sensitivity characterization of real numbers as well as complex quantities such 

as poles and zeros 

• Since analytical expressions for key parameters are unwieldly in even simple 

circuits, obtaining expressions for the purpose of calculating sensitivity 

appears to be a formidable task !  



Sensitivity Characterization of Filter Structures 

Let F be a filter characteristic of interest 

F might be ω0 or Q of a pole or zero, a band edge, a peak frequency, a BW, 

T(s), |T(jω)|, a coefficient in T(s), etc 

Can express F in terms of all components and model parameters as 

F=f(R1, …Rk1, C1, … Ck2, LI1,…LIk3, τ1, … τk4, W1,…Wk5, L1, …Lk5,….) 

The differential dF of the multivariate function F can be expressed as 
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F=f(x1,x2,  …xk) 
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Define the standard sensitivity function as 
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Is widely used except when x or f assume extreme values of 0 or ∞ 

Define the derivative sensitivity function as  

f

xs Is more useful when  x or f ideally assume extreme values of 0 or ∞ 



Consider the normalized differential dF
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This approximates the percent change in F due to changes 

in ALL components 
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This can be expressed in terms of the standard sensitivity 

function as 

This relates the percent change in F to the sensitivity 

function and the percent change in each component 



Consider the normalized differential 
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This can be expressed as 

Often interested in                evaluated at the ideal (or nominal value) 
dF
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If the nominal values are all not extreme (0 or ∞), then 
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The normalized differential – a different perspective 

Consider the multivariate Taylors series expansion of F 
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The normalized differential – a different perspective 

Consider the multivariate Taylors series expansion of F 
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Note this is essentially the same expression that was arrived at from the 

sensitivity analysis approach 
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Dependent on circuit structure (for some 

circuits, also not dependent on  components) 

Dependent only on components 

(not circuit structure) 

The sensitivity functions are thus useful for comparing 

different circuit structures 
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The variability which is the product of the sensitivity 

function and the normalized component differential is 

more important for predicting circuit performance 
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Variability Formulation 

Variability includes effects of both circuit structure and 

components on performance 

If component variations are small, high sensitivities are acceptable 

If component variations are large, low sensitivities are critical  
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Thus a 1% increase in R will cause approximately a 1% decrease in ω0 

 

a 1% increase in C will cause approximately a 1% decrease in ω0 

 

a 1% increase in both C and R will cause approximately a 2% decrease in ω0 
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At this stage, this is just an observation about summed sensitivities but later 

will establish some fundamental properties of summed sensitivities 



End of Lecture 20 
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Lecture 21 

Sensitivity Functions 
• Comparison of Filter Structures 

• Performance Prediction 

• Design Characterization 



Define the standard sensitivity function as 
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Dependent on circuit structure (for some 

circuits, also not dependent on  components) 

Dependent only on components 

(not circuit structure) 

The sensitivity functions are thus useful for comparing 

different circuit structures 
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The variability which is the product of the sensitivity 

function and the normalized component differential is 

more important for predicting circuit performance 
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Variability Formulation 

Variability includes effects of both circuit structure and 

components on performance 

If component variations are small, high sensitivities are acceptable 

If component variations are large, low sensitivities are critical  
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At this stage, this is just an observation about summed sensitivities but later 

will establish some fundamental properties of summed sensitivities 
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Consider 

The nominal value of the time constant of the op amps is 0 so this expression 

can not be evaluated at the ideal (nominal) value of GB=∞ 

Let  {xi} be the components in a circuit whose nominal value is not 0 

Let  {yi} be the components in a circuit whose nominal value is  0 
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This expression can be used for predicting the effects of all components in a circuit 
Can set YN=0 before calculating           functions 

i

f

xS



 0
1 1

1
i i

N

f fi
X y i

Y
i N

dxdF
S y

F x FN

kyk

X
i i


 

 
    

 
  s

Low sensitivities in a circuit are often preferred but in some 

applications, low sensitivities would be totally unacceptable 

Examples where low sensitivities are unacceptable are circuits 

where a charactristics F must be tunable or adjustable! 



Some useful sensitivity theorems 
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Some useful sensitivity theorems (cont) 
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Example: 

Assume ideally   R=1K, C=3.18nF so that IO=50KHz 

  0I1
I s  = -  = -

RCs s
Ideally I0 termed the unity gain freq of integrator 

Actually  GB=600KHz, R=1.05K, and C=3.3nF 

a) Determine an approximation to the actual unity gain frequency using a 

sensitivity analysis 

 

b) Write an analytical expression for the actual unity gain frequency 
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Example: 

Assume ideally   R=1K, C=3.18nF so that IO=50KHz 

Actually  GB=600KHz, R=1.05K, and C=3.3nF 

Observe 
ΔR .05K

 =  = .05
R 1K

ΔC .12nF
 =  = .038

C 3.18nF

0
0

I 50KHz
 = I =  = .083

GB 600KHz




VOUTVIN

C

R

 
1

A s
s



Example: 

 , 0 , 0
1 1

1
i i

N N

f fi
X y i

Y Y
i N

dxdF
S y

F x FN N

kyk

X X
i i

 
 

 
    

 
  s

Solution: 

  0I1
I s  = -  = -

RCs s

0

1
I = 

RC

 , 0 , 0 , 0

1
0A 0A 0A

N

I I I0A
R C, , Y

0A N N 0N

dI dR dC
 S  S

I R C IN N N N NR C R C X
 


  

      
      

s

,
10I

R S
N NR C

 

Define I0A to be the actual unity gain frequency 

, 0 ,

0A 0I I

R R,
 S  S

N N N NR C R C 
 , 0 ,

0A 0I I

C C,
 S  S

N N N NR C R C 


,
10I

C S
N NR C

 

Ideally 

It remains to calculate  
, 0

0A

N

I

YNX



s



VOUTVIN

C

R

 
1

A s
s



Example: 

Solution: 

  0I1
I s  = -  = -

RCs s

Define I0A to be the actual unity gain frequency 

Ideally 

, 0

0A

N

I

YNX



s

 
 

A

1
I s  = -  

RCs+ s 1+RCs

 
 

A 2 

1
I jω  = -  

- ω +j ωRC+ ω 

 
 

22

2

A 4 2

1
I jω  =  

ω +ω RC+ 

 
 

22

2

A 4 2

1
I jω  =  =1

ω +ω RC+ 

 
22 4 2

0A OA

1
 =1

I +I RC+ 

 
22 4 2

0A OAI +I RC+ =1 

, 0

0A

N

I

YNX



sStill need 

=? 
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Example: 

Solution: 

  0I1
I s  = -  = -

RCs s

Define I0A to be the actual unity gain frequency 

Ideally 

 
22 4 2

0A OAI +I RC+ =1 

, 0

0A

N

I

YNX



sStill need 

   
22 3 4 1 20A 0A

0A 0A OA OA

I I
4I +2 I +2I RC+ +2 RC+ I =0   

 

    
   
   

, 0
, 0

0A

N

N

I 0A

Y
Y

I

N

N

X
X






 
  

 
s

   
2

, 0N

1 20A
O O

Y

I
2I RC +2 RC I =0

NX 

 
 
 
 

2

, 0
, 0

0A

N

N

I0A O
OY

Y

I -I
= -I

RC N

N

X
X


 



 
  

 
 

s

Evaluating at  , 0NYNX 
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Example: 

Solution: 

  0I1
I s  = -  = -

RCs s

Ideally 

 , 0 , 0 , 0

1
0A 0A 0A

N

I I I0A
R C, , Y

0A N N 0N

dI dR dC
 S  S

I R C IN N N N NR C R C X
 


  

      
      

s

2

, 0

0A

N

I

OY
-I

NX



s

, ,
10 0I I

R C S  S
N N N NR C R C

  

ΔR
 =  .05

R

ΔC
 =  .038

C
0I  = .083

 
1

.05 .038 20A
0N

0A 0N

dI
 -1  -1 I

I I
           

 .05 .038 .0830A

0A

dI
 -1  -1

I
          

.0A

0A

dI
-.088 083

I
 

Due to passives 

Due to actives 
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Example: 

Solution: 

  0I1
I s  = -  = -

RCs s

Ideally 

.1710A

0A

dI

I
 

0.829 41.450A 0I I KHz

IO=50KHz 

Note that with the sensitivity analysis, it was not necessary to ever determine I0A 

a) Determine an approximation to the actual unity gain frequency using a 

sensitivity analysis 

 

b) Write an analytical expression for the actual unity gain frequency 

 
22 4 2

0A OAI +I RC+ =1 

Must solve this quadratic for I0A 

Although in this simple example, it may have been easier to go directly to this 

expression, in more complicated circuits sensitivity analysis is much easier 



Circuits have many sensitivity functions 

How can sensitivity analysis be used to 

compare the performance of different circuits? 

If two circuits have exactly the same number of sensitivity 

functions and all sensitivity functions in one circuit are lower than 

those in the other circuit, then the one with the lower sensitivities 

is a less sensitive circuit 

But usually this does not happen ! 

Designers would like a single metric for comparing two circuits ! 



Dependent on circuit structure 
(for some circuits, also not dependent 

on components) 

Dependent only on components 
(not circuit structure) 

1
i

f i
x

iN

dxdF
S

F xN

k

X
i

 
  

 


R

C

VOUT

VIN

Consider: 

 
1

T s  = 
1+RCs

  0

0

ω
T s  = 

s + ω

0

1
ω  = 

R C



0

1
ω  = 

RC

10ω

RS  

2

1

0

i

0 i
x

0 iN

d dx
S

xNX
i



 

 
  

 


R

C

VOUT

VIN

10ω

CS  

   1 10

0 N N

d dR dC

R C




     

Dependent only on components 
(not circuit structure) 

Dependent only on circuit 

structure 



Dependent on circuit structure 
(for some circuits, also not dependent 

on components) 

Dependent only on components 
(not circuit structure) 

1
i

f i
x

iN

dxdF
S

F xN

k

X
i

 
  

 


R1

R2 C

VOUT

VIN

Consider now: 

 

2

1 2

1 2

1 2

R

R +R
T s  = 

R R
1+ C s

R +R

 
 
 

 
R 02

R +R
1 2

0

ω
T s  = 

s + ω


1 2
0

1 2

R +R
ω  = 

R R C



?0

1

ω

RS 
R1

R2 C

VOUT

VIN

1 2
0

1 2

R +R
ω  = 

R R C

1 2
0

G +G
ω  = 

C

0 0

1 1

ω ω

R GS S 

0 1 2

1 1

ω G +G

G GS S

 
1 2

1

1 2G +G 1 1
G

1 1 2 1 2

G +G G G
S

G G +G G +G

 
  

 

Note this is dependent upon the components as well ! 

Actually dependent upon component ratio! 

0

1

ω 2
R

1 2

R
S

R +R
 



i

f

xS

Theorem:   If f(x1, ..xm) can be expressed as  

                                             

where {α1, α2,… αm} are real numbers, then             is not dependent 

upon any of the variables in the set {x1, ..xm}  

1 2

1 2 ... m

mf x x x
 



Proof: 

i

i i

Xf

x xS S
i



i

i

X i i
x

i i

X x
S

x X

i
i

i







 



1i

i

X i
x i

i

x
S X

X

i
i

i
i





 

 

i

i

X

xS
i

i





i

f

xS i

It is often the case that functions of interest are 

of the form expressed in the hypothesis of the 

theorem, and in these cases the previous claim is 

correct 



Theorem:   If f(x1, ..xm) can be expressed as  

                                             

where {α1, α2,… αm} are real numbers, then the sensitivity terms in            

 

  

 

are dependent only upon the circuit architecture and not dependent 

upon the components and  and the right terms are dependent only upon 

the components and not dependent upon the architecture 

1 2

1 2 ... m

mf x x x
 



1
i

f i
x

iN

dxdf
S

f xN

k

X
i

 
  

 


This observation is useful for comparing the performance of two or more circuits 

where the function f shares this property 



Metrics for Comparing Circuits 

Schoeffler Sensitivity 

1
i

f

xS
m

i






Summed Sensitivity 

Not very useful because sum can be small even when individual 

sensitivities are large 

1
i

f

xS
m

S

i






Strictly heuristic but does differentiate circuits with low sensitivities from those 

with high sensitivities 



Metrics for Comparing Circuits 

1
i

f

xS
m

i





Often will consider several distinct sensitivity functions to consider 

effects of different components 

1
i

f

xS
m

i






i

f

RSR

All resistors

  

i

f

CSC

All capacitors

  

i

f

OA

All op amps

   s



Homogeniety (defn) 

 

A function f is homogeneous of order 

m in the n variables {x1, x2, …xn} if 

 

f(λx1, λx2, … λxn ) = λmf(x1,x2, … xn) 

 

Note:  f may be comprised of  more than n variables 



Theorem:   If a  function f is homogeneous of order m 

in the n variables {x1, x2, …xn} then 

 

 
i

n
f

x
i=1

 = mS

Proof: 

Differentiate WRT λ 

   , ,... , ,...1 2 n 1 2 nf x x x f x x xm   

  
 1

, ,...
, ,...

1 2 n

1 2 n

f x x x
f x x xmm

  










 1... , ,...1 2 n 1 2 n

1 2 n

f f f
x x x f x x x

x x x

mm
  

  
   

  



 1... , ,...1 2 n 1 2 n

1 2 n

f f f
x x x f x x x

x x x

mm
  

  
   

  

Simplify notation 

...1 2 n

1 2 n

f f f
x x x f

x x x

mm
  

  
   

  

...1 2 n

1 2 n

x x xf f f

x f x f x f

mm
  

  
   

Divide by f 

Since true for all λ, also true for λ=1, thus 

...1 2 n

1 2 n

x x xf f f

x f x f x f
m

  
   

i

n
f

x
i=1

 = mS

This can be expressed as 



Theorem:   If a  function f is homogeneous of order m 

in the n variables {x1, x2, …xn} then 

 

 
i

n
f

x
i=1

 = mS

   , ,... , ,...1 2 n 1 2 nf x x x f x x xm   

The concept of homogeneity and this theorem were 

somewhat late to appear 

Are there really any useful applications of this rather odd 

observation? 



Let T(s) be a voltage or current transfer function 

Observation:   Impedance scaling does not change 

any of the following, provided Op Amps are ideal: 

T(s), T(jω), |T(jω)|, ω0, Q, pk, zk 

So, consider impedance scaling by a parameter λ 

R R

L L

/C C 

Thus, all of these functions are homogeneous of order  m=0 

in the impedances 

   0, ,... , ,...1 2 n 1 2 nf x x x f x x x   

For these impedance functions 



Theorem:  If all op amps in a filter are 

ideal, then ωo, Q, BW, all band edges,  

and all poles and zeros are homogeneous 

of order 0 in the impedances. 
 

Theorem:  If all op amps in a filter are 

ideal and if  T(s) is a dimensionless transfer 

function, T(s), T(jω), | T(jω) |,               , are 

homogeneous of order 0 in the impedances 

 

 T jω



Theorem 1:  If all op amps in a filter are 

ideal and if  T(s) is an impedance transfer 

function, T(s) and T(jω) are homogeneous 

of order 1 in the impedances 

 

Theorem 2:  If all op amps in a filter are 

ideal and if  T(s) is a conductance transfer 

function, T(s) and T(jω) are homogeneous 

of order -1 in the impedances 

 



Corollary 1:  If all op amps in an RC active 

filter are ideal and there are k1 resistors and k2 

capacitors and if a function f is homogeneous of 

order 0 in the impedances,  then  

1 2

i i

k k
f f

R C
i=1 i=1

S = S 

Corollary 2:  If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors then 
1

i

k
Q

R
i=1

S = 0

2

i

k
Q

C
i=1

S = 0



End of Lecture 21 
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Lecture 22 

Sensitivity Functions 
• Root Sensitivity 

• Bilinear Property of Filters 

• Root Sensitivities 

 



Homogeniety (defn) 

 

A function f is homogeneous of order 

m in the n variables {x1, x2, …xn} if 

 

f(λx1, λx2, … λxn ) = λmf(x1,x2, … xn) 

 

Note:  f may be comprised of  more than n variables 

Review from last time 



Theorem:   If a  function f is homogeneous of order m 

in the n variables (x1, x2, …xn) then 

 

 
i

n
f

x
i=1

 = mS

   , ,... , ,...1 2 n 1 2 nf x x x f x x xm   

The concept of homogeneity and this theorem were 

somewhat late to appear 

Are there really any useful applications of this rather odd 

observation? 

Review from last time 



Theorem:  If all op amps in a filter are 

ideal, then ωo, Q, BW, all band edges,  

and all poles and zeros are homogeneous 

of order 0 in the impedances. 
 

Theorem:  If all op amps in a filter are 

ideal and if  T(s) is a dimensionless transfer 

function, T(s), T(jω), | T(jω) |,               , are 

homogeneous of order 0 in the impedances 

 

Review from last time 

 T jω



Theorem 1:  If all op amps in a filter are 

ideal and if  T(s) is an impedance transfer 

function, T(s) and T(jω) are homogeneous 

of order 1 in the impedances 

 

Theorem 2:  If all op amps in a filter are 

ideal and if  T(s) is a conductance transfer 

function, T(s) and T(jω) are homogeneous 

of order -1 in the impedances 

 

Review from last time 



Corollary 1:  If all op amps in an RC active 

filter are ideal and there are k1 resistors and k2 

capacitors and if a function f is homogeneous of 

order 0 in the impedances,  then  

1 2

i i

k k
f f

R C
i=1 i=1

S = S 

Corollary 2:  If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors then 
1

i

k
Q

R
i=1

S = 0

2

i

k
Q

C
i=1

S = 0

Review from last time 



Corollary 1:   If all op amps in an RC active filter are ideal 

and there are k1 resistors and k2 capacitors and if a 

function f is homogeneous of order 0 in the impedances,  

then 
1 2

i i

k k
f f

R C
i=1 i=1

S = S 

Proof of Corollary 1: 

Since f is homogenous of order zero in the impedances, z1, z2, … zk1+k2,  

0
1 2

i i

k k
f f

R 1 C
i=1 i=1

S S  

0
1 2

i

k k
f

z
i=1

S


 

0
1 2

i

k k
f f

R
i=1 i=1

S S
iC

  

\  

\  



Proof of Corollary 2: 

θ

Im

Re

Original 

Root

Scaled 

Root

Recall: 

Theorem:  If all components are frequency 

scaled, roots (poles and zeros) will move 

along a constant Q locus 

Frequency Scaling:  Scaling all frequency-

dependent elements by a constant 

L ηL

C ηC





XIN XOUTT(s) XIN XOUT
TFS(s)

Frequency 

Scaling

s
η

s


Proof: 
   FS s

η

s
=

T T ss 



Proof of Corollary 2: 

θ

Im

Re

Original 

Root

Scaled 

Root

Recall: 
Theorem:  If all components are frequency 

scaled, roots (poles and zeros) will move 

along a constant Q locus 

Proof: 
   FS s

η

s
=

T T ss 

Let p be a pole (or zero)  of T(s) 

 T p =0

   FST T T s
s

η
s

 
  

 

p
η

p


Since true for any variable, substitute in p 

    0FST T p
p

T
η

p
 

   
 

consider 

Thus p is a pole (or zero) of TFS(s) 



Proof of Corollary 2: 

θ

Im

Re

Original 

Root

Scaled 

Root

Recall: 
Theorem:  If all components are frequency 

scaled, roots (poles and zeros) will move 

along a constant Q locus 

Proof: 

p
η

p


Thus p is a pole (or zero) of TFS(s) 

p pη

Express p in polar form 

jβp = re
jβ= p  p =  re 

Thus p and p have the same angle 

Thus the scaled root has the same root Q 



Proof of Corollary 2: 

Recall: 

θ

Im

Re

Original 

Root

θ

Im

Re

Impedance 

Scaled Root 

θ

Im

Re

Original 

Root

Frequency 

Scaled Root

Im
pdeance 

Scalin
g

Frequency 

Scaling

Original 

Root

Impedance and Frequency Scaling 



Corollary 2:  If all op amps in an RC active 

filter are ideal and there are k1 resistors and k2 

capacitors then                        and 1

i

k
Q

R
i=1

S = 0

Proof of Corollary 2: 

Since impedance scaling does not change pole (or zero)  Q, the pole (or 

zero) Q  must be homogeneous of order 0  in the impedances 

31 2

i i i

kk k
Q Q Q

R 1/C L
i=1 i=1 i=1

S + S + S = 0  

(For more generality, assume k3 inductors) 

Since frequency scaling does not change pole (or zero)  Q, the pole (or 

zero) Q  must be homogeneous of order 0  in the frequency scaling 

elements 32

i i

kk
Q Q

C L
i=1 i=1

S + S = 0 

(1) 

(2) 

2

i

k
Q

C
i=1

S = 0



Proof of Corollary 2: 

31 2

i i i

kk k
Q Q Q

R 1/C L
i=1 i=1 i=1

S + S + S = 0  

32

i i

kk
Q Q

C L
i=1 i=1

S + S = 0 

(1) 

(2) 

From theorem about sensitivity of reciprocals, can write (1) as 

31 2

i i i

kk k
Q Q Q

R C L
i=1 i=1 i=1

S - S + S = 0   (3) 

It follows from (2) and (3) that 

31

i i

kk
Q Q

R L
i=1 i=1

S -2 S = 0 

Since RC network, it follows from (4) and (2)  that  

0
1

i

k
Q

R
i=1

S 

(4) 

0
2

i

k
Q

C
i=1

S 



Example 

VIN

VOUT
R1 R2

C1 C2

V1

1

Q

R
SDetermine the passive Q sensitivities 

2

Q

R
S

1

Q

C
S

2

Q

C
S

 OUT 2 211V sC +G  V = G

 1 1 2 IN 11 OUT 2sC +G +G =V VV G G
 

   2

1 2 1 2 1 1 1 2 2 2

1
T s  = 

s R R C C +s R C +R C +R C +1

0

1 2 1 2

1
ω  = 

R R C C
1 2 1 2

1 1 1 2 2 2

R R C C
Q = 

R C +R C +R C

      

 1

-1/2 1/2

1 1 1 2 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2
Q 1

2R

1 1 1 2 2 2

1
R C +R C +R C R R C C R C C - C +C R R C C

R2S •
QR C +R C +R C



By the definition of sensitivity, it follows that  



Example 

VIN

VOUT
R1 R2

C1 C2

V1

1

Q

R
SDetermine the passive Q sensitivities 

2

Q

R
S

1

Q

C
S

2

Q

C
S

      

 1

-1/2 1/2

1 1 1 2 2 1 1 2 1 2 2 1 2 1 2 1 2 1 2
Q 1

2R

1 1 1 2 2 2

1
R C +R C +R C R R C C R C C - C +C R R C C

R2S •
QR C +R C +R C



 1

21

Q 1 1 2

R

1 1 1 2 2 2

R C +C
S

R C +R C +R C
 

Following some tedious manipulations, this simplifies to 



Example 

VIN

VOUT
R1 R2

C1 C2

V1

Determine the passive Q sensitivities 

 1

21

Q 1 1 2

R

1 1 1 2 2 2

R C +C
S

R C +R C +R C
 

Following the same type of calculations, can obtain 

1

22

Q 2 2

R

1 1 1 2 2 2

R C
S

R C +R C +R C
 

1

21

Q 1 1

C

1 1 1 2 2 2

R C
S

R C +R C +R C
 

 1

22

Q 2 1 2

C

1 1 1 2 2 2

C R R
S

R C +R C +R C


 

2

i

k
Q

C
i=1

S = 0
1

i

k
Q

R
i=1

S = 0
Verify 

Could have saved considerable effort in calculations by using these theorems after 

1

Q

R
S

1

Q

C
Sand                were calculated 



Corollary 3:  If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if pk is any 

pole and zh is any zero, then 

1
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i

k
p

R
i=1

S =   1
2
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i

k
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C
i=1

S =  

1
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k
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R
i=1

S =   1
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C
i=1

S =  
and 



Corollary 3:  If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if pk is any 

pole and zh is any zero, then 

1
1

k

i

k
p

R
i=1

S =   1
2

k

i

k
p

C
i=1

S =  

1
1

h

i

k
z

R
i=1

S =   1
2

h

i

k
z

C
i=1

S =  

and 

Proof: 

It was shown that scaling the frequency dependent elements by a factor η divides  

the pole (or zero) by η 

Thus roots (poles and zeros) are homogeneous of order -1 in the frequency 

scaling elements 



Proof: 

Thus roots (poles and zeros) are homogeneous of order -1 in the frequency 

scaling elements 

31 2

i i i

kk k
p p p

R 1/C L
i=1 i=1 i=1

S + S + S = 0  

(For more generality, assume k3 inductors) 

(1) 1
32

i i

kk
p p

C L
i=1 i=1

S + S =  

Since impedance scaling does not affects the poles, they are homogenous of 

order 0 in the impedances 

(2) 

Since there are no inductors in an active RC network, is follows from (1)  that  

1
2

i

k
p

C
i=1

S  
And then from (2) and the theorem about sensitivity to reciprocals that  

1
1

i

k
p

R
i=1

S  



Corollary 4:  If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if ZIN is any 

input impedance of the network, then 

1
1 2

IN IN

i i

k k
Z Z

R C
i=1 i=1

S - S =  



Claim:  If op amps in the filters 

considered previously are not ideal but are 

modeled by a  gain A(s)=1/(ts), then all 

previous summed sensitivities developed for 

ideal op amps hold provided they are 

evaluated a the nominal value of t=0 



Sensitivity Analysis 

   If a closed-form expression for a function f 

is obtained, a straightforward but tedious 

analysis can be used to obtain the 

sensitivity of the function to any 

components 

Closed-form expressions for T(s), T(jω), |T(jω)|,              , ai, bi,  can be  

readily obtained 

 

mm
i

i i
i=0 i=1

n n
i

i i
i=0 i=1

a s (s-z )
T s = =K

b s (s-p )
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Consider: 

 T jω



Sensitivity Analysis 
   If a closed-form expression for a function f is 

obtained, a straightforward but tedious analysis 

can be used to obtain the sensitivity of the 

function to any components 

Closed-form expressions for pi, zi, pole or zero Q, pole or zero 

ω0, peak gain, ω3dB, BW, … (generally the most critical and 

useful circuit characteristics) are difficult or impossible to 

obtain ! 

 

mm
i

i i
i=0 i=1

n n
i

i i
i=0 i=1

a s (s-z )
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Consider: 



Bilinear Property of Electrical Networks 

Theorem:  Let x be any component or Op Amp time constant 

(1st order Op Amp model) of any linear active network 

employing a finite number of amplifiers and lumped passive 

components.   Any transfer function of the network can be 

expressed in the form 

 
   

   
0 1

0 1

N s +xN s
T s =

D s +xD s

where N0, N1, D0, and D1 are polynomials in s that are not dependent upon x 

A function that can be expressed as given above  is said to be a bilinear 

function in the variable x and this is termed a bilateral property of electrical 

networks. 

The bilinear relationship is  useful for 

1. Checking for possible errors in an analysis 

2. Pole sensitivity analysis 
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Example of Bilinear Property :    +KRC Lowpass Filter 
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Example of Bilinear Property 
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Consider R1 
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Example of Bilinear Property :    +KRC Lowpass Filter 
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Can not eliminate the R2 term 

Equal R Equal C 
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K
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R C s K sC +R sC 3-K K C s + 1+K st t t 

• Bilinear property only applies to individual components 

 

• Bilinear property was established only for T(s) 



Root Sensitivities 
Consider expressing T(s) as a bilinear fraction in x 
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T s =
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Theorem:  If zi is any simple zero and/or pi is any 

simple pole of T(s), then 
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and 

Note:  Do not need to find expressions for the poles or the 

zeros to fine the pole and zero sensitivities ! 



Root Sensitivities 
Theorem:  If pi is any simple pole of T(s), then 
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Proof (similar argument for the zeros) 

     0 1D s =D s +xD s
By definition of a pole, 

 iD p =0

     i 0 i 1 iD p =D p +xD p\  



Root Sensitivities 

Re-grouping, obtain 

But term in brackets is derivative of D(pi), thus 

     i 0 i 1 iD p =D p +xD p\  

Differentiating this expression explicitly WRT x, we obtain 
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Root Sensitivities 
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Finally, from the definition of sensitivity,  
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Observation:   Although the sensitivity expression is 

readily obtainable, direction information about the pole 

movement is obscured because the derivative is 

multiplied by the quantity pi which is often complex.  

Usually will use either                   or   

 

 

 

                                                    which preserve 

direction information when working with pole or zero 

sensitivity analysis. 

Root Sensitivities 
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Root Sensitivities 
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Summary:  Pole (or zero) locations due to component 

variations can be approximated with simple analytical 

calculations without obtaining parametric expressions for 

the poles (or zeros). 

Ideal

Components
i ip p p

i
 

     0 1D s D s x D s 

where 

and 

Alternately, 



End of Lecture 22 
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Sensitivity Functions 
• Transfer Function  Sensitivity 

• Examples 



Corollary 3:  If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if pk is any 

pole and zh is any zero, then 
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Review from last time 



Corollary 4:  If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if ZIN is any 

input impedance of the network, then 

1
1 2
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i i

k k
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Review from last time 



Bilinear Property of Electrical Networks 

Theorem:  Let x be any component or Op Amp time constant 

(1st order Op Amp model) of any linear active network 

employing a finite number of amplifiers and lumped passive 

components.   Any transfer function of the network can be 

expressed in the form 

 
   

   
0 1

0 1

N s +xN s
T s =

D s +xD s

where N0, N1, D0, and D1 are polynomials in s that are not dependent upon x 

A function that can be expressed as given above  is said to be a bilinear 

function in the variable x and this is termed a bilateral property of electrical 

networks. 

The bilinear relationship is  useful for 

1. Checking for possible errors in an analysis 

2. Pole sensitivity analysis 

Review from last time 



Root Sensitivities 
Consider expressing T(s) as a bilinear fraction in x 
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T s =

D s +xD s D s


Theorem:  If zi is any simple zero and/or pi is any 

simple pole of T(s), then 
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and 

Note:  Do not need to find expressions for the poles or the 

zeros to fine the pole and zero sensitivities ! 

Review from last time 



Root Sensitivities 

ip

x





 
 

ip 1 ii
x

ii i

i

D ppx x

D pp x p

p

S
 

       
 

 

Observation:   Although the sensitivity expression is 

readily obtainable, direction information about the pole 

movement is obscured because the derivative is 

multiplied by the quantity pi which is often complex.  

Usually will use either                or   

 

 

 

                                                    which preserve 

direction information when working with pole or zero 

sensitivity analysis. 
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Review from last time 



C1

C2

R2R1

VIN

VOUT
K

Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C 
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write in bilinear form 

evaluate at τ=0 
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C 
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C 
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C 
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Transfer Function Sensitivities 
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Transfer Function Sensitivities 
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If T(s) is expressed as 

then 

 
   

   
0 1

0 1

N s N s
T s  =  

D s D s

x

x




If T(s) is expressed as 
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Band-edge Sensitivities 

The band edge of a filter is often of interest.  A closed-form expression for 

the band-edge of a filter may not be attainable and often the band-edges 

are distinct from the ω0 of the poles.  But the sensitivity of the band-edges 

to a parameter x is often of interest. 
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Band-edge Sensitivities 
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Theorem:  The sensitivity of the band-edge of a filter is given by the expression 
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Band-edge Sensitivities 
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Band-edge Sensitivities 
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Sensitivity Comparisons 

  Consider 5 second-order lowpass  filters  

      (all can realize same T(s) within a gain factor) 

R L

CVIN
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R1 R2
K

VOUT
VIN

VOUT
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R3 R1 R2

C1

C2

VIN
VOUT

R0

R1
RQ

R4

R3
R2

C1 C2

Passive RLC 
+KRC 

Bridged-T Feedback  Two-Integrator Loop  



Sensitivity Comparisons 

  Consider 5 second-order lowpass  filters  

      (all can realize same T(s) within a gain factor) 

-KRC Lowpass 
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b)   + KRC (a Sallen and Key filter) 
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Case b1 : Equal R, Equal C 
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Case b2 : Equal R, K=1 
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c)   Bridged T Feedback 
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d)   2 integrator loop 
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d)    - KRC   (a Sallen and Key filter) 
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How do these five circuits compare? 

a) From a passive sensitivity viewpoint? 

- If Q is small 

 

- If Q is large 

b) From an active sensitivity viewpoint? 

- If Q is small 

 

- If Q is large 

 

- If τω0 is large 



Comparison:  Calculate all ω0 and Q sensitivities 

a) – Passive RLC R L
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Case b1 : +KRC  Equal R, Equal C 
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Case b2 : +KRC  Equal R, K=1 

0

1 2 1 2

1
ω  =    

R R C C
1 1 2 2 1 2 1 1

2 2 1 1 2 1 2 2

1
Q =    

R C R C R C R C
+ + K

R C R C R C R C

 
 

 

1 2 1 2

1

2

1

2

2

1
0

2

0

0

1

2

1

2

2

0 0 0 0 0S S S S S

S

S

S

S

S

R R C C K

Q

R

Q

R

Q

C

Q

C

Q

K Q

    
     







 



0

1
ω  =    

RC

1

2

C1
Q =    

2 C



1 2 1 2 3

1

2

3

1

2

1
0

2

1

6

1

6

1

3

1

2

1

2

0 0 0 0 0S S S S S

S

S

S

S

S

R R C C R

Q

R

Q

R

Q

R

Q

C

Q

C

    
     

 

 



 



c)   Bridged T Feedback 
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d)   2 integrator loop 
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d) -KRC passive sensitivities 
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Passive Sensitivity Comparisons 

0ω
xS Q

xS

Passive RLC 

+KRC 

Bridged-T Feedback  

Two-Integrator Loop  

Equal R, Equal C   (K=3-1/Q)  

Equal R,   K=1      (C1=4Q2C2)  

1
2

 1,1/2 

0,1/2 

0,1/2 0,1/2, 2Q2 

Q, 2Q, 3Q  

0,1/2 

0,1/2 1,1/2, 0 

1/3,1/2, 1/6 

Substantial Differences Between (or in)  Architectures 

-KRC  
less than or equal to 1/2 less than or equal to 1/2 





Where we are at with sensitivity analysis: 

Considered a group of  five second-order filters 

• Closed form expressions were obtained for ω0 and Q 

• Tedious but straightforward calculations provided passive 

sensitivities directly from the closed form expressions  

Passive Sensitivity Analysis 

Active  Sensitivity Analysis 

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain 

If we consider higher-order filters 

Passive Sensitivity Analysis 

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain for many useful structures 

Active  Sensitivity Analysis 

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain 

??? 

Need some better method for obtaining sensitivities when closed-form 

expressions are difficult or impractical to obtain or manipulate !! 



Relationship between pole sensitivities 

and 0 and Q sensitivities 

p
Im

Re

p = -α+jβ 

D2(s)=(s+α-jβ)(s+α+jβ) 

D2(s)=(s-p)(s-p*) 

D2(s)=s2+s(2α)+(α2+β2) 



Relationship between active pole sensitivities and 

0 and Q sensitivities 

Theorem:   

Define   D(s)=D0(s)+t D1(s) 

p


 ps

Theorem:    Re


  ps

 Im


  ps

Theorem:   

0
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Δω 1 Δα 1 Δβ
+ 1-

ω 2Q ω ω4Q
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1
2 1

4 2
0 0

ΔQ Δα 1 Δβ
+ 1-

Q ω ω4Q
Q

Q

 
  

 
 

Recall:   
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s=p,τ=0

-D p

D s

s

 




ps

(from bilinear form of T(s)) 

Claim:   These theorems, with straightforward modification, also apply to 

other parameters (R, C, L, K, …)  where, D0(s) and D1(s) will change since 

the parameter is different  







c)    Bridged-T structure 





d)    Two integrator loop architecture 



d)    Two integrator loop architecture 



e) -KRC 





Active Sensitivity Comparisons 

Passive RLC 

+KRC 

Bridged-T Feedback  

Two-Integrator Loop  

Equal R, Equal C   (K=3-1/Q)  
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Passive RLC 
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Bridged-T Feedback  

Two-Integrator Loop  

Equal R, Equal C   (K=3-1/Q)  

Equal R,   K=1      (C1=4Q2C2)  

1
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 1,1/2 

0,1/2 

0,1/2 0,1/2, 2Q2 

Q, 2Q, 3Q  

0,1/2 

0,1/2 
1,1/2, 0 

1/3,1/2, 1/6 

Are these passive sensitivities acceptable?   

-KRC  
less than or equal to 1/2 less than or equal to 1/2 



Active Sensitivity Comparisons 

Passive RLC 

+KRC 

Bridged-T Feedback  

Two-Integrator Loop  

Equal R, Equal C   (K=3-1/Q)  

Equal R,   K=1      (C1=4Q2C2)  
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Are these active sensitivities acceptable?   



Are these sensitivities acceptable?   

0

0ω0

x

Δω Δx
S

ω x
In integrated circuits,  R/R  and  C/C  due to process variations can be K  

30% or larger due to process variations 

Even if sensitivity  is around ½ or 1, variability is often orders of magnitude too large 

Passive Sensitivities: 

Active Sensitivities: 

All are proportional to τω0 

Some architectures much more sensitive than others 

Can reduce τω0 by making GB large but this is at the expense of increased power 

    and even if power is not of concern, process presents fundamental limits on how  

    large GB can be made 

Many applications require Δω0/ω0<.001 or smaller and similar requirements on ΔQ/Q 



End of Lecture 23 
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Lecture 24 

Sensitivity Functions 

     -  Predistortion and Calibration 



Sensitivity Comparisons 

  Consider 5 second-order lowpass  filters  

      (all can realize same T(s) within a gain factor) 

R L

CVIN

VOUT

C1

C2

R1 R2
K

VOUT
VIN

VOUT

VIN

R3 R1 R2

C1

C2

VIN
VOUT

R0

R1
RQ

R4

R3
R2

C1 C2

Passive RLC 
+KRC 

Bridged-T Feedback  Two-Integrator Loop  

Review from last time 



Sensitivity Comparisons 

  Consider 5 second-order lowpass  filters  

      (all can realize same T(s) within a gain factor) 

-KRC Lowpass 

C1 C2

R2R1

VIN

VOUT

R3

R4 R5

5

4

R
-K = -

R

Review from last time 



Passive Sensitivity Comparisons 

0ω
xS Q

xS

Passive RLC 

+KRC 

Bridged-T Feedback  

Two-Integrator Loop  

Equal R, Equal C   (K=3-1/Q)  

Equal R,   K=1      (C1=4Q2C2)  

1
2

 1,1/2 

0,1/2 

0,1/2 0,1/2, 2Q2 

Q, 2Q, 3Q  

0,1/2 

0,1/2 1,1/2, 0 

1/3,1/2, 1/6 

Substantial Differences Between (or in)  Architectures 

-KRC  
less than or equal to 1/2 less than or equal to 1/2 

Review from last time 



Where we are at with sensitivity analysis: 

Considered a group of  five second-order filters 

• Closed form expressions were obtained for ω0 and Q 

• Tedious but straightforward calculations provided passive 

sensitivities directly from the closed form expressions  

Passive Sensitivity Analysis 

Active  Sensitivity Analysis 

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain 

If we consider higher-order filters 

Passive Sensitivity Analysis 

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain for many useful structures 

Active  Sensitivity Analysis 

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain 

??? 

Need some better method for obtaining sensitivities when closed-form 

expressions are difficult or impractical to obtain or manipulate !! 

Review from last time 



Relationship between active pole sensitivities and 

w0 and Q sensitivities 

Theorem:   

Define   D(s)=D0(s)+t D1(s) 

p


 ps

Theorem:    Re


  ps

 Im


  ps

Theorem:   

0
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0 0 0

Δω 1 Δα 1 Δβ
+ 1-

ω 2Qω ω4Q
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1
2 1

4 2
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ΔQ Δα 1 Δβ
+ 1-

Q ω ω4Q
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Recall:   
 

 
1

s=p,τ=0

-D p

D s
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ps

(from bilinear form of T(s)) 

Claim:   These theorems, with straightforward modification, also apply to 

other parameters (R, C, L, K, …)  where, D0(s) and D1(s) will change since 

the parameter is different  

Review from last time 



Active Sensitivity Comparisons 

Passive RLC 

+KRC 

Bridged-T Feedback  

Two-Integrator Loop  

Equal R, Equal C   (K=3-1/Q)  

Equal R,   K=1      (C1=4Q2C2)  
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Substantial Differences Between Architectures 
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Review from last time 



0ω
xS Q

xS

Passive RLC 

+KRC 

Bridged-T Feedback  

Two-Integrator Loop  

Equal R, Equal C   (K=3-1/Q)  

Equal R,   K=1      (C1=4Q2C2)  

1
2

 1,1/2 

0,1/2 

0,1/2 0,1/2, 2Q2 

Q, 2Q, 3Q  

0,1/2 

0,1/2 
1,1/2, 0 

1/3,1/2, 1/6 

Are these passive sensitivities acceptable?   

-KRC  
less than or equal to 1/2 less than or equal to 1/2 

Review from last time 



Are these sensitivities acceptable?   

0

0ω0

x

Δω Δx
S

ω x
In integrated circuits,  R/R  and  C/C  due to process variations can be K  

30% or larger due to process variations 

Even if sensitivity  is around ½ or 1, variability is often orders of magnitude too large 

Passive Sensitivities: 

Active Sensitivities: 

All are proportional to τω0 

Some architectures much more sensitive than others 

Can reduce τω0 by making GB large but this is at the expense of increased power 

    and even if power is not of concern, process presents fundamental limits on how  

    large GB can be made 

Many applications require Δω0/ω0<.001 or smaller and similar requirements on ΔQ/Q 

Review from last time 



What can be done to address these problems? 

1.  Predistortion 

Design circuit so that after component shift, correct pole locations are 

obtained 

Predistortion is generally used in integrated circuits to remove the bias  

associated with inadequate amplifier bandwidth 

Tedious process after fabrication since depends on individual components 

Temperature dependence may not track 

Difficult to maintain over time and temperature 

 

Over-ordering will adversely affect performance 

Seldom will predistortion alone be adequate to obtain acceptable performance 

Bell Labs did to this in high-volume production (STAR Biquad) 



What can be done to address these problems? 

1.  Predistortion 

Design circuit so that after component shift, correct pole locations are 

obtained 

Im

Re

Desired Pole

Actual Pole Location  due 

to parameter variations

Pole shift due to parametric variations (e.g. inadequate GB) 

w

Desired 

Response

Actual  

Response



What can be done to address these problems? 

1.  Predistortion 

Design circuit so that after component shift, correct pole locations are 

obtained 

Pre-distortion concept 

Im

Re

Desired Pole

Pre-distored  Pole 

Location  

Actual Pole Location  due 

to parameter variations

w

Actual  

ResponseDesired 

Response
Predistorted   

Response



What can be done to address these problems? 

1.  Predistortion 

Design circuit so that after component shift, correct pole locations are 

obtained 

Over-ordering Limitations with Pre-distortion  

Im

Re

Over-order 

pole

w

Actual  

Response

Desired 

Response

Predistorted   

Response

Parasitic Pole Affects Response 

Predistortion almost always done even if benefits only modest 

Not effective is significant deviations exist before predistortion 



What can be done to address these problems? 
2.  Trimming 
a) Functional Trimming 

•   trim parameters of actual filter based upon measurements 

•  difficult to implement in many structures 

•  manageable for cascaded biquads 

b) Deterministic  Trimming (much preferred) 

•  Trim component values to their ideal value 

       Continuous-trims of resistors possible in some special processes 

       Continuous-trim of capacitors is more challenging 

       Link trimming of Rs or Cs is possible with either metal or switches 

•  If all components are ideal, the filter should also be ideal 

       R-trimming algorithms easy to implement 

       Limited to unidirectional trim  

       Trim generally done at wafer level for laser trimming, package for link trims 

•    Filter shifts occur due to stress in packaging and heat cycling 

c) Master-slave reference control (depends upon matching in a process) 

•   Can be implemented in discrete or integrated structures 

•    Master typically frequency or period referenced  

•    Most effective in integrated form since good matching possible 

•   Widely used in integrated form  



 Master-slave Control (depends upon matching in a process) 

RC VC

RC

RC

T (or f)

Master Circuit

Slave Circuit

VIN

VOUT

•   Automatically adjust R in the Master Circuit to match RC to T 

•   Rely on matching to match RC products in Slave Circuit to T 

•   Matching can be very good (1% or 0.1% or better) 



 Master-slave Example: 

•  Key parameter of integrator is unity gain frequency  I0=1/RC 

•  Adjust R in Master Circuit so that I0=1 at the input frequency f 

•  With matching, unity gain frequency of all integrators in Slave Circuit 

    will also be 1  

VTEST

VOUT

R

C

VIN

VOUT

R

C

R

C

Master Circuit

Slave Circuit

T (or f)

R adjust

  OUT

TEST

V 1
T s = - 

V RCs




 Master-slave Example: 

•  Over-ordering will limit accuracy of master-slave approach even if unity   

        gain frequency of master circuit is precisely obtained  

•  Technique is often used to maintain good control of effective RC products 

VTEST

VOUT

R

C

VIN

VOUT

R

C

R

C

Master Circuit

Slave Circuit

T (or f)

R adjust

  OUT

TEST

V 1
T s = - 

V RCs


 
 

OUT
ACT 2

TEST

V 1
T s = - 

V RCs+ s+RCs




What can be done to address these problems? 

3.  Select Appropriate Architecture 

Helps a lot 

 

Best architectures are not known 

 

Performance of good architectures often not good enough 

 



What can be done to address these problems? 

4.  Different Approach for Filter 

Implementation  

•  Frequency Referenced Filters 

     Switched-Capacitor Filters 

•  DSP- Based Filter Implementation 

•  Other Niche Methods 

 

 



Summary of Sensitivity Observations 

• Sensitivity varies substantially from one implementation to another 

 

• Variability too high, even with low sensitivity, for more demanding applications 

 

• Methods of managing high variability 

 Select good structures 

 Trimming 

 Functional  

 Deterministic 

 Predistortion 

 In particular, for active sensitivities 

 Useful but not a total solution 

 Frequency Referenced Techniques 

Master-Slave Control 

Depends upon matching 

Can self-trim or self-compensate 

Switched-Capacitor Filters 

AD/digital filter/D/A 

 Alternate Design Approach 

Other methods 



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter

Where we are at 



Filter Design/Synthesis Considerations 

Most designs today use one of the following three basic architectures 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

  1 2 mT s T T T

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

αF

XOUT
XIN

α1
α2 αk

α0


Cascaded Biquads 

Leapfrog 

Multiple-loop Feedback – One type shown (less popular) 



Filter Design/Synthesis Considerations 

Multiple-loop Feedback – Another type  

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator
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Integrator

VIN
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• Termed the direct synthesis method 

 

• Directly implements the coefficients in the 

numerator and denominator 

 

• Approach followed in the Analog Computers 

 

• Not particularly attractive from an overall 

performance viewpoint 



Filter Design/Synthesis Considerations 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

  1 2 mT s T T T

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

αF

XOUT
XIN

α1
α2 αk

α0


Cascaded Biquads 

Leapfrog 

Multiple-loop Feedback – One type shown  

Observation: All filters are comprised of summers, biquads and integrators 

Will study details of all three types of architectures later 

Consider now  the biquads 



Biquad Filters Design Considerations 

VOUT

VIN

R3 R1 R2

C1

C2

C1

C2

R2

R1

VIN

VOUT
-K

C1

C2

R2

R1

VIN

VOUT
K

R3

R0

R1 RQ

RA

RAR2

C1 C2

VOUT

VIN

Several different Biquads were considered and other implementations exist 

Sallen-Key Type (Dependent Sources) 

Infinite Gain Amplifiers 

Integrator Based Structures 



Floating Nodes 
A node in a circuit is termed a floating node if it is not 

an output node of a ground-referenced voltage-output  

amplifier (dependent or independent), not connected to 

a ground-referenced voltage source, or not connected 

to a ground-referenced null-port 

AVV1

VIN

KV1

KV1

Z1

Z2

Zk

ZA

ZB

gm

IIN
AII1

Floating Node

Not Floationg Node



Parasitic Capacitances on Floating Nodes 

CP1

CP2

Z1

Z2

Zk

CP

Parasitic capacitances ideally have no affect on filter when on a non-floating 

node but directly affect transfer function when they appear on a floating node 

Parasitic capacitances are invariably large, nonlinear, and highly process 

dependent in integrated filters.  Thus, it is difficult to build accurate integrated 

filters if floating nodes are present 

Generally avoid floating nodes, if possible, in integrated filters 

Floating Node

Not Floationg Node



VOUT

VIN

R3 R1 R2

C1

C2

C1

C2

R2

R1

VIN

VOUT
-K

C1

C2

R2

R1

VIN

VOUT
K

R3

R0

R1 RQ

RA

RAR2

C1 C2

VOUT

VIN

Sallen-Key Type (Dependent Sources) 

Infinite Gain Amplifiers 

Integrator Based Structures 

Which type of Biquad is really used? 
Floating NodeNot Floationg Node



VOUT

VIN

R3 R1 R2

C1

C2

C1

C2

R2

R1

VIN

VOUT
-K

C1

C2

R2

R1

VIN

VOUT
K

R3

R0

R1 RQ

RA

RAR2

C1 C2

VOUT

VIN

Sallen-Key Type (Dependent Sources) 

Infinite Gain Amplifiers 

Integrator Based Structures 

Which type of Biquad is really used? 
Floating NodeNot Floationg Node



Integrator-based Biquads 

R0

R1 RQ

RA

RAR2

C1 C2

VOUT

VIN

 0I

s

0I

sXIN

α

XO1

XO2

0I

s


0I

sXIN

XOUT

α

1



Integrator-based Biquads 

 0I

s

0I

s
XIN

XO1

α1

-α2

α0

XO2

State Variable Biquad 

(Alt KHN Biquad) 


 0I

s+

0I

sXIN

XO1

XO2

Integrator and lossy 

integrator in a loop 


 0I

s+

0I

s

XIN

XOUT



Integrator-based Biquads 

Tow-Thomas  Biquad 

 

 0I

s

0I

sXIN

α

XO1

XO2

 0I

s

0I

sXIN

α

XO


a0

a1

a2

With arbitrary zero locations 



Integrator-based Biquads 

VOUT

R0

R1RQ

R4

R3R2

C1 C2

RA
RB RC

RF

VOLP

VOBP

VIN

Two-Integrator Loop

Summer

INT1 INT2

Tow Thomas Biquad

 0I

s

0I

sXIN

α

XO


a0

a1

a2



Integrator-based Biquads 

 

• Integrator-based biquads all involve two integrators in a loop 

 

• All integrator-based biquads discussed  have no floating nodes 

 

• Most biquads in integrated filters are based upon two integrator loop 

structures 

• The summers are usually included as summing inputs on the integrators 

 

• The loss can be combined with the integrator to form a lossy integrator 

 

• Performance of the minor variants of the two integrator loop structures 

are comparable 

 

 



Filter Design/Synthesis Considerations 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

  1 2 mT s T T T

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

αF

XOUT
XIN

α1
α2 αk

α0


Cascaded Biquads 

Leapfrog 

Multiple-loop Feedback – One type shown  

Observation: All filters are comprised of summers, biquads and integrators 

And biquads usually made with summers and integrators 

Integrated filter design generally focused on design of integrators, summers, and 

amplifiers (Op Amps) 

Will now focus on the design of integrators, summers, 

and op amps 



End of Lecture 24 
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Lecture 25 

Integrator Design 



Parasitic Capacitances on Floating Nodes 

CP1

CP2

Z1

Z2

Zk

CP

Parasitic capacitances ideally have no affect on filter when on a non-floating 

node but directly affect transfer function when they appear on a floating node 

Parasitic capacitances are invariably large, nonlinear, and highly process 

dependent in integrated filters.  Thus, it is difficult to build accurate integrated 

filters if floating nodes are present 

Generally avoid floating nodes, if possible, in integrated filters 

Floating Node

Not Floationg Node

Review from last time 



VOUT

VIN

R3 R1 R2

C1

C2

C1

C2

R2

R1

VIN

VOUT
-K

C1

C2

R2

R1

VIN

VOUT
K

R3

R0

R1 RQ

RA

RAR2

C1 C2

VOUT

VIN

Sallen-Key Type (Dependent Sources) 

Infinite Gain Amplifiers 

Integrator Based Structures 

Which type of Biquad is really used? 
Floating NodeNot Floationg Node

Review from last time 



Filter Design/Synthesis Considerations 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

  1 2 mT s T T T

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

αF

XOUT
XIN

α1
α2 αk

α0


Cascaded Biquads 

Leapfrog 

Multiple-loop Feedback – One type shown  

Observation: All filters are comprised of summers, biquads and integrators 

And biquads usually made with summers and integrators 

Integrated filter design generally focused on design of integrators, summers, and 

amplifiers (Op Amps) 

Will now focus on the design of integrators, summers, 

and op amps 

Review from last time 



Basic Filter Building Blocks 
(particularly for integrated filters) 

• Integrators 

 

• Summers 

 

• Operational Amplifiers 



Integrator Characteristics of Interest 

0I

s

XOUTXIN

  0II s  = 
s

  0II jω  = 
ω

 I 0jω  = -90

Unity Gain Frequency = 1 

Properties of an ideal integrator: 

Gain decreases with 1/ω 

Phase is a constant -90o 

 0I Ij  = 1

How important is it that an integrator have all 3 of these properties? 



Integrator Characteristics of Interest 

 0I

s

0I

sXIN

α

XO1

XO2

  
2
0

2 2
0 0

- I
T s

s + αI s + I

0 0ω  = I


1
Q = 

0I

s

XOUTXIN   0II s  = 
s

  0II jω  = 
ω  I 0jω  = -90

How important is it that an integrator have all 3 of these properties? 

Consider a filter example: 

In many (most) applications it is critical that an integrator be very nearly ideal 

 (in the frequency range of interest) 

 0I Ij  = 1

Band edges proportional to I0 

Phase critical to make Q expression valid 





Some integrator structures 

VOUT

C

VIN
R

 I s  
1

RCs

Are there other integrator structures? 

Inverting Active RC Integrator 

VOUT

VIN

C

gm

IOUT I

I

OUT m IN

OUT OUT

= - g V

1
V

sC

 I s   mg

sC
0I  mg

C

Termed an OTA-C or a gm-C integrator 

0I
1

RC




Some integrator structures 

Are there other integrator structures? 

C

VOUT

VIN
gm

IOUT

VBB

I

I 

OUT m IN

OUT OUT

= g V

1
V

sC

 I s   mg

sC

Termed a TA-C integrator 

VOUT

C

VIN
RMOS

VC

gmV1
C

VOUT

V1

VIN

IOUT

 I s  
MOS

1

sCR

Termed MOSFET-C integrator 

0I  mg

C

0I
FET

1

R C
 



Some integrator structures 

Are there other integrator structures? 

INI



2 1

2 1
OUT

1
V = V

sC

V - V
I

R

  OUT

IN

I
I s

I
  

1

sRC

Termed active RC current-mode integrator 

IIN

IOUT

R

C

ZL

V1

V2

•   Output current is independent of ZL  

•  Thus output impedance is ∞ so provides current output 

0I
1

RC




Some integrator structures 

 I s  
1

sRC

IIN

IOUT

R

C

ZL

V1

V2

C

VOUT

VIN
gm

IOUT

VBB

VOUT

C

VIN
R

VOUT

C

VIN
RMOS

VC

VOUT

VIN

C

gm

IOUT

 I s  
1

sRC

 I s  
MOS

1

sR C

 I s   mg

sC

 I s   mg

sC

There are many different ways to build an inverting integrator 

There are other useful integrator structures (some will be introduced later) 



 Integrator Functionality 

VOUT

C

VIN
R

 I s  
1

sRC

VOUT

C

VIN1
R1

VINn

Rn

1
OUT INk

k

1
V V

CR s

n

k

  

C

C

R

R

OUTdiffV
INdiffV +

-
+
-

Axis of 

Symmetry

OUTdiff INdiff

1
V V

CRs
 

C

VIN
R VOUTRA

RA

 I s 
1

sRC

VIN

VOUTR

C

RF

F

OUT IN
F

R
RV V

1+CR s
 

Summing Integrator 

Fully Differential Integrator 

Noninverting Integrator 

Lossy  Integrator 

Basic Active RC Inverting Integrator 

Many different types of functionality from basic inverting integrator 

Same modifications exist for other integrator architectures 



Integrator-Based Filter Design 

 0I

s

0I

sXIN

α

XO1

XO2

IIN

IOUT

R

C

ZL

V1

V2

VOUT

VIN

C

gm

IOUT

C

VOUT

VIN
gm

IOUT

VBB

VOUT

C

VIN
RMOS

VC

VOUT

C

VIN
R

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

Any of these different types of integrators can be used to build integrator-based filters 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

T0(s)
First-

Order



Are new integrators still being invented? 











Example – OTA-C Tow Thomas Biquad 
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XO1

XO2

1OUT 2 m2V sC =g V
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OUT m3 m2

2
IN 1 2 m4 2 m1 m2

V g g
=

V s C C sg C +g g

 
 
 

  
  

  

2

m3 m
2
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2
IN 2 m4 m m

2

m

g g

g CV
=

V g g g
s s +

g C C

Assume gm1=gm2=gm, C1=C2=C 

2

0

20
0

Q

 
 
 

 
 

 

m3

mOUT

2IN

g
ω

gV
=

V ω
s s +ω

0
 mg

ω  = 
C

m

m4

g
Q = 

g

express as 

where 
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XOUTXIN
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s + α

XOUTXIN
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XOUTXIN
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s + α


XOUTXIN
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XIN1
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I
X
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XOUT

XIN1

XINk
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 k

I
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XINn

1
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I
X
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Noninverting Inverting

Lossy Noninverting Lossy Inverting

Summing (Multiple-Input) Inverting/Noninverting

Summing (Multiple-Input) Lossy Inverting/Noninverting 

0I

s

Balanced Differential 

IN
+X

IN
-X

OUT
+X

OUT
-X

 OUT OUT IN IN
+ + + +0IX X X X

s
  

0I

s

Fully  Differential 

INdiffX OUTdiffX

+ +

- -

- -

+ +
+ +
- - OUTdiff INdiff

0IX X
s



Basic Integrator Functionality 



Basic Integrator Functionality 

0I

s

XOUTXIN 0I

s


XOUTXIN

Noninverting Inverting

• An inverting/noninverting integrator pair define a family of integrators 

• All integrator functional types can usually be obtained from the 

inverting/noninverting integrator pair 

• Suffices to focus primarily on the design of the inverting/noninverting 

integrator pair since properties of class primarily determined by 

properties of integrator pair 

 



Example – Basic Op-Amp Feedback Integrator 

VOUT

C

VIN
R

C

VIN
R VOUTRA

RA

Inverting Integrator of Family Noninverting Integrator 

VOUT

C

VIN1
R1

VINn
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Summing Inverting Integrator 

1
OUT INk
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1
V V

CR s

n
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OUT IN
1

V V
CRs
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1
V V

CRs




Example – Basic Op-Amp Feedback Integrator 

VOUT

C

VIN
R

Inverting Integrator of Family VOUT

C

VIN1
R1

VINn

Rn

Summing Inverting Integrator 

1
OUT INk

k

1
V V

CR s

n

k

  

OUT IN
1

V V
CRs

 

VOUT

C

VIN1
R1

VINn

Rn

Rn-1VINn-1

Lossy Summing Inverting Integrator 

1

1

n
INk

k
OUT

n

R
V

R
V

1+CR s

n

k



 



VOUT

C

VIN1
R1

VINn

Rn
RF

1

F
INk

k
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F

R
V

R
V

1+CR s

n
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Example – Basic Op-Amp Feedback Integrator 

VOUT

C

VIN
R

Inverting Integrator of Family 

OUT IN
1

V V
CRs

 

Lossy Summing Inverting Integrator 

VOUT

C

VIN1
R1

VINn

Rn
RF

1

F
INk

k
OUT

F

R
V

R
V

1+CR s

n

k 



VIN

VOUTR

C

RF

Lossy  Inverting Integrator 

F

OUT IN
F

R
RV V

1+CR s
 



Example – Basic Op-Amp Feedback Integrator 

VOUT

C

VIN
R

Inverting Integrator of Family 

OUT IN
1

V V
CRs

 

Balanced Differential  Inverting Integrator 

C

R

C

R

IN
+V

IN
-V

OUT
+V

OUT
-V

+

-

+

-

INdiffV OUTdiffV
Axis of 

Symmetry
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1
V V

CRs
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1
V V
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OUTdiff INdiff

1
V V
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Example – Basic Op-Amp Feedback Integrator 

VOUT

C

VIN
R

Inverting Integrator of Family 

OUT IN
1

V V
CRs

 

Fully Differential  Inverting Integrator 

OUTdiff INdiff

1
V V

CRs
 

C

C

R

R

OUTdiffV
INdiffV +

-
+
-

Axis of 

Symmetry



Integrator Types 

0I

s

VOUTVIN

Voltage Mode 

o
OUT IN

I
V V

s


0I

s

IOUTIIN

Current Mode 

o
OUT IN

I
I I

s


0I

s

VOUTIIN

Transresistance  Mode 

o
OUT IN

I
V I

s


0I

s

IOUTVIN

Transconductance  Mode 

o
OUT IN

I
I V

s


Will consider first the Voltage Mode type of integrators 



Voltage Mode Integrators 

• Active RC     (Feedback-based) 

• MOSFET-C   (Feedback-based) 

• OTA-C 

• TA-C 

• Switched Capacitor 

• Switched Resistor 

Sometimes termed “current mode” 

Will discuss later 



Active RC Voltage Mode Integrator 

VOUT

C

VIN
R

OUT IN
1

V V
CRs

 

• Limited to low frequencies because of Op Amp limitations 

• No good resistors for monolithic implementations 
Area for passive resistors is too large at low frequencies 

Some recent work by Haibo Fei shows promise for some audio frequency applications 

• Capacitor area too large at low frequencies for monolithic implementatins 

• Active devices are highly temperature dependent, proc. dependent, and nonlinear 

• No practical tuning or trimming scheme for integrated applications with passive resistors 

 



MOSFET-C Voltage Mode Integrator 

• Limited to low frequencies because of Op Amp limitations 

• Area for RMOS is manageable ! 

• Active devices are highly temperature dependent, process dependent 

• Potential for tuning with VC 

• Highly Nonlinear (can be partially compensated with cross-coupled input 

 

VOUT

C

VIN
RMOS

VC

MOS

OUT IN
1

V V
CR s

 

A Solution without a Problem 



MOSFET-C Voltage Mode Integrator 

• Improved Linearity  

• Some challenges for implementing VC 

 

VOUT

C

VIN
RMOS

VC

MOS

OUT IN
1

V V
C R s

 

Still A Solution without a Problem 

MOS

OUT IN
1

V V
C R s

 

VOUT

C

VIN RMOS

VC

VC



OTA-C Voltage Mode Integrator 

• Requires only two components 

• Inverting and Noninverting structures of same complexity 

• Good high-frequency performance 

• Small area 

• Linearity is limited (no feedback in integrator) 

• Susceptible to process and temperature variations 

• Tuning control can be readily added  

 

Widely used in high frequency applications  

Noninverting Inverting 

V O U T

V IN

C

gm


m

O U T IN

g
V V

sC

VOUT
VIN

C

gm

 
m

O U T IN

g
V V

sC



OTA-C Voltage Mode Integrator 

Programmable Integrator 

VOUT
VIN
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gm
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m

O U T IN

g
V V

sC

 m A B Cg f I

VOUT
VIN

C

gm


m

O U T IN

g
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OTA-C Voltage Mode Integrator 

Lossy  Integrator 

 

   
OUT m F

IN F

V s g R
  = 

V s 1+s R C

But RF is typically too large for integrated applications 

VOUT
VIN

C

gm


m

O U T IN

g
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sC

VOUT

VIN

C

gm

RF



End of Lecture 25 
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Lecture 26 

Integrator Design 

TA-C  Integrators 

Other Integrator Structures 



Integrator Characteristics of Interest 

0I

s

XOUTXIN

  0II s  = 
s

  0II jω  = 
ω

 I 0jω  = -90

Unity Gain Frequency = 1 

Properties of an ideal integrator: 

Gain decreases with 1/ω 

Phase is a constant -90o 

 0I Ij  = 1

How important is it that an integrator have all 3 of these properties? 

Review from last time 



Some integrator structures 

 I s  
1

sRC

IIN

IOUT

R

C

ZL

V1

V2

C

VOUT

VIN
gm

IOUT

VBB

VOUT

C

VIN
R

VOUT

C

VIN
RMOS

VC

VOUT

VIN

C

gm

IOUT

 I s  
1

sRC

 I s  
MOS

1

sR C

 I s   mg

sC

 I s   mg

sC

There are many different ways to build an inverting integrator 

There are other useful integrator structures (some will be introduced later) 

Review from last time 



Integrator-Based Filter Design 

 0I

s

0I

sXIN
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XO1

XO2

IIN

IOUT
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ZL
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V2
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VC
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Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

Any of these different types of integrators can be used to build integrator-based filters 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

T0(s)
First-

Order

Review from last time 
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Noninverting Inverting

Lossy Noninverting Lossy Inverting

Summing (Multiple-Input) Inverting/Noninverting

Summing (Multiple-Input) Lossy Inverting/Noninverting 

0I

s

Balanced Differential 

IN
+X
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Basic Integrator Functionality 
Review from last time 



Integrator Types 

0I

s

VOUTVIN

Voltage Mode 

o
OUT IN

I
V V

s
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s

IOUTIIN

Current Mode 

o
OUT IN

I
I I

s


0I

s

VOUTIIN

Transresistance  Mode 

o
OUT IN

I
V I

s


0I

s

IOUTVIN

Transconductance  Mode 

o
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I
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s


Will consider first the Voltage Mode type of integrators 

Review from last time 



Voltage Mode Integrators 

• Active RC     (Feedback-based) 

• MOSFET-C   (Feedback-based) 

• OTA-C 

• TA-C 

• Switched Capacitor 

• Switched Resistor 

Sometimes termed “current mode” 

Will discuss later 

• Other Structures 



Active RC Voltage Mode Integrator 

VOUT

C

VIN
R

OUT IN
1

V V
CRs

 

• Limited to low frequencies because of Op Amp limitations 

• No good resistors for monolithic implementations 
Area for passive resistors is too large at low frequencies 

Some recent work by Haibo Fei shows promise for some audio frequency applications 

• Capacitor area too large at low frequencies for monolithic implementatins 

• Active devices are highly temperature dependent, proc. dependent, and nonlinear 

• No practical tuning or trimming scheme for integrated applications with passive resistors 

 



MOSFET-C Voltage Mode Integrator 

• Limited to low frequencies because of Op Amp limitations 

• Area for RMOS is manageable ! 

• Active devices are highly temperature dependent, process dependent 

• Potential for tuning with VC 

• Highly Nonlinear (can be partially compensated with cross-coupled input 
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OUT IN
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A Solution without a Problem 



MOSFET-C Voltage Mode Integrator 

• Improved Linearity  

• Some challenges for implementing VC 
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Still A Solution without a Problem 

MOS
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OTA-C Voltage Mode Integrator 

• Requires only two components 

• Inverting and Noninverting structures of same complexity 

• Good high-frequency performance 

• Small area 

• Linearity is limited (no feedback in integrator) 

• Susceptible to process and temperature variations 

• Tuning control can be readily added  

 

Widely used in high frequency applications  

Noninverting Inverting 
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OTA-C Voltage Mode Integrator 

Programmable Integrator 
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OTA-C Voltage Mode Integrator 

Lossy  Integrator 

 

   
OUT m F
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V s g R
  = 

V s 1+s R C

But RF is typically too large for integrated applications 
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OTA-C Voltage Mode Integrator 

EQ mg = g

OTA is generally much smaller than a resistor 

gm

gEQ

V I 

mI = - -g V

EQ

I
g  =  

V



OTA-C Voltage Mode Integrator 

Lossy  Integrator 

 

   
OUT m mA

IN mA

V s g /g
  = 

V s 1+s C/g

•  Practical implementation 

•  Both OTAs can be readily programmable 
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gm
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gm
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OTA-C Voltage Mode Integrator 

Summing  Integrator 

•  Inverting and noninverting functions can be combined in single summer 

•  All transconductance gains can be programmable 
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OTA Architecture 

Mid-complexity OTA •  M1 and M2 matched 

•  M2 and M4 matched 

•  Define M to be the gain of the current mirror formed with M2 and M4 

•  gm programmable with VBIAS  

  m1
m

g
g 1+M

2Often M=1 

m m1g g

VBIAS

M1 M2

M3 M4

M5

VDD

VOUT

IN

+
V IN

-
V

VOUT
gm

IN

+
V

IN

-
V

Other OTAs exist, considerable effort expended over past two decades on OTA design 



Voltage Mode Integrators 

• Active RC     (Feedback-based) 

• MOSFET-C   (Feedback-based) 

• OTA-C 

• TA-C 

• Switched Capacitor 

• Switched Resistor 

Sometimes termed “current mode” 

Will discuss later 

• Other Structures 



TA-C Voltage Mode Integrator 

• Can operate at very high frequencies 

• Low device count circuit 

• Simplicity is important for operating at very high frequencies 

• I0 is process and temperature dependent 

• Linearity is limited  
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TA-C Voltage Mode Integrator 
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Inverting Integrators 
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Some other perspectives 

n-channel input 

p-channel input 



TA-C Voltage Mode Integrator 

Can  be viewed either as n-channel input with current mirror or as 

low-gain inverter driving a p-channel input inverting integrator   

C
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gm

M
IB1 IB2

Noninverting Integrator 

Some other perspectives 
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TA-C Voltage Mode Integrator 

C

VOUT

VIN
gm

IB1

m
OUT IN

-g
V = V

sC

 
 
 

 
 
 

m
OUT IN

g M
V = V

sC

Typically M=1 

Inverting Integrator Alternate noninverting Integrator 
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TA-C Voltage Mode Integrator 
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Summing Inverting Integrator 

C

VOUT

VINn

gmn

IB1
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Voltage Mode Integrators 

• Active RC     (Feedback-based) 

• MOSFET-C   (Feedback-based) 

• OTA-C 

• TA-C 

• Switched Capacitor 

• Switched Resistor 

Sometimes termed “current mode” 

Will discuss later 

• Other Structures 



Another  Voltage Mode Integrator 

OUT IN
-1

V = V
sRC

 
 
 

Inverting Integrator 

• Infinite input impedance (in contrast to basic Active RC Integrator) 

• Both R and C have one terminal grounded 

• Requires integrated process 

• Accuracy limited by process and temperature 

• Size limitations same as basic Active RC Integrator 

• Limited to lower frequencies because of Op Amp 

• Good linearity 

M1

C

VOUT

VIN

IB

R



Another  Voltage Mode Integrator 

OUT IN
FET

-1
V = V

sR C

 
 
 

Inverting Integrator 

Noninverting Integrator 

OUT IN
FET

1
V = V

sR C

 
 
 

M1

M2

C

VOUT

VIN

VRR

IB

VDD

M1

M2

C

VOUT

VIN

VRR

VDD

M3 M4

IB1

VDD

IB2

VDD

• M1 in triode region 

• Reduces Area Concerns but Loss of Linearity 

• I0 is programmable with VRR 

• Accurate control of IB critical 



Regulated Cascode  Voltage Mode Integrator 

Inverting Integrator 
Noninverting Integrator 

M1

M2

C

VOUT

VIN

VRR

IB

VDD

M1

M2

C

VOUT

VIN

VRR

VDD

M3 M4

IB1

VDD

IB2

VDD

mT
OUT IN

-g
V = V

sC

 
 
 

mT
OUT IN

g
V = V

sC

 
 
 

• M1 operating in triode region 

• RFET programmable with VRR 

• Very good linearity properties 

• Input impedance still infinite 

gMT is triode region transconductance of M1 



Regulated Cascode  Voltage Mode Integrator 

M1

M2

C

VOUT

VIN

VRR

IB

VDD

mT
OUT IN

-g
V = V

sC

 
 
 

Linearity Properties: 

Assuming square-law triode model 

OX RR
D1 GS T RR

μC W V
I = V -V - V

L 2

 
 
 

OX OX RR
D1 RR IN T RR

μC W μC W V
I = V V V + V

L L 2

    
    

    

Note linear dependence on VIN 

mT
OX RR

L
g =

μC W V

 
 
 



Regulated Cascode  Voltage Mode Integrator 

Inverting Integrator 

M1

M2

C

VOUT

VIN

VRR

IB

VDD

OUT IN
FET

-1
V = V

sR C

 
 
 

• Multiple inputs require single additional transistor 

• Accurate ratioing of gains practical 

• Can also sum currents on C 

M1k

M2

C

VOUT

VINk

VRR

IB

VDD

M11
VIN1

M12
VIN2



Regulated Cascode  Voltage Mode Integrator 

Inverting Integrator 

M1

M2

C

VOUT

VIN

VRR

IB

VDD

OUT IN
FET

-1
V = V

sR C

 
 
 

MA

M2

C

VOUT

VRR

IB

M1VIN

Inverting Lossy  Integrator 



Another  Voltage Mode Integrator 

OUT IN
-1

V = V
sRC

 
 
 

Inverting Integrator 

M1

C

VOUT

VIN

IB

R

M1

C

VOUT
VIN

VDD

M3 M4

R

IB1
IB2

VDD VDD

Noninverting Integrator 

OUT IN
1

V = V
sRC

 
 
 



Voltage Mode Integrators 

• Active RC     (Feedback-based) 

• MOSFET-C   (Feedback-based) 

• OTA-C 

• TA-C 

• Switched Capacitor 

• Switched Resistor 

Sometimes termed “current mode” 

Will discuss later 

• Other Structures 



Consider the Basic Integrator 

C

R

VIN

VOUT

 
1

T s -
RCs



0
1

RC
I 

Key performance of integrator (and integrator-based filter) is determined by 

the integrator time constant I0 

Precision of time constants of a filter invariably determined by precision of I0 



Consider the Basic Integrator 
C

R

VIN

VOUT

 
1

T s -
RCs



0
1

RC
I 

1. Accuracy of R and C difficult to accurately control – particularly in integrated applications 

 (often 2 or 3 orders of magnitude to variable) 

 

2. Size of R and C unacceptably large if I0 is in audio frequency range 

 (2 or 3 orders of magnitude too large) 

 

3. Amplifier GB limits performance 

 
Incredible Challenge to Building Filters on Silicon! 



• Passive Component Variability 

• Passive Component Size 

• Op Amp Limitations 

Challenges for Integration of Active Filters  

Historical Perspective 

Filters were widely viewed as one of the most fundamental 

applications of integrated circuit technology  

 

Considerable effort was expended on developing methods to build 

integrated filters but these three issues were viewed for years as a 

fundamental roadblock 

 

Practical solution required finding SIMULTANEOUS solutions to three 

problems which were each 2 or 3 orders of magnitude problematic 

 

This problem was not solved from the invention of the integrated 

circuit in 1959 up until the late 1970s 



Switched-Capacitor Circuits 
C

R

VIN

VOUT

 
1

T s -
RCs

 0I 
1

RC

Consider: C

VIN

VOUT

C1

φ1 φ2

Assume TCLK<<TSIG 

Φ1 and Φ2 are complimentary non-overlapping clocks 

Termed a Switched-Capacitor circuit 

TCLK

t1 t1+TCLK

φ1

φ2

TNON

Φ1 and Φ2 are periodic signals 

“clocks” shown for one period 

 IN M SIGV  = V sin 2πf t+θ



Switched-Capacitor Circuits 
C

VIN

VOUT

C1

φ1 φ2

How are the switches made? 

CLK

CLK CLK

CLK CLK

• Often single transistor 

• Occasionally complimentary transistors 

• On rare occasion more complicated 

• Area overhead for switches small, clock routing a little more of concern 

• Sizing of devices is important 

• Clocking of switches may be important 

Although originating in SC filters, switched charge redistribution circuits widely 

used in other non-filtering applications 



Consider the Switched-Capacitor Circuit 
C

VIN

VOUT

C1

φ1 φ2

Assume TCLK<<TSIG 

Φ1 and Φ2 are complimenary nonoverlapping clocks 

TSIG

TCLK

Lets now zoom in on the clock period 



Consider the Switched-Capacitor Circuit 
C

VIN

VOUT

C1

φ1 φ2

Assume TCLK<<TSIG 

Φ1 and Φ2 are complimenary nonoverlapping clocks 

TSIG

TCLK



Consider the Switched-Capacitor Circuit 
C

VIN

VOUT

C1

φ1 φ2

Assume TCLK<<TSIG 

Φ1 and Φ2 are complimenary nonoverlapping clocks 

T

nT (n+1)T

V(nT)
V((n+1)T)

φ1

φ2

TCLK
nTCLK (n+1)TCLK

φ1

φ2

T=TCLKDefine



Compare the performance of the following 

two circuits 
C

VIN

VOUT

C1

φ1 φ2

C

R

VIN

VOUT

 
1

T s -
RCs

 0
1

I =
RC



Consider the charge transferred to the feedback capacitor 

for both circuits in an interval of length TCLK   at time t1 

For the RC  circuit: 

 1

1

CLKt T
in

RC
t

V t
Q dt

R



 

 
1 CLK

1

t +T

RC in
t

Q I t dt 

 1

1

1
CLKt T

in
RC

t

V t
Q dt

R





  1

1

1 1
CLKt T

in
RC

t

V t
Q dt

R

 
 
 



 1in
RC CLK

V t
Q T

R

 
 
 

Since Vin changes slowly 

C

R

VIN

VOUT

IIN



Consider the charge transferred to the feedback capacitor 

for both circuits in an interval of length TCLK   at time t1 

For the RC  circuit: 

 1in
RC CLK

V t
Q T

R

 
 
 

Observe that a  resistor “transfers” charge proportional to Vin in a short interval  

of TCLK 



For the SC circuit 

C

VIN

VOUT

C1

φ1 φ2

1 1 1
2

CLK
C in

T
Q C V t 

 
   

 

 1 1 1C inQ C V t

Since Vin(t) is slowly varying 

But this is the charge that will be transferred to C during phase Φ2 

 1 1SC inQ C V t

Observe that the SC circuit also transfers charge proportional to Vin in 

short intervals of length TCLK 

V(t1) V(t1+TCLK)

TCLK
t1 t1 +TCLK

φ1

φ2

This is precisely what a resistor does so the switched capacitor behaves 

as a resistor 



C

VIN

VOUT

C1

φ1 φ2

Comparing the two circuits 

 1 1SC inQ C V t 1in
RC CLK

V t
Q T

R

 
 
 

C

R

VIN

VOUT

 
1

T s -
RCs



0
1

RC
I 

Equating charges since both proportional to Vin(t1) 

1
1

CLKC T
R

 
  

1

1
EQ

CLK

R
f C



C

VIN

VOUT

C1

φ1 φ2

C

R

VIN

VOUT

 
1

T s -
RCs



0
1

RC
I 

1

1
EQ

CLK

R
f C

Note that large resistors require small capacitors ! 

 

This offers potential for overcoming one of the critical challenges for  

Implementing integrators on silicon at audio frequencies! 

Observe that a switched-capacitor behaves as a resistor! 

This is an interesting observation that was made by Maxwell over 100 years 

ago but in and of itself was of almost no consequence 

REQ 

Observation by Maxwell was forgotton and rediscovered several times over 

the years but remained of no conseqeunce 



Consider again the SC integrator 
C

VIN

VOUT

C1

φ1 φ2

 SC
EQ

-1
T s

R Cs

0eq
EQ

1
I =

R C

1

1
EQ

CLK

R
f C

1 CLK
0eq

EQ

C f1
I =

R C C


1
0eq CLK

C
I = f

C

 
  

This is a frequency referenced filter! 



The SC integrator 
C

VIN

VOUT

C1

φ1 φ2

 SC
EQ

-1
T s

R Cs

1

1
EQ

CLK

R
f C

1
0eq CLK

C
I = f

C

 
  

The expressions       and           have the same magnitude as for the RC integrator 

• The ratio of capacitors CAN be accurately controlled in IC processes 
      (1% to .01% is achievable with careful layout) 

• fCLK CAN be VERY accurately controlled with a c low cost crystal  (1 part in 106 or better) 

• Variability of I0eq is very small 

I
0

CS I
0

C1
S

The SC integrator CAN dramatically reduce the  second main concern 

for building integrated integrators 

On-chip capacitor values CAN be highly correlated with proper selection and layout  



The SC integrator 
C

VIN

VOUT

C1

φ1 φ2

1
0eq CLK

C
I = f

C

 
  

C

R

VIN

VOUT

 
1

T s -
RCs

 0
1

I =
RC

1. Accuracy of R and C difficult to accurately control  

 (often 2 or 3 orders of magnitude to variable) 

 

2. Area of R and C too large in audio frequency range 

 (2 or 3 orders of magnitude too large) 

 

3. Amplifier GB limits performance 

 

1. Accuracy of cap ratio and fCLK very good  

  

 

2. Area of C1 and C not too large 

 

3. Amplifier GB limits performance less 

 

Two of these properties were discovered independently by  

Gray, Broderson and Hosticka at Berkeley and by Copeland of Carelton 

77 citations 

108 citations 

Seminal source of SC concept received few citations! 

But cited as a key contribution when Brodersen and Gray elected to NAE 





Switched Capacitor Filters 

The realization that a switched-capacitor was equivalent to a resistor was of 

little consequence 

The realization that a small switched capacitor was equivalent to a resistor 

was of little consequence 

The realization that a switched capacitor was dependent upon frequency was 

of little consequence 

The realization that RC time constants could be accurately controlled with a small 

amount of area in silicon was of considerable consequence 

The experimental validation and the efforts to convince industry that the SC 

techniques offered practical solutions was the MAJOR contribution !! 



Basic Building Blocks in Both Cascaded 

Biquads and Multiple Feedback Structures 

1. Integrators 

2. Summers 

3. Op Amps (inc OTAs) 

4. Switches 

 

• Same building blocks used in open-loop applications as well 

• Developed from observations from feedback implementations 

• First-order filter blocks 

• Biquads 



End of Lecture 26 
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Lecture 27 

Integrator Design 

Switched Capacitor Integrators 



Consider the Basic Integrator 
C

R

VIN

VOUT

 
1

T s -
RCs



0
1

RC
I 

1. Accuracy of R and C difficult to accurately control – particularly in integrated applications 

 (often 2 or 3 orders of magnitude to variable) 

 

2. Size of R and C unacceptably large if I0 is in audio frequency range 

 (2 or 3 orders of magnitude too large) 

 

3. Amplifier GB limits performance 

 
Incredible Challenge to Building Filters on Silicon! 

Review from last time 



Switched-Capacitor Circuits 
C

R

VIN

VOUT

 
1

T s -
RCs

 0I 
1

RC

Consider: C

VIN

VOUT

C1

φ1 φ2

Assume TCLK<<TSIG 

Φ1 and Φ2 are complimentary non-overlapping clocks 

Termed a Switched-Capacitor circuit 

TCLK

t1 t1+TCLK

φ1

φ2

TNON

Φ1 and Φ2 are periodic signals 

“clocks” shown for one period 

 IN M SIGV  = V sin 2πf t+θ

Review from last time 



Switched-Capacitor Circuits 
C

VIN

VOUT

C1

φ1 φ2

How are the switches made? 

CLK

CLK CLK

CLK CLK

• Often single transistor 

• Occasionally complimentary transistors 

• On rare occasion more complicated 

• Area overhead for switches small, clock routing a little more of concern 

• Sizing of devices is important 

• Clocking of switches may be important 

Although originating in SC filters, switched charge redistribution circuits widely 

used in other non-filtering applications 

Review from last time 



The SC integrator C

VIN

VOUT

C1

φ1 φ2

1
0eq CLK

C
I = f

C

 
  

C

R

VIN

VOUT

 
1

T s -
RCs

 0
1

I =
RC

1. Accuracy of R and C difficult to accurately control  

 (often 2 or 3 orders of magnitude to variable) 

 

2. Area of R and C too large in audio frequency range 

 (2 or 3 orders of magnitude too large) 

 

3. Amplifier GB limits performance 

 

1. Accuracy of cap ratio and fCLK very good  

  

 

2. Area of C1 and C not too large 

 

3. Amplifier GB limits performance less 

 

Two of these properties were discovered independently by  

Gray, Broderson and Hosticka at Berkeley and by Copeland of Carelton 

77 citations 

108 citations 

Seminal source of SC concept received few citations! 

But cited as a key contribution when Brodersen and Gray elected to NAE 

Review from last time 



Parasitic Capacitors in MOS Transistors 
Gate DrainSource 

Bulk

n-channel MOSFET

CBS

CGSOL
CGDOL

CBD

CGB when off
CGC when on

Gate DrainSource 

Bulk

p-channel MOSFET

CBS

CGSOL

CGB when off
CGC when on

CGDOL

CBD

CWELLSSUB



The SC integrator 

C

VIN

VOUT

C1

φ1 φ2

1
0eq CLK

C
I = f

C

 
  

VOUT
VIN

C1

C

φ1 φ2

Cd1
Cs1

CT1

Cd2 Cs2

CBc CTc

CB1

• Parasitic capacitors of THIS SC integrator limit performance 

• Other SC integrators (discussed later) offer same benefits but are not 

   affected by parasitic capacitors 

C1EQ=C1+Cs1+Cd2+CT1 

Parasitic capacitors Cs1+Cd2+CT1 difficult to accurately match 

Observe this circuit has considerable parasitics (gate parasitics cause offset in this circuit and 

some signal-dependent distortion but  will be neglected in this discussion) 



Switched-Capacitor Filter Issues 
What if TCLK is not much-much smaller than TSIG? 

TSIG

TCLK

For TCLK<<TSIG 



Switched-Capacitor Filter Issues 
What if TCLK is not much-much smaller than TSIG? 

For TCLK <TSIG 

TSIG

TCLK

φ1

φ2



Switched-Capacitor Filter Issues 
What if TCLK is not much-much smaller than TSIG? 

For TCLK<<TSIG 



Switched-Capacitor Filter Issues 
What if TCLK is not much-much smaller than TSIG? 

For TCLK <TSIG 

TSIG

TCLK

φ1

φ2



Switched-Capacitor Filter Issues 
What if TCLK is not much-much smaller than TSIG? 

T

nT (n+1)T

V(nT)
V((n+1)T)

φ1

φ2

TCLK
nTCLK (n+1)TCLK

φ1

φ2

T=TCLKDefine

For TCLK<<TSIG 

TCLK

nTCLK (n+1)TCLK

V(nT)

V((n+1)T)

φ1

φ2

T
nT (n+1)T

φ1

φ2

T=TCLKDefine

For TCLK<TSIG 

Considerable change in V(t) in clock period 



Switched-Capacitor Filter Issues 
What if TCLK is not much-much smaller than TSIG? 

For TCLK <TSIG 

TCLK

nTCLK (n+1)TCLK

V(nT)

V((n+1)T)

φ1

φ2

T
nT (n+1)T

φ1

φ2

T=TCLKDefine

VOUT
VIN

C1

C

φ1 φ2

QC

   


 c
0 0

Q
V nT+T V nT +

C

but -Qc is the charge on C1 at the time φ1 opens  

- Qc ; C1VIN(nT+T/2)  

\ VOUT(nT+T)=VOUT(nT)-(C1/C)VIN(nT+T/2) 

Due to input S/H, VIN constant over periods of length T 
thus, assume VIN(nT+T/2) ;VIN(nT) 
So obtain 

VOUT(nT+T)=VOUT(nT)-(C1/C)VIN(nT) 

Assume input S/H is present 



How does this analysis differ from what we did 

earlier? 



Switched-Capacitor Filter Issues 
What if TCLK is not much-much smaller than TSIG? 

VOUT
VIN

C1

C

φ1 φ2

VOUT(nT+T)=VOUT(nT)-(C1/C)VIN(nT) 

for any TCLK, characterized in time domain by difference equation  

This can be characterized in the discrete-time frequency domain by transfer  

function obtained by taking z-transform of the difference equation 

 

C
1

C

z-1
H z =-

Assume input S/H is present 

zVOUT(z)=VOUT(z)-(C1/C)VIN(z) 

This is a standard integrator transfer function in the z-domain (but not unique) 

Note pole at z=1 



Switched-Capacitor Filter Issues 
What if TCLK is not much-much smaller than TSIG? 

 

m i
i

i=0
n i

i
i=0

a z

b z
H z  = 





Claim:  The transfer function of any Switched-Capacitor 

Filter is a rational fraction in z with all coefficients in both 

the numerator and denominator determined totally by 

capacitor ratios 



What is really required for building a filter that has high-

performance features? 
C

R

VIN

VOUT

Frequency domain:  

 
1

T s = -
RCs

Time domain:  

Transfer function 

Differential Equation 

     
0

0
1 t

OUT OUT IN
t

V t V t V d
RC

   

• Accurate control of polynomial coefficients in transfer function or accurate control 

 of coefficients in the differential equation 

• Absence of over-ordering terms due to parasitics 

Consider an integrator: 



What is really required for building a filter that has high-

performance features? 

C

R

VIN

VOUT

Frequency domain:  

 
1

T s = -
RCs

Time domain:  

Transfer function 

Differential Equation 

     
0

0
1 t

OUT OUT IN
t

V t V t V d
RC

   

• Accurate control of polynomial coefficients in transfer function or accurate control 

of coefficients in the differential/difference equation needed for good filter performance 

• Absence of over-ordering terms due to parasitics 

VOUT
VIN

C1

C

φ1 φ2

 

C
1

C

z-1
H z =-

VOUT(nT+T)=VOUT(nT)-(C1/C)VIN(nT) 

Difference Equation 

Consider continuous-time and discrete-time integrators: 



Switched-Capacitor Filter Issues 

VOUT
VIN

C1

C

φ1 φ2

Switched-capacitor circuits have potential for good accuracy and 

attractive area irrespective of how TCLK relates to TSIG 

 

But good layout techniques and appropriate area need to be allocated to  

realize this potential ! 

 

m i
i

i=0
n i

i
i=0

a z

b z
H z  = 





Transfer function of any SC filter of form: 



Switched-Capacitor Integrators 

VOUT
VIN

C1

C

φ1 φ2

VOUT(nT+T)=VOUT(nT)-(C1/C)VIN(nT) 

 

C
1

C

z-1
H z = -

Sensitive to parasitic capacitances 



Switched-Capacitor Integrators 

VOUT
VIN

C1

C

φ1 φ2

Summing Inputs 

VOUT

C
VIN1

C1

φ1 φ2

VIN2

C2

φ1 φ2

VIN3

C3

φ1 φ2

Sensitive to parasitic capacitances 



Switched-Capacitor Integrators 

VOUT
VIN

C1

C

φ1 φ2

Summing Inputs and Lossy 

C3

φ1φ2

VOUT

C

VIN2

C1

φ1 φ2

VIN1

C1

φ1 φ2

Sensitive to parasitic capacitances 



Switched-Capacitor Integrators 

VOUT
VIN

C1

C

φ1 φ2

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A

1
VOUT

VIN

C1

C

φ1

φ2
φ2

φ1 A

Consider the following two SC circuits 

Still have two capacitors but twice as many switches ! 

But switches can be pretty small ! 



Switched-Capacitor Integrators 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A

Consider the first SC circuit 

T

nT (n+1)T

φ1

φ2

TNON

During phase Φ1, capacitor VIN is charged up to VIN(nT) 

Assume input S/H 

During phase Φ2, this charge is transferred to C and increasing VOUT 

     1
OUT OUT IN

C
V nT+T  = V nT  + V nT

C

Serves as a non-inverting integrator 

 

C
1

C

z-1
H z =



Switched-Capacitor Integrators 
Consider the second SC circuit 

T

nT (n+1)T

φ1

φ2

TNON

During phase Φ1, capacitor VIN  charges up to VIN(nT) 

Assume input S/H 

While charge is flowing into C1, it is also flowing into C thus decreasing VOUT 

     1
OUT OUT IN

C
V nT+T  = V nT  - V nT+T

C

Serves as an inverting integrator 

1
VOUT

VIN

C1

C

φ1

φ2
φ2

φ1 A

Prior to the start of phase Φ1, the capacitor C1 was discharged by Φ2 

 

C
1

C

z-1

z
H z =

Since  1jωTz=e
z



Switched-Capacitor Integrators 

Stray-Insensitive Properties 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A

CGD does not affect gain of integrator 

CGCHANNEL doe not affect gain of integrator if switch not too fast 

Drain and Source Parasitic Capacitors shown in purple 



Switched-Capacitor Integrators 

VOUT
VIN

C1

C

φ1 φ2

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A

1
VOUT

VIN

C1

C

φ1

φ2
φ2

φ1 A

Stray-Insensitive Noninverting 

Stray-Insensitive Inverting 



Switched-Capacitor Integrators 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A

1
VOUT

VIN

C1

C

φ1

φ2
φ2

φ1 A

Stray-Insensitive SC Integrators 

C1φ1

φ2

φ2

φ1

C1φ1

φ2
φ2

φ1

“Resistor Blocks” 

• Resistor blocks can be repeated and combined to provide summing   

inverting or noninverting inputs 

• Resistor block can be placed in FB path to form lossy SC integrator 



Switched-Capacitor Integrators 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A 1
VOUT

VIN

C1

C

φ1

φ2
φ2

φ1 A

Stray-Insensitive SC Integrators 

Many different SC filter structures have been proposed 

But most that are actually used are based upon these two circuits with 

the summing inputs or loss added as needed 



Switched-Capacitor Integrators 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A
1

VOUT
VIN

C1

C

φ1

φ2
φ2

φ1 A

Effects of Op Amp limitations 

Can be shown that for a given band-edge, the GB requirements for the SC circuit 

are more relaxed than what is required for the corresponding Active RC integrator 

C

R

VIN

VOUT



Switched-Capacitor Integrators 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A
1

VOUT
VIN

C1

C

φ1

φ2
φ2

φ1 A

Switched-capacitor filters are characterized in the z-domain 

  

SC filters have continuous-amplitude inputs but outputs valid only at discrete times 

 

Digital filters implemented with ADC/DAC approach have discrete amplitude and 

discrete time 

 

What effects does the discrete-time property of a SC filter have on the filter 

performance? 



End of Lecture 27 
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Lecture 28 

Integrator Design 

Alaising in SC Circuits 

Elimination of redundant switches 

Switched Resistor  Integrators 



The SC integrator 

C

VIN

VOUT

C1

φ1 φ2

1
0eq CLK

C
I = f

C

 
  

VOUT
VIN

C1

C

φ1 φ2

Cd1
Cs1

CT1

Cd2 Cs2

CBc CTc

CB1

• Parasitic capacitors of THIS SC integrator limit performance 

• Other SC integrators (discussed later) offer same benefits but are not 

   affected by parasitic capacitors 

C1EQ=C1+Cs1+Cd2+CT1 

Parasitic capacitors Cs1+Cd2+CT1 difficult to accurately match 

Observe this circuit has considerable parasitics 

Review from last time 



Switched-Capacitor Filter Issues 
What if TCLK is not much-much smaller than TSIG? 

 

m i
i

i=0
n i

i
i=0

a z

b z
H z  = 





Claim:  The transfer function of any Switched-Capacitor 

Filter is a rational fraction in z with all coefficients in both 

the numerator and denominator determined totally by 

capacitor ratios 

Review from last time 



What is really required for building a filter that has high-

performance features? 

C

R

VIN

VOUT

Frequency domain:  

 
1

T s = -
RCs

Time domain:  

Transfer function 

Differential Equation 

     
0

0
1 t

OUT OUT IN
t

V t V t V d
RC

   

• Accurate control of polynomial coefficients in transfer function or accurate control 

of coefficients in the differential/difference equation needed for good filter performance 

• Absence of over-ordering terms due to parasitics 

VOUT
VIN

C1

C

φ1 φ2

 

C
1

C

z-1
H z =-

VOUT(nT+T)=VOUT(nT)-(C1/C)VIN(nT) 

Difference Equation 

Consider continuous-time and discrete-time integrators: 

Review from last time 



Switched-Capacitor Filter Issues 

VOUT
VIN

C1

C

φ1 φ2

Switched-capacitor circuits have potential for good accuracy and 

attractive area irrespective of how TCLK relates to TSIG 

 

But good layout techniques and appropriate area need to be allocated to  

realize this potential ! 

 

m i
i

i=0
n i

i
i=0

a z

b z
H z  = 





Transfer function of any SC filter of form: 

Review from last time 



Switched-Capacitor Integrators 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A 1
VOUT

VIN

C1

C

φ1

φ2
φ2

φ1 A

Stray-Insensitive SC Integrators 

Many different SC filter structures have been proposed 

But most that are actually used are based upon these two circuits with 

the summing inputs or loss added as needed 

Review from last time 



Switched-Capacitor Integrators 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A
1

VOUT
VIN

C1

C

φ1

φ2
φ2

φ1 A

Effects of Op Amp limitations 

Can be shown that for a given band-edge, the GB requirements for the SC circuit 

are more relaxed than what is required for the corresponding Active RC integrator 

C

R

VIN

VOUT

Review from last time 



Switched-Capacitor Integrators 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A
1

VOUT
VIN

C1

C

φ1

φ2
φ2

φ1 A

Switched-capacitor filters are characterized in the z-domain 

  

SC filters have continuous-amplitude inputs but outputs valid only at discrete times 

 

Digital filters implemented with ADC/DAC approach have discrete amplitude and 

discrete time 

 

What effects does the discrete-time property of a SC filter have on the filter 

performance? 

Review from last time 



sin(ωt)

sin(2ωt)

sin(3ωt)

sin(4ωt)

Consider a signal and harmonically-related signals 

Look at the second 

harmonically-related signal 



Consider a signal and harmonically-related signals 

Sample with rising edges on the following clock (this could be Φ1 for a SC filter) 



Consider a signal and harmonically-related signals 

Sample with rising edges on the following clock (this could be Φ1 for a SC filter) 

Now overlay the fundamental frequency signal on this sampled waveform 

At these sample points,  the samples of the two signals are indistinguishable  

A similar observation will be observed if any of the other harmonically 

related signals are overlayed 

A switched-capacitor filter can not distinguish between a fundamental and the 

harmonics if the ratio of the clock frequency to the signal frequency is too low 



Consider a signal and harmonically-related signals 

1
VOUT

VIN

C1

C

φ1

φ2

φ2

φ1

A

This aliases high frequency inputs (signals, noise, or even distortion) down 

to lower frequencies where it is indistinguishable from the lower frequency 

inputs 

How can this problem be resolved? 



Anti-aliasing filter often required to limit frequency content at input to SC filters 

Does this completely negate the benefits of the SC filter? 

 INV t  INFILTV t  OUTV kT
Continuous-Time 

Filter
Discrete-Time 

Filter

Anti-aliasing Filter
Switched-

Capacitor Filter

• Anti-aliasing filter not needed if input is already band limited 

• Anti-aliasing filter often continuous-time and occasionally off-chip 

• Linearity requirements of anti-aliasing filter in passband are high 

• Good passband linearity can be practically attained 

• Transition sharpness and accuracy typically very relaxed in the anti-aliasing filter 

• Passive first-order anti-aliasing filter often adequate 



Anti-aliasing filter often required to limit frequency content at input to SC filters 

What are the band-edge requirements for the anti-aliasing filter? 

 INV t  INFILTV t  OUTV kT
Continuous-Time 

Filter
Discrete-Time 

Filter

Anti-aliasing Filter
Switched-

Capacitor Filter

Band edge of filter should limit all signals (and noise) at frequencies that are 

not wanted 

What are SC clock requirements? 

fCLK must be at least twice the frequency of the signals that are to be passed 

by the SC filter  



Anti-aliasing filter often required to limit frequency content at input to SC filters 

 INV t  INFILTV t  OUTV kT
Continuous-Time 

Filter
Discrete-Time 

Filter

Anti-aliasing Filter
Switched-

Capacitor Filter

CLKf
2

CLKf

Signal Band Alias Frequencies 

f

Antialiasing Filter 

CLKf
2

CLKf f
BEf

Must only attenuate at frequencies where energy is above an unacceptable level in the alias band 



Anti-aliasing filter often required to limit frequency content at input to SC filters 

 INV t  INFILTV t  OUTV kT
Continuous-Time 

Filter
Discrete-Time 

Filter

Anti-aliasing Filter
Switched-

Capacitor Filter

CLKf
2

CLKf

Signal Band Alias Frequencies 

f

relaxed anti-aliasing filter requirements 

CLKf
f

BEf
2

CLKf

CLKf

Signal Band

Alias Frequencies 

f
2

CLKf



Anti-aliasing filter often required to limit frequency content at input to SC filters 

 INV t  INFILTV t  OUTV kT
Continuous-Time 

Filter
Discrete-Time 

Filter

Anti-aliasing Filter
Switched-

Capacitor Filter

CLKf

Signal Band

Alias Frequencies 

f
2

CLKf

Why not just make the clock frequency >> signal band edge ? 

1
POLES CLK

1 C
f f

CRC

Recall in the continuous-time RC-SC counterparts 

Since fPOLES will be in the signal band (that is why we are building a filter) large 

fCLK will require large capacitor ratios if fCLK>>fPOLES 

• Large capacitor ratios not attractive on silicon (area and matching issues) 

• High fCLK creates need for high GB in the op amps (area,power, and noise increase) 

Often fCLK/fPOLES in the 10:1 range proves useful (20:1 to 5:1 typical) 



VIN1

C1φ1

φ2

φ2

φ1

Noninverting Input

VIN2

C1φ1

φ2

φ2

φ1

Noninverting Input

VIN1

C1φ1

φ2

Noninverting Input

VIN2

C1φ1

φ2

φ2

φ1

Noninverting Input

Elimination of Redundant Switches  

Redundant Switches 

Switched-Capacitor Input 

with Redundant Switches 

Switched-Capacitor Input with 

Redundant Switches Removed 

Although developed from the concept of SC-resistor equivalence, SC circuits 

often have no Resistor-Capacitor equivalents 



VOUTVIN

C1

C

φ1

φ2

φ2

φ1

Noninverting Input

C3φ1

φ2
φ2

φ1

VOUTVIN

C1φ1

φ2

φ2

φ1

Noninverting Input

C3φ1

φ2
φ2

φ1

Elimination of the Integration Capacitor 

What happens if the integration capacitor is eliminated? 

Serves as a SC amplifier with gain of AV=C1/C2 

SC amplifiers and SC summing amplifiers are widely used in filter and 

non-filter applications 



Switched Capacitor Amplifiers 

VOUT
VIN

C1φ1

φ2

C2

φ2

VOUT
VIN

C1φ1

φ2

φ2

C2φ1

• Summing, Differencing, Inverting, and Noninverting SC Amplifiers Widely Used 

• Significant reduction in switches from what we started with by eliminating C in   

   SC integrator 

• Must be stray insensitive in most applications 

• Outputs valid only during one phase 



Switched Capacitor Amplifiers 
VOUT

VIN

C1φ1

φ2

C2

φ2

φ1

φ1A

Input 

Output 



Voltage Mode Integrators 

• Active RC     (Feedback-based) 

• MOSFET-C   (Feedback-based) 

• OTA-C 

• TA-C 

• Switched Capacitor 

• Switched Resistor 

Sometimes termed “current mode” 

Will discuss later 

• Other Structures 



Switched-Resistor Voltage Mode  Integrators 

CX

M1

P  F 

F
ilt
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r
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R
F

E
T

Observe that if a triode-region MOS device  is switched between a precharge circuit and a filter 

circuit (or integrator) and VGS is held constant,   It will behave as a resistor while in the filter circuit 

CX

M1

P  F  F
ilt

e
r

R
F

E
T

CX

M1

P F 

F
ilt

e
r

P
re

c
h

a
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e

Observe that if two such circuits are switched between a precharge circuit and a filter circuit (or 

integrator) and VGS is held constant,   It will behave as a resistor in the filter circuit at all times  

 FET
OX GS T

L
R

μC W V -V



Switched-Resistor Voltage Mode  Integrators 

VIN VOUT
RFET

CCX

M1

CX

M1

F 
F 

F F 

R
F

E
T

CREF

Pretune Circuit

fREF

Switched-resistor integrator 

• Clock frequency need only be fast enough to prevent droop on CX 

• Minor overlap or non-overlap of clock plays minimal role in integrator performance 

• Switched-resistors can be used for integrator resistor or to replace all resistors in  

    any filter 

• Pretune circuit can accurately establish RFETCREF product proportional to fREF 

• RFETC product is given by                                                                    and is thus  

    accurately controlled 
 REF

FET FET FET REF
REF REF

C C
R C = R C  = R C

C C

 
  
 



Switched-Resistor Voltage Mode  Integrators 

CX
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There are some modest nonlinearities in this MOSFET when operating in the triode region 

• Significant improvement in linearity by cross-coupling a pair of triode region resistors 

• Perfectly cancels nonlinearities if square law model is valid for M1 and M2 

• Only modest additional complexity in the Precharge circuit 
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re
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T



Switched-Resistor Voltage Mode  Integrators 

Integrator Output with Perfect 

Complimentary Clocks

Integrator Output with 

Nonoverlapping  Clocks

Integrator Output with 

Overlapping  Clocks

P 

F 

F 

P 

• Aberrations are very small, occur very infrequently, and are further filtered 

• Play almost no role on performance of integrator or filter 



Switched-Resistor Voltage Mode  Integrators 

Switched-resistor integrator 

• Accurate CRFET products is possible 

• Area reduced compared to Active RC structure because RFET small 

• Single pretune circuit can be used to “calibrate” large number of resistors 

• Clock frequency not fast and not critical (but accuracy of fREF is important) 

• Since resistors are memoryless elements, no transients associated with switching 

• Since filter is a feedback structure, speed limited by BW of op amp 
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Pretune Circuit
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Lecture 29 

Integrator Design 

Current-Mode  Integrators 

Metrics for comparing integrators 



Anti-aliasing filter often required to limit frequency content at input to SC filters 

 INV t  INFILTV t  OUTV kT
Continuous-Time 

Filter
Discrete-Time 

Filter

Anti-aliasing Filter
Switched-

Capacitor Filter

CLKf

Signal Band

Alias Frequencies 

f
2

CLKf

Why not just make the clock frequency >> signal band edge ? 

1
POLES CLK

1 C
f f

CRC

Recall in the continuous-time RC-SC counterparts 

Since fPOLES will be in the signal band (that is why we are building a filter) large 

fCLK will require large capacitor ratios if fCLK>>fPOLES 

• Large capacitor ratios not attractive on silicon (area and matching issues) 

• High fCLK creates need for high GB in the op amps (area,power, and noise increase) 

Often fCLK/fPOLES in the 10:1 range proves useful (20:1 to 5:1 typical) 

Review from last time 
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Noninverting Input
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Noninverting Input
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φ2

φ2
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Noninverting Input

Elimination of Redundant Switches  

Redundant Switches 

Switched-Capacitor Input 

with Redundant Switches 

Switched-Capacitor Input with 

Redundant Switches Removed 

Although developed from the concept of SC-resistor equivalence, SC circuits 

often have no Resistor-Capacitor equivalents 

Review from last time 



Switched Capacitor Amplifiers 

VOUT
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C1φ1

φ2

C2

φ2

VOUT
VIN

C1φ1

φ2

φ2

C2φ1

• Summing, Differencing, Inverting, and Noninverting SC Amplifiers Widely Used 

• Significant reduction in switches from what we started with by eliminating C in 

SC integrator 

• Must be stray insensitive in most applications 

Review from last time 



Switched-Resistor Voltage Mode  Integrators 

CX
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There are some modest nonlinearities in this MOSFET when operating in the triode region 

• Significant improvement in linearity by cross-coupling a pair of triode region resistors 

• Perfectly cancels nonlinearities if square law model is valid for M1 and M2 

• Only modest additional complexity in the Precharge circuit 

CX

M1

P  F 

CX

M2

P
re
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h
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e

F
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R
F

E
T

Review from last time 



Switched-Resistor Voltage Mode  Integrators 

Integrator Output with Perfect 

Complimentary Clocks

Integrator Output with 

Nonoverlapping  Clocks

Integrator Output with 

Overlapping  Clocks

P 

F 

F 

P 

• Aberrations are very small, occur very infrequently, and are further filtered 

• Play almost no role on performance of integrator or filter 

Review from last time 



Switched-Resistor Voltage Mode  Integrators 

Switched-resistor integrator 

• Accurate CRFET products is possible 

• Area reduced compared to Active RC structure because RFET small 

• Single pretune circuit can be used to “calibrate” large number of resistors 

• Clock frequency not fast and not critical (but accuracy of fREF is important) 

• Since resistors are memoryless elements, no transients associated with switching 

• Since filter is a feedback structure, speed limited by BW of op amp 
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Pretune Circuit
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Review from last time 



Voltage Mode Integrators 

• Active RC     (Feedback-based) 

• MOSFET-C   (Feedback-based) 

• OTA-C 

• TA-C 

• Switched Capacitor 

• Switched Resistor 

Sometimes termed “current mode” 

Will discuss later 

• Other Structures 
Have introduced a basic voltage-mode integrators in each of these approaches 

Performance of all are limited by variability or Op Amp BW 

All of these structures have applications where they are useful 



How can integrator performance be improved? 

• Better op amps 

• Better Integrator Architectures 

How can the performance of integrator 

structures be compared? 

Need metric for comparing integrator performance 



Are there other integrators in the basic 

classes that have been considered? 

VIN

VOUTR

C

VIN

R

C

 V
1

A s = - 
RCs

 V
1

A s = - 
RCs

High-Q Inverting 

 V
1

A s = - 
RCs

VIN

VOUTR

C

Zero Sensitivity Inverting 

 V
1

A s = - 
RCs

VIN

VOUTR

C

Cascaded Inverting 

Miller Inverting 

VIN

VOUT
R

C

Zero Second Derivative  Inverting 

 V
1

A s = - 
RCs

VIN

VOUT
R

C

RB

RA

Zero Second Derivative  Inverting 

 V
1

A s = - 
RCs



Are there other integrators in the basic 

classes that have been considered? 
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Are there other integrators in the basic 

classes that have been considered? 
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De Boo Integrator  
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If resistors sized so that  

If sizing constraints are satisfied, behaves as a 

grounded constant-current source 

Consider the Howland Current Source 



DeBoo Integrator 
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Observe that if a current source drives 

a grounded capacitor, then the nodal voltage 

on the capacitor is given by 

X X
1

V =I
sC

Thus, if we could make IX proportional to VIN,  the 

voltage on the capacitor would be a weighted 

Integral of VIN 



De Boo Integrator 
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If R1=R11 and R2=R22 



De Boo Integrator 
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Many different integrator architectures that ideally 

provide the same gain  

 

Similar observations can be made for other classes of 

integrators 

How can the performance of an integrator be 

characterized and how can integrators be compared?  



How can the performance of an integrator be 

characterized and how can integrators be compared?  

  0
V

I
A s =  

s

Consider Ideal Integrator Gain Function 

• Magnitude of the gain at I0=1  

• Phase of integrator always 90o 

• Gain decreases with 1/ω  

  0
V

I
A jω =  

jω

Key property of ideal integrator is a phase shift of 90o at frequencies around I0! 

Ideal Integrator 

Im

Re

Key characteristics of an ideal integrator: 

Are any of these properties more critical than others? 

Consider a nonideal integrator Gain Function 

   01
V OO

I
A s =  A s

s+





Im

Re

Nonideal Integrator 

In many applications: 



How can the performance of an integrator be 

characterized and how can integrators be compared?  

Is stability of an integrator of concern? 

Ideal Integrator 
Im

Re

• Ideal integrator is not stable 

• Integrator function is inherently ill-conditioned 

• Integrator is almost never used open-loop 

• Stability of integrator not of concern, stability of filter using integrator is of concern 

• Some integrators may cause unstable filters, others may result in stable filters 

 



How can the performance of an integrator be 

characterized and how can integrators be compared?  

Express AV(jω) as 

where R(ω) and X(ω) are real and represent the real and imaginary parts of 

the denominator respectively 

 
   V

1
A jω =

R ω +jX ω



Ideally R(ω)=0 

Definition:  The Integrator Q factor is the ratio of the imaginary part of the 

denominator to the real part of the denominator 
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Typically  most interested in QINT at the nominal unity gain frequency  

of the integrator 



How can the performance of an integrator be 

characterized and how can integrators be compared?  

Express AV(jω) as 
 

   V
1

I jω =
R ω +jX ω



For Phase Lag Integrators, R(ω) is negative 

For Phase Lead integrators, R(ω) is positive 
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Lead/Lag Characteristics for Inverting Integrators 



How can the performance of an integrator be 

characterized and how can integrators be compared?  

 
   V

1
I jω =

R ω +jX ω

For Phase Lag Integrators, R(ω) and X(ω) have opposite signs.   For Phase Lead integrators, 

R(ω) and X(ω) have the same sign. 
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Lead/Lag Characteristics for Inverting Integrators 

Lead/Lag Characteristics for Noninverting Integrators 
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   V

-1
I jω =

R ω +jX ω

For Phase Lag Integrators, R(ω) and X(ω) have opposite signs.   For Phase Lead integrators, 

R(ω) and X(ω) have the same sign. 

Phase shift ideally 90o 

Phase shift ideally 270o 



Integrator Q Factor 

Consider Miller Inverting Integrator 
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Normalizing by ωn= ωRC and τn = τ/RC = I0n/GB 

Observe this integrator has excess phase shift (more than 90o in the denominator) at all 

frequencies 
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Integrator Q Factor  
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Consider Miller Inverting Integrator 

Since the phase is less than 90o, the Miller Inverting Integrator is a Phase Lag 

Integrator and QINT is negative 
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Integrator Pole Locations 

Consider Miller Inverting Integrator 
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Is the integrator Q factors simply a  metric or does it 

have some other significance? 
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It can be shown that the pole Q for the TT Biquad can be approximated by 

where QINT1 and QINT2 are evaluated at ω=ωo 



Is the integrator Q factors simply a  metric or does it 

have some other significance? 
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It can be shown that the pole Q for the TT Biquad can be approximated by 

Similar expressions for other second-order biquads 

Observe that the integrator Q factors adversely affect the pole Q of the filter 

Observe that if QINT1 and QINT2 are of opposite signs and equal magnitudes, 

nonideal effects of integrator can cancel 



What can be done to correct the 

phase problems of an integrator? 
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One thing that can help the Miller Integrator  is phase-lead compensation 

RX and CX will be small components 
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Rx and Cx will add phase-lead by introduction of a zero 



Integrator Q Factor 

Consider Miller Noninverting Integrator 
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Observe this integrator has excess phase shift (more than 90o in the denominator) at all 

frequencies 

Note:   The Miller Noninverting Integrator has a modestly poorer QINT than the 

Miller Inverting Integrator 



Example: 

If f0=10KHz, GB=1MHz, QNOM=10, estimate the pole Q for the Tow-Thomas 

Biquad if the Miller Integrator and the Miller Noninverting Integrators are used. 

Also determine the relative degradation in performance due to each of the integrators.  
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Example: 

If f0=10KHz, GB=1MHz, QNOM=10, estimate the pole Q for the Tow-Thomas 

Biquad if the Miller Integrator and the Miller Noninverting Integrators are used. 

Also determine the relative degradation in performance due to each of the integrators.  
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Note that 3 times as much of the shift is due to the noninverting integrator 

as is due to the inverting integrator! 

Note the nonideal integrators cause about a 75% shift in QP 

Similar effects of the integrators will be seen on other filter structures 



Example: 

If f0=10KHz, GB=1MHz, QNOM=10, estimate the pole Q for the Tow-Thomas 

Biquad if the Miller Integrator and the Miller Noninverting Integrators are used. 

Also determine the relative degradation in performance due to each of the integrators.  
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How can the problem be solved? 

1. Compensate Integrator 

2. Use better integrators 

3. Use phase-lead and phase/lag pairs 



Example: 

If f0=10KHz, GB=1MHz, QNOM=10, estimate the pole Q for the Tow-Thomas 

Biquad if the Miller Integrator and the Miller Noninverting Integrators are used. 

Also determine the relative degradation in performance due to each of the integrators.  
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How can the problem be solved? 
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Solving, obtain CRx=4/GB 

Useful for hand calibration but not practical for volume production because of  

variability in components 



What are the integrator Q factors for other 

integrators that have been considered? 
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(stability problems) 



What are the integrator Q factors for other 

integrators that have been considered?  
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What are the integrator Q factors for other 

integrators that have been considered?  
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Improving Integrator Performance: 

1. Compensate Integrator 

2. Use better integrators 

3. Use phase-lead and phase/lag pairs 

• These methods all provide some improvements in integrator performance  

 

• But both magnitude and phase of an integrator are important so focusing only 

on integrator Q factor only may only improve performance to a certain level 

 

• In higher-order integrator-based filters, the linearity in 1/ω of the integrator 

gain is also important.  The integrator magnitude and Q factor at ω0 ignore 

the frequency nonlinearity that may occur in the 1/ω dependence 

 

• There is little in the literature on improving the performance of integrated 

integrators within a basic class.   At high frequencies where the active device 

performance degrades, particularly in finer-feature processes, there may be 

some benefits that can be derived from architectural modifications along the 

line of those discussed in this lecture 
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Integrator Design 

Current-Mode  Integrators 

s-domian to z-domain mappings 



How can integrator performance be improved? 

• Better op amps 

• Better Integrator Architectures 

How can the performance of integrator 

structures be compared? 

Need metric for comparing integrator performance 

Review from last time 



Are there other integrators in the basic 

classes that have been considered? 
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Review from last time 



How can the performance of an integrator be 

characterized and how can integrators be compared?  

Express AV(jω) as 

where R(ω) and X(ω) are real and represent the real and imaginary parts of 

the denominator respectively 

 
   V

1
A jω =

R ω +jX ω



Ideally R(ω)=0 

Definition:  The Integrator Q factor is the ratio of the imaginary part of the 

denominator to the real part of the denominator 
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Typically  most interested in QINT at the nominal unity gain frequency  

of the integrator 

Review from last time 



How can the performance of an integrator be 

characterized and how can integrators be compared?  

 
   V

1
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For Phase Lag Integrators, R(ω) and X(ω) have opposite signs.   For Phase Lead integrators, 

R(ω) and X(ω) have the same sign. 
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R ω +jX ω

For Phase Lag Integrators, R(ω) and X(ω) have opposite signs.   For Phase Lead integrators, 

R(ω) and X(ω) have the same sign. 

Phase shift ideally 90o 

Phase shift ideally 270o 

Review from last time 



Is the integrator Q factors simply a  metric or does it 

have some other significance? 
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It can be shown that the pole Q for the TT Biquad can be approximated by 

Similar expressions for other second-order biquads 

Observe that the integrator Q factors adversely affect the pole Q of the filter 

Observe that if QINT1 and QINT2 are of opposite signs and equal magnitudes, 

nonideal effects of integrator can cancel 

Review from last time 



What are the integrator Q factors for other 

integrators that have been considered?  
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Review from last time 



Integrator Types 
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Selected Current Mode, Transresistance Mode, and Transconductance Mode Integrators 



Current-Mode Filters 
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Basic Concepts of Benefits of Current-Mode Filters: 

• Large voltage swings difficult to maintain in integrated processes because 

of linearity concerns 

• Large voltage swings slow a circuit down because of time required to 

charge capacitors 

• Voltage swings can be very small when currents change 

• Current swings are not inherently limited in integrated circuits (only voltage 

swings) 

• With low voltage swings, current-mode circuits should dissipate little power 



Current-Mode Filters 
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Concept of Current-Mode Filters is Somewhat Recent:  

     
Key paper that generated interest in current-mode filters  (ISCAS 1989): 

This paper is one of the most significant contributions that has ever come from ISCAS 



Current-Mode Filters 
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Current-Mode Filters 

1 Introduction 

Current-mode circuits have been proven to offer advantages over their 

voltage-mode counterparts [1, 2]. They possess wider bandwidth, greater 

linearity and wider dynamic range. Since the dynamic range of the 

analogue circuits using low-voltage power supplies will be low, this 

problem can be solved by employing current-mode operation. 

Proc. IEE Dec 2006: 

1. INTRODUCTION 

It is well known that current-mode circuits have been receiving 

significant attention owing to its advantage over the voltage-mode 

counterpart, particularly for higher frequency of operation and 

simpler filtering structure [1]. 

The Conventional Wisdom: 

Proc. SICE-ICASE, Oct. 2006  



Current-Mode Filters 

JSC April 1998: 

The Conventional Wisdom: 

CAS  June  1992  
  

“Current-mode signal processing is a very attractive approach due to the 

simplicity in implementing operations such as … and the potential to 

operate at higher signal bandwidths than their voltage mode analogues” 

…  “Some voltage-mode filter architectures using transconductance 

amplifiers and capacitors (TAC) have the drawback that  …” 

  

 

“… current-mode functions exhibit higher frequency potential, simpler 

architectures, and lower supply voltage capabilities than their voltage-

mode counterparts.”  

 



Current-Mode Filters 

ISCAS 1993: 

The Conventional Wisdom: 

“In this paper we propose a fully balanced high frequency current-

mode integrator for low voltage high frequency filters.  Our use of the 

term current mode comes from the use of current amplifiers as the 

basic building block for signal processing circuits.  This fully 

differential integrator offers significant improvement even over 

recently introduced circuit with respect to accuracy, high frequency 

response, linearity and power supply requirements.  Furthermore, it is 

well suited to standard digital based CMOS processes.” 

 



Current-Mode Filters 

The Conventional Wisdom: 

Two key publications where benefits of the current-mode circuits are often 

referenced: 

All current-mode frequency selective circuits  GW Roberts, AS 

Sedra - Electronics Letters,  June 1989 -  pp. 759-761 Cited by 161    

 

“To make greatest use of the available transistor bandwidth fT , and operate at low 

voltage supply levels, it has become apparent that analogue signal processing 

can greatly benefit from processing current signals rather than voltage signals.  

Besides this, it is well known by electronic circuit designers that the mathematical 

operations of adding, subtracting or multiplying signals represented by currents 

are simpler to perform than when they are represented by voltages. This also 

means that the resulting circuits are simpler and require less silicon area.” 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31881
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31881
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31881
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31881
http://scholar.google.com/scholar?num=100&hl=en&lr=&cites=10863390984668700995


Current-Mode Filters 

The Conventional Wisdom: 

Two key publications where benefits of the current-mode circuits are often 

referenced: 

Recent developments in current conveyors and current-mode 

circuits  B Wilson - Circuits, Devices and Systems, IEE 

Proceedings G, pp. 63-77, Apr. 1990 Cited by 203 

“The use of current rather than voltage as the active parameter can result in higher 

usable gain, accuracy and bandwidth due to reduced voltage excursion at sensitive 

nodes. A current-mode approach is not just restricted to current processing, but 

also offers certain important advantages when interfaced to voltage-mode circuits.” 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://scholar.google.com/scholar?num=100&hl=en&lr=&cites=2145049747873587679
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– Current-Mode circuits operate at higher-

frequencies than voltage-mode counterparts 

– Current-Mode circuits operate at lower supply 

voltages and lower power levels than voltage-

mode counterparts 

– Current-Mode circuits are simpler than 

voltage-mode counterparts 

– Current-Mode circuits offer better linearity 

than voltage-mode counterparts 

The Conventional Wisdom: 

This represents four really significant benefits of 

current-mode circuits! 



Some Current-Mode Integrators 
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Inverting Noninverting 

• Summing inputs really easy to obtain 

• Loss is easy to add 

• Same component count as voltage-mode integrators 

• Some argue that since only interested in currents, can operate at lower voltages 

IIN
C

R

IOUT

R

IOUT

R1 R1

C
IIN



Some Current-Mode Integrators 

Current-Mode Inverting Amplifier 
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Some Current-Mode Integrators 
OTA-C 
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Inverting 
Noninverting 

• Summing inputs really easy to obtain 

• Loss is easy to add 

• Same component count as voltage-mode integrators 

• Many argue that since only interested in currents, can operate at lower voltages 

  and higher frequencies 
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Some Current-Mode Integrators 
TA-C 
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Inverting Noninverting 

• Summing inputs really easy to obtain 

• Loss is easy to add 

• Same component count as voltage-mode integrators 

• Many argue that since only interested in currents, can operate at lower voltages 

  and higher frequencies 
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Some Current-Mode Integrators 
Switched-C 

OUT IN
EQ
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Inverting 

• Noninverting input easy to obtain 

• Summing inputs really easy to obtain 

• Loss is easy to add 

• Stray insensitive structures readily available 

• Less component count than voltage-mode integrators because summing input 

requires no additional inputs 

• SC current-mode integrators have not received much attention in the literature  

  (likely because few have observed the equivalence noted above) 

IOUT

C
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 Current-Mode Integrators 

The other basic types of voltage-mode integrators also 

have current-mode counterparts 

• Switched-resistor 

• MOSFET-C 

• “Other” 

IIN
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IIN IOUT

CIIN
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Current-Mode Two Integrator 

Loop 

RARQ R

IOUT
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C
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• Straightforward implementation of the two-integrator loop 

 

• Simple structure 

CM Lossy Integrator CM Integrator CM Amplifier 



Current-Mode Two Integrator 

Loop 
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An Observation: 
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Current-Mode Two Integrator Loop 
RARQ R

IOUT

IIN
C

RA

C R RL

An Observation: 
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C R RL

This circuit is identical to another one with two voltage-mode integrators and 

a voltage-mode amplifier ! 

VM Integrator VM Amplifier 

VM Integrator VM Amplifier 

VM Integrator 



Observation 

• Many papers have appeared that tout the 
performance advantages of current-mode circuits 

• In all of the current-mode papers that this 
instructor has seen, no attempt is made to 
provide a quantitative comparison of the key 
performance features of current-mode circuits 
with voltage-mode counterparts 

• All justifications of the advantages of the current-
mode circuits this instructor has seen are based 
upon qualitative statements 



Observations (cont.) 

• It appears easy to get papers published that have the 
term “current-mode” in the title 

• Over 900 papers have been published in IEEE forums 
alone ! 

• Some of the “current-mode” filters published perform 
better than other “voltage-mode” filters that have been 
published 

• We are still waiting for even one author to quantitatively 
show that current-mode filters offer even one of the 
claimed four advantages over their voltage-mode 
counterparts 

Will return to a discussion of Current-Mode filters later 



Switched-Current Filters 

Basic idea introduced by Hughes and Bird at ISCAS 1989 

Technique introduced directly in the z-domain 



Switched-Current Filters 
Basic idea introduced by Hughes and Bird at ISCAS 1989 

VDD
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IOUT

φ1

M1 M2
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IN 1

OUT

IN SW 1

AI t for φ closed
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If Φ1 is a periodic signal and if IIN is also 

appropriately clocked,  the input/output 

currents of this circuit can be represented 

with the difference equation 

   OUT INI nT  = AI nT-T

“Gain” A  is that of a current mirror 

A can be accurately controlled 

Circuit is small and very fast 

This switched mirror becomes a delay element 

Concept can be extended to implement arbitrary 

difference equation 

Difference equation characterizes filter H(z) 

Need only current mirrors and switches 

Truly a “current-mode” circuit 



Switched-Current Filters 
Basic idea introduced by Hughes and Bird at ISCAS 1989 

VDD

IIN

IOUT

φ1

M1 M2

CP1: :A

   OUT INI nT  = AI nT-T

Potential for accuracy of a SC circuit at both 

low and high frequencies but without the Op 

Amp and large C ratios 

Cp is parasitic gate capacitance on M2 

Very low power dissipation 

A completely new approach to designing filters 

that offers potential for overcoming most of the 

problems plaguing filter designers for decades 

! 

Potential to operate at very low voltages 

Neither capacitor or resistor values needed to 

do filtering! 

Before developing Switch-Current concept, need to review background 

information in s to z domain transformations 
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Current-Mode Filters 
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Basic Concepts of Benefits of Current-Mode Filters: 

• Large voltage swings difficult to maintain in integrated processes because 

of linearity concerns 

• Large voltage swings slow a circuit down because of time required to 

charge capacitors 

• Voltage swings can be very small when currents change 

• Current swings are not inherently limited in integrated circuits (only voltage 

swings) 

• With low voltage swings, current-mode circuits should dissipate little power 

Review from last time 



0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

Years

N
u

m
b

e
r 

o
f 

P
a

p
e

rs

90/91    92/93   94/95   96/97   98/99   00/01   02/03   04/05   06/07   08/09

Current-Mode Filters 
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Current-Mode Filters 

 

– Current-Mode circuits operate at higher-

frequencies than voltage-mode counterparts 

– Current-Mode circuits operate at lower supply 

voltages and lower power levels than voltage-

mode counterparts 

– Current-Mode circuits are simpler than 

voltage-mode counterparts 

– Current-Mode circuits offer better linearity 

than voltage-mode counterparts 

The Conventional Wisdom: 

This represents four really significant benefits of 

current-mode circuits! 

Review from last time 



Some Current-Mode Integrators 
OTA-C 

m
OUT IN

-g
I = I

Cs

 
 
 

m
OUT IN

g
I = I

Cs

 
 
 

Inverting 
Noninverting 

• Summing inputs really easy to obtain 

• Loss is easy to add 

• Same component count as voltage-mode integrators 

• Many argue that since only interested in currents, can operate at lower voltages 

  and higher frequencies 

C
IIN IOUTC

IIN IOUT

Review from last time 



Current-Mode Two Integrator 

Loop 

RARQ R

IOUT

IIN
C

RA

C R RL

• Straightforward implementation of the two-integrator loop 

 

• Simple structure 

CM Lossy Integrator CM Integrator CM Amplifier 

Review from last time 



Current-Mode Two Integrator Loop 
RARQ R

IOUT

IIN
C

RA

C R RL

An Observation: 

RARQ R

IOUT

IIN
C

RA

C R RL

This circuit is identical to another one with two voltage-mode integrators and 

a voltage-mode amplifier ! 

VM Integrator VM Amplifier 

VM Integrator VM Amplifier 

VM Integrator 

Review from last time 



Observation 

• Many papers have appeared that tout the 
performance advantages of current-mode 
circuits 

• In all of the current-mode papers that this 
instructor has seen, no attempt is made to 
provide a quantitative comparison of the 
key performance features of current-mode 
circuits with voltage-mode counterparts 

• All justifications of the advantages of the 
current-mode circuits this instructor has 
seen are based upon qualitative 
statements 

Review from last time 



Observations (cont.) 

• It appears easy to get papers published that have the 
term “current-mode” in the title 

• Over 900 papers have been published in IEEE forums 
alone ! 

• Some of the “current-mode” filters published perform 
better than other “voltage-mode” filters that have been 
published 

• We are still waiting for even one author to quantitatively 
show that current-mode filters offer even one of the 
claimed four advantages over their voltage-mode 
counterparts 

Will return to a discussion of Current-Mode filters later 

Review from last time 



Switched-Current Filters 

Basic idea introduced by Hughes and Bird at ISCAS 1989 

Technique introduced directly in the z-domain 

Review from last time 



Switched-Current Filters 
Basic idea introduced by Hughes and Bird at ISCAS 1989 

VDD

IIN

IOUT

φ1

M1 M2

CP1: :A

 

 

IN 1

OUT

IN SW 1

AI t for φ closed
I =

AI T for φ open





If Φ1 is a periodic signal and if IIN is also 

appropriately clocked,  the input/output 

currents of this circuit can be represented 

with the difference equation 

   OUT INI nT  = AI nT-T

“Gain” A  is that of a current mirror 

A can be accurately controlled 

Circuit is small and very fast 

This switched mirror becomes a delay element 

Concept can be extended to implement arbitrary 

difference equation 

Difference equation characterizes filter H(z) 

Need only current mirrors and switches 

Truly a “current-mode” circuit 

Review from last time 



Switched-Current Filters 
Basic idea introduced by Hughes and Bird at ISCAS 1989 

VDD

IIN

IOUT

φ1

M1 M2

CP1: :A

   OUT INI nT  = AI nT-T

Potential for accuracy of a SC circuit at both 

low and high frequencies but without the Op 

Amp and large C ratios 

Cp is parasitic gate capacitance on M2 

Very low power dissipation 

A completely new approach to designing filters 

that offers potential for overcoming most of the 

problems plaguing filter designers for decades 

! 

Potential to operate at very low voltages 

Neither capacitor or resistor values needed to 

do filtering! 

Before developing Switch-Current concept, need to review background 

information in s to z domain transformations 

Review from last time 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

For a given T(s) would like to obtain a function H(z) or for a given H(z) would like 

to obtain a T(s) such that preserves the magnitude and phase response 

    jωTs=jω z=e
T s H z

Mathematically, would like to obtain the relationship: 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

    jωTs=jω z=e
T s H z

    sTz=e
T s H z

want: 

equivalently, want: 

But if this were to happen, T(s) would not be a rational fraction in s with real coeff. 

Thus, it is impossible to obtain this mapping between T(s) and H(z) 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

    sTz=e
T s H zgoal: 

consider: sTz e

 
0

1

!

sTz = e sT
i

i i





Case 1: 

 
0

1
1

!
z = sT sT

i

i i







z -1
s = 

T
Termed the Forward Euler transformation 

If can’t achieve this goal, would like to map imaginary axis to unit circle and map 

stable filters to stable filters 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

z -1
s = 

T
Forward Euler transformation 

• Doesn’t map imaginary axis in s-plane to unit circle in z-plane 

 

• Doesn’t guarantee stable filter will map to stable filter 

 

• But mapping may give stable filter with good frequency 

response 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

consider: sTz e

 
0

1 1 1

1 1

!

sT

-sT
z = e

e -sT
-sT

i

i i





 


Case 2: 

Termed the Backward Euler transformation 

1

1
z  

sT

1 z-1
 s = 

T z

 
 
 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

Backward Euler transformation 

1 z-1
 s = 

T z

 
 
 

• Doesn’t map imaginary axis in s-plane to unit circle in z-plane 

 

• Does guarantee stable filter will map to stable filter 

 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

consider: sTz e

0

0

1
1

1 !

1 1
!

T
s

2
sT

T
-s

2

T Ts +s
e 2 2z = e

TT -se -s
22

i

i

i

i

i

i









 
 
  
 
 
 





Case 3: 

Termed the Bilinear z transformation 1

2 z-1
 s = 

T z




solving for s, obtain 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

Bilinear z transformation 1

2 z-1
 s = 

T z




• Maps imaginary axis in s-plane to unit circle in z-plane 

(preserves shape, distorts frequency axis) 

 

• Does guarantee stable filter will map to stable filter 

 

• Bilinear z transformation is widely used 

 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?
consider: 

sTz e

1

2 z-1
 s=

T z




z-1
 s= 

Tz
Backward  Euler

Bilinear z 

transform 

z -1
s = 

T
Forward Euler

-1

-1

1 - z
s = 

Tz

-11-z
 s= 

T

-1

-1

2 1-z
 s=

T 1+z


Three Popular Transformations



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

 

• Transformations of standard approximations in s-domain are the   

corresponding transformations in the z-domain 

 

•  Transformations are not unique 

 

• Transformations cause warping of the imaginary axis and may   

cause change in basic shape  

 

• Transformations do not necessarily guarantee stability 

 

• These transformations preserve order 

1

2 z-1
 s=

T z




z-1
 s= 

Tz
Backward  Euler

Bilinear z 

transform 

z -1
s = 

T
Forward Euler

-1

-1

1 - z
s = 

Tz

-11-z
 s= 

T

-1

-1

2 1-z
 s=

T 1+z


Three Popular Transformations



z-domain integrators 

XIN XOUT T s

XIN XOUT H z

?

 

1

0

0

0

TI
Forward Euler

z -1

I Tz
H z  = Backward Euler

z-1

TI z
Bilinear z

2 z-1







  

 
 

1

2 z-1
 s=

T z




z-1
 s= 

Tz
Backward  Euler

Bilinear z 

transform 

z -1
s = 

T
Forward Euler

-1

-1

1 - z
s = 

Tz

-11-z
 s= 

T

-1

-1

2 1-z
 s=

T 1+z


Three Popular Transformations

  0IT s  = 
s

Some z-domain integrators 

     

     

        

OUT 0 IN OUT

OUT 0 IN OUT

0
OUT IN IN OUT

V nT+T TI V nT V nT Forward Euler

V nT+T I TV nT+T +V nT Backward Euler

TI
V nT+T V nT+T V nT +V nT Bilinear z

2

 



 

Corresponding difference equations: 



z-domain lossy integrators 

XIN XOUT T s

XIN XOUT H z

?

 
 

1

0

0

0

TI
Forward Euler

z -1+ T

I Tz
H z  = Backward Euler

z 1+ T -1

TI z
Bilinear z

T T2
z 1+ + -1

2 2





 












 
    
     
     

    

1

2 z-1
 s=

T z




z-1
 s= 

Tz
Backward  Euler

Bilinear z 

transform 

z -1
s = 

T
Forward Euler

-1

-1

1 - z
s = 

Tz

-11-z
 s= 

T

-1

-1

2 1-z
 s=

T 1+z


Three Popular Transformations

  0IT s  = 
s+

Some z-domain lossy integrators 

       

       

        

1

1

1 1
2 2

OUT 0 IN OUT

OUT 0 IN OUT

0
OUT IN IN OUT

V nT+T TI V nT T V nT Forward Euler

T V nT+T I TV nT+T +V nT Backward Euler

TIT T
V nT+T V nT+T V nT + V nT Bilinear z

2





 

  

 

   
      

   

Corresponding difference equations: 



z-domain lossy integrators 

XIN XOUT T s

XIN XOUT H z

?

   

1 1

0

0

0

TI G
Forward Euler

z -1+ T z -H

I Tz Gz
     Backward Euler

z 1+ T -1 zH - 1H z  = 

TI z z
G Bilinear z

T T2 z -H
z 1+ + -1

2 2





 










 
    
               

     

  0IT s  = 
s+

Some z-domain lossy integrators 

     

     

        

OUT IN OUT

OUT IN OUT

OUT IN IN OUT

V nT+T GV nT HV nT Forward Euler

HV nT+T GV nT+T +V nT Backward Euler

V nT+T G V nT+T V nT +HV nT Bilinear z

 



 

Corresponding difference equations: 

Functional 

Form 



Switched-Current Integrator 

Consider this circuit 

T

nT (n+1)T

φ1

φ2

VDD

IIN2
IOUTφ1

M1 M2

CP

φ2
M3

M4 M5

IB1

IB2 IB3

CP

IIN1

1:

1:

:1

:B :A

• Clocks complimentary, nonoverlapping 

• Phase not critical 

Assume inputs change only during phase Φ2 
           (may be outputs from other like stages) 



Switched-Current Integrator 

     1 3 iN2i t  = Bi nT-T  + i t

Consider Φ1 closed, Φ2 open  (nT-T < t < nT-T/2)  

     1 3 iN2i nT-T  = Bi nT-T  + i nT-T

VDD

iIN2
IOUTφ1

M1 M2

CP

φ2
M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

Since current does not change during this interval 



Switched-Current Integrator 

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT)  

   2 1i t  = i nT-T

     1 3 iN2i nT-T  = Bi nT-T  + i nT-T

     2 3 IN1i t  = i t  + i t

       OUT IN1 OUT IN2

1 B
 i t  + i t = i nT-T  + i nT-T

A A

 
 
 

   OUT 3i t  = Ai t

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

(from first phase) 



Switched-Current Integrator 

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT)  

       OUT IN1 OUT IN2

1 B
 i t  + i t = i nT-T  + i nT-T

A A

 
 
 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

Evaluating at t=nT, we have 

       OUT IN1 OUT IN2

1 B
 i nT  + i nT = i nT-T  + i nT-T

A A

 
 
 

Taking z-transform, obtain 

     1 11 1

-1

OUT IN2 IN1

Az A
 I z   =  I z - I z

Bz Bz 

   
   
   



Switched-Current Integrator 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

     1 11 1

-1

OUT IN2 IN1

Az A
 I z   =  I z - I z

Bz Bz 

   
   
   

 

-1

-1

-1

-1

-1

Gz
Forward Euler

1 -Hz

G
H z  =      Backward Euler

1 - Hz

1 + z
G Bilinear z

1 -Hz







  
  

 

Recall lossy integrators: 

If IIN1=0, becomes Forward Euler integrator 

If IN2=0, becomes Backward Euler integrator 

If IN1= - IIN2, becomes Bilinear Integrator 

For H=1 becomes lossless 



Switched-Current Integrator 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

     1 11 1

-1

OUT IN2 IN1

Az A
 I z   =  I z - I z

Bz Bz 

   
   
   

• Summing inputs can be provided by summing currents on N1 or N2 or both 

• Multiple outputs can be provided by adding outputs to upper mirror 

• Amount of loss determined by mirror gain B 



Switched-Current Integrator 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

   11

-1

OUT IN2

Az
 I z   =  I z

Bz

 
 
 

  0TI
H z  = 

z -1+ T

Sensitivity Analysis 

Consider Forward Euler 

0

A
I = 

T

1-B
 = 

T


0I

A = 1S B

-B
=

1-B
S

For low loss integrator (e.g. ideal integrator), the sensitivity of α is very large! 



Switched-Current Integrator 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

Sensitivity Analysis 

Consider Bilinear z 

 
0

2
I = A

T 1+B

2 1-B

T 1+B
 

0I

A = 1S   B

-B
=

1-B 1+B
S

For low loss integrator (e.g. ideal integrator), the sensitivity of α  is very large! 

   1

1

1

-1

OUT IN

z
 I z   = A  I z

Bz

 
 
 

 
10TI z

H z  = 
T T2

z 1+ + -1
2 2

 

 
 
 

    
    
    

What about the sensitivity to the gain of the lower current mirror? 



Switched-Current Integrator 

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT)  

   2 11i t  =  iA nT-T

     1 3 iN2i nT-T  = Bi nT-T  + i nT-T

     2 3 IN1i t  = i t  + i t

       OUT IN1 OU
1

T 1 IN2

A B1
 i t  + i t = i n AT-T  + i nT-T

A A

 
 
 

   OUT 3i t  = Ai t

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

(from first phase) 

Sensitivity to A1? 

Define A1 to be the gain of 

the lower mirror 



Switched-Current Integrator 
VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

       OUT IN1 OUT IN2
1

1

B1
 i nT  + i nT = i nT-T  + i

A
A nT-T

A A

 
 
 

Taking z-transform, obtain 

     1 11 1

1

1

-1

OUT IN2 IN1

1

Az A
 I z   =  I z - I z

A

z zA AB B 

   
   
    

1
B

1

A-B
=

1 A-B
S

Consider Forward Euler 

11-B
 

A
= 

T


1

1
A

1

A-B
=

1 A-B
S

Sensitivity to A1? 

Sensitivity to A1 is also large for low-loss or lossless integrator 

Define A1 to be the gain of 

the lower mirror 
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Switched-Current Filters 
Basic idea introduced by Hughes and Bird at ISCAS 1989 

VDD

IIN

IOUT

φ1

M1 M2

CP1: :A

   OUT INI nT  = AI nT-T

Potential for accuracy of a SC circuit at both 

low and high frequencies but without the Op 

Amp and large C ratios 

Cp is parasitic gate capacitance on M2 

Very low power dissipation 

A completely new approach to designing filters 

that offers potential for overcoming most of the 

problems plaguing filter designers for decades 

! 

Potential to operate at very low voltages 

Neither capacitor or resistor values needed to 

do filtering! 

Before developing Switch-Current concept, need to review background 

information in s to z domain transformations 

Review from last time 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

 

• Transformations of standard approximations in s-domain are the   

corresponding transformations in the z-domain 

 

•  Transformations are not unique 

 

• Transformations cause warping of the imaginary axis and may   

cause change in basic shape  

 

• Transformations do not necessarily guarantee stability 

 

• These transformations preserve order 

1

2 z-1
 s=

T z




z-1
 s= 

Tz
Backward  Euler

Bilinear z 

transform 

z -1
s = 

T
Forward Euler

-1

-1

1 - z
s = 

Tz

-11-z
 s= 

T

-1

-1

2 1-z
 s=

T 1+z


Three Popular Transformations

Review from last time 



z-domain lossy integrators 

XIN XOUT T s

XIN XOUT H z

?

 
 

1

0

0

0

TI
Forward Euler

z -1+ T

I Tz
H z  = Backward Euler

z 1+ T -1

TI z
Bilinear z

T T2
z 1+ + -1

2 2





 












 
    
     
     

    

1

2 z-1
 s=

T z




z-1
 s= 

Tz
Backward  Euler

Bilinear z 

transform 

z -1
s = 

T
Forward Euler

-1

-1

1 - z
s = 

Tz

-11-z
 s= 

T

-1

-1

2 1-z
 s=

T 1+z


Three Popular Transformations

  0IT s  = 
s+

Some z-domain lossy integrators 

       

       

        

1

1

1 1
2 2

OUT 0 IN OUT

OUT 0 IN OUT

0
OUT IN IN OUT

V nT+T TI V nT T V nT Forward Euler

T V nT+T I TV nT+T +V nT Backward Euler

TIT T
V nT+T V nT+T V nT + V nT Bilinear z

2





 

  

 

   
      

   

Corresponding difference equations: 

Review from last time 



Switched-Current Integrator 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

     1 11 1

-1

OUT IN2 IN1

Az A
 I z   =  I z - I z

Bz Bz 

   
   
   

 

-1

-1

-1

-1

-1

Gz
Forward Euler

1 -Hz

G
H z  =      Backward Euler

1 - Hz

1 + z
G Bilinear z

1 -Hz







  
  

 

Recall lossy integrators: 

If IIN1=0, becomes Forward Euler integrator 

If IN2=0, becomes Backward Euler integrator 

If IN1= - IIN2, becomes Bilinear Integrator 

For H=1 becomes lossless 

Review from last time 



Switched-Current Integrator 
VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

   11

-1

OUT IN2

Az
 I z   =  I z

Bz

 
 
 

  0TI
H z  = 

z -1+ T

Sensitivity Analysis 

Consider Forward Euler 

0

A
I = 

T

1-B
 = 

T


0I

A = 1S B

-TB
=

1-B
S

For low loss integrator (e.g. ideal integrator), the sensitivity of α is very large! 

Review from last time 



Switched-Current Integrator 
VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

       OUT IN1 OUT IN2
1

1

B1
 i nT  + i nT = i nT-T  + i

A
A nT-T

A A

 
 
 

Taking z-transform, obtain 

     1 11 1

1

1

-1

OUT IN2 IN1

1

Az A
 I z   =  I z - I z

A

z zA AB B 

   
   
    

1
B

1

A-B
=

1 A-B
S

Consider Forward Euler 

11-B
 

A
= 

T


1

1
A

1

A-B
=

1 A-B
S

Sensitivity to A1? 

Sensitivity to A1 is also large for low-loss or lossless integrator 

Define A1 to be the gain of 

the lower mirror 

Review from last time 



Switched-Current Integrator 

Consider another circuit 

T

nT (n+1)T

φ1

φ2

Consider Φ1 closed, Φ2 open  (nT-T < t < nT-T/2)  

     1 OUT iN

1
i t  = i nT-T  + i t

A

     1 OUT iN

1
i nT-T  = i nT-T  + i nT-T

A
(1) 

IIN IOUT
φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :A

VDD

I1

φ1



Switched-Current Integrator 

IIN IOUT
φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :A

VDD

I1

φ1

T

nT (n+1)T

φ1

φ2

   OUT 1i t  = Ai nT-T

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT)  

   OUT 1i nT  = Ai nT-T (2) 

combining (1) and (2), obtain 

     OUT OUT iN

1
i nT  =A  i nT-T  + Ai nT-T

A




Switched-Current Integrator 

T

nT (n+1)T

φ1

φ2

     OUT OUT iN

1
i nT  =A  i nT-T  + Ai nT-T

A


     OUT OUT iNi nT  =i nT-T  + Ai nT-T

Taking z-transform, obtain 
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OUT IN

Az
 I z   =  I z

z

 
 
 

Forward Euler Integrator 

• Lossless Integrator (no matching required!) 

• Matching of M1 and M2 not required 

• Gain A does not affect coefficient of z-1 in the denominator 
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CP
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Switched-Current Integrator 

T

nT (n+1)T

φ1
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M2

CP

φ2

M3

IB1

IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

φ1

Consider Φ1 closed, Φ2 open  (nT-T < t < nT-T/2)  

     1 OUT iN

1
i t  = i nT-T  + i t

A

     1 OUT iN

1
i nT-T  = i nT-T  + i nT-T

A
(1) 



Switched-Current Integrator 

T

nT (n+1)T

φ1

φ2

(2) 

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT)  

     OUT 1 OUT

B
i t  = A i nT-T i t

A

 
 

 

     OUT 1 OUT

B
i nT  = A i nT-T i nT

A

 
 

 
combining (1) and (2), obtain 

       OUT OUT OUT INi nT  = i nT-T  - Bi nT  + Ai nT-T
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CP

φ2

M3
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IB3
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Switched-Current Integrator 

T

nT (n+1)T

φ1

φ2

       OUT OUT OUT INi nT  = i nT-T  - Bi nT  + Ai nT-T

Taking z-transform, obtain 

   11

-1

OUT IN

Gz
 I z   =  I z

Hz

 
 
 

where  
1

A
 G = 

B 1

1
 H = 

B

• Lossy Integrator 

• Matching of M1 and M2 not required 

• Gain A does not affect coefficient of z-1 in the denominator 

Forward Euler Integrator (Lossy) 

IIN
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M1
M2

CP

φ2

M3

IB1
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CP1: :1 :B
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Switched-Current Integrator 

T

nT (n+1)T

φ1

φ2

   11
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OUT IN

Gz
 I z   =  I z

Hz

 
 
  1

A
 G = 

B 1

1
 H = 

B

Sensitivity Analysis 

  0TI
H z  = 

z -1+ T

B

T
=

1+B
S

1 B
= 

T B+1


 
 
 

For small loss, B is small and so is the sensitivity 

It can be shown that  
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Switched-Current Integrator 

T

nT (n+1)T

φ1

φ2

Another structure 

IIN

φ1

M1
M2

CP

φ2

M3

IB1
IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2
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Backward Euler Lossy Inverting 

1

A
 G = 

B 1

1
 H = 

B



Switched-Current Integrator 

T

nT (n+1)T

φ1

φ2

Another structure 

IIN

φ1

M1
M2

CP

φ2

M3

IB1 IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

   
1

1

1

1
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z
 I z   = -G  I z
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Switched-Current Filters 

IIN

φ1

M1
M2

CP

φ2

M3

IB1

IB2

CP1: :1 :B

VDD

I1 IOUT

M4

IB3

:A

φ2

• Switched-current filters is an entirely different approach to designing filters with 

 potential for overcoming many of the major problems facing the filter designer 

• Other switched-current filter and integrator blocks have been proposed 

• Integrators can be combined to form filter structures 

• Single-ended and fully differential structures are readily formed 

• Design of Switched-Current Filters is straightforward 

• Beyond Hughes, a few others have looked at switched-current filters 

• Hughes demonstrated experimentally modest performance with this technique 

• Hughes was a world-class researcher and filter expert 

• Hughes spent the better part of a decade trying to perfect the switched-current 

 approach but performance remained modest when he retired 

• Limited use of switched-current filters today 

• Idea is really unique and there is bound to be some major useful applications of  

the basic concepts embodies in the switched-current filters! 

VDD
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iOUTφ1
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CP
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1:
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Leapfrog Filters 

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

Introduced by Girling and Good, Wireless World, 1970 

This structure has some very attractive properties and is widely used though 

the real benefits and limitations of the structure are often not articulated  



Leapfrog Filters 

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

Observation:   This structure appears to be dramatically different  

than anything else ever reported and it is not intuitive why this 

structure would serve as a filter, much less, have some unique and 

very attractive properties 

To understand how the structure arose, why it has attractive properties, 

and to identify limitations, some mathematical background is necessary 



Background Information for Leapfrog Filters 

Theorem 1:  If the LC network delivers maximum power to the load at 

a frequency  ω, then 

 

for any circuit element in the system except for x = RL  

 
0

T jω

x
S 

RS

RLVIN VOUT

LC 

Network

This theorem will follow after we prove the following theorem: 

Assume the impedance RS is fixed 



Background Information for Leapfrog Filters 

Theorem 2:  If the LC network delivers maximum power to the load at a 

frequency  ω, then 

 

where P(ω) is the power delivered to the load at input frequency ω and 

where x is  any circuit element in the system except for x = RL  

  0L
P ω

x
S 

RS

RLVIN VOUT

LC 

Network

Proof of Theorem 2: 

First, we will define the input impedance Z11  

Note:   There is no guarantee that there will be any frequencies where maximum power is transferred to 

the load and whether this does occur depends strongly on the LC circuit structure and the load RL. 



Proof of Theorem 2: 

RS

RLVIN VOUT

LC 

Network
'
1V

I'
1

'
2V

I'
2

1
11

1

V
Z

I

'

'
 (input impedance to the LC Network) 

11 1 1Z R jX 

this can be expressed as 

(R1 and X1 are real functions of ω and depend on RL) 

Since the LC network is lossless (dissipates no power) we have 
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1 1 2 2V I V I' ' ' '{ , , , }Define the port phasors as  



Proof of Theorem 2: 
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To maximize power delivered to a fixed load at a frequency ω, must have 
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Proof of Theorem 2: 
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L in 2 2

S 1 1

R
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R R X


 

Now let x be any element in the LC network 

L L 1 L 1

1 1

P P R P X

x R x X x

    
 

    

L
P L
x

L

P x
S 0

x P


 


1X 0 1 SR R(1) (2) 

  

  
 

  

2 2 2

2 2S 1 1 1 1L 1 1

2 2in in2 22 2

S 1 1 S 1 1

2 R R X R 2XP R X
V V

x x xR R X R R X

                 
           

      

It thus follows from (1) and (2) that at maximum power transfer, the two coefficients 

in this expression vanish, thus 

     
2 2
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2 2in in2 22 2

S 1 1 S 1 1

P R X0 0
V V 0

x x xR R X R R X

      
          

           
      

thus 



Question:   Can we also make the claim that                     at any frequency 

where maximum power is transferred to the load? 

  0L
P ω

R
S

L



Yes!   Note that the previous analysis is based upon characterizing R1 and X 

which are functions of  k reactive components, {x1,   xk} and  RL.  

VOUT

VIN

R

R

L

C

The following circuit has maximum power transfer at dc and it  can be easily 

analytically shown that the sensitivity of P to L, C, and RL is 0 at dc. 



Proof of Theorem 1:  T jω
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Recall the following two sensitivity relationships 

kf f
x x

S S
2f f2

x x
S S

It thus follows that 
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RLVIN VOUT

LC 

Network
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1V

I'
1

'
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Lemma:  If maximum power is transferred to the load in the doubly-terminated 

LC network at a frequency ω, then  
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2

L

2 V 0

V j
R

I j

'

'

ω

ω




This lemma indicates that the impedance of the LC network loaded with 

RS facing RL is equal to RL at frequencies where maximum-power is 

transferred to RL 

The proof follows directly by considering the Thevenin-equivalent circuit facing RL 



Implications of Theorem 1 

L1

C1

L2

C2

L3

C3

L4

C4

RS

VIN RL VOUT

Many passive LC filter such as that shown below exist that have near 

maximum power transfer in the passband 

 T jω

ω

If a component in the LC network changes a little, there is little change 

in the passband gain characteristics (depicted as bandpass) 

in passband  T j

x
0S 



Implications of Theorem 1 

Cascaded Biquad has a response that is the product of the individual 

second-order transfer functions 

If a component in a biquad changes a little, there is often a large  change 

in the passband gain characteristics (depicted as bandpass) 

 T jω

ω

 T jω

ω

Vout
Vin

Biquad
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 2

Biquad

 3

Biquad

 4



Implications of Theorem 1 

If a component in a biquad changes a little, there is often a large  change 

in the passband gain characteristics (depicted as bandpass) 

 T jω

ω

 T jω

ω

 T jω

ω

 T jω

ω

 T j

x
0S   in passband 

Vout
Vin

Biquad

 1

Biquad

 2

Biquad

 3

Biquad

 4



Implications of Theorem 1 

L1

C1

L2

C2

L3

C3

L4

C4

RS

VIN RL VOUT

Good doubly-terminated LC networks often much less sensitive to 

most component values in the passband than are cascaded biquads ! 

This is a major advantage of the LC networks but can not be applied practically 

used in most integrated applications or even in pc-board based designs 

Vout
Vin

Biquad

 1

Biquad

 2

Biquad

 3

Biquad

 4



Example:  Determine at what frequencies maximum-power transfer 

to the load will occur and what value of RL is needed for this to happen 

Recall at maximum-power transfer, Z11 is real and equal to RS 

L

11 2

L

R sL
Z

s LC sR C 1




 

 
   

2 2 3 2

L L

2 211 2 2 2 2 2 2

L L

R L R C L C
Z j j

1 LC R C 1 LC R C
ω

  

   

    
    
         

L1RS

VIN RL

Z11

C1 VOUT

  11
Z j 0Im ω  only at ω=0 and one other positive value of ω 

To get maximum power transfer at ω=0, must have RL=RS 

Appears not to have maximum power transfer at other frequency where     11
Z j 0Im ω 



L1

C1

L2

C2

L3

C3

L4

C4

RS

VIN RL VOUT

Consider again the doubly-terminated circuit that has multiple passband 

frequencies where maximum power transfer to the load occurs 

Observe that this structure is completely characterized by a set of 

equations that characterize the network 

 

All sensitivity properties are inherently determined by this set of  

equations 

 

Any circuit that has the same set of equations will have the same  

sensitivity properties 
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I1 I3V2
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I5V4
Y7
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I7V6
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Vin

Lossless LC Network

Doubly-terminated Ladder Network with Low Passband Sensitivities 

For components in the LC Network observe 

k
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I1 I3V2
Y5

Z4

I5V4
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V8 =VoutVin=V0

Vin

Lossless LC Network

Doubly-terminated Ladder Network with Low Passband Sensitivities 

 1 0 2 1I V V Y 

 2 1 3 2V I I Z 

 3 2 4 3I V V Y 

 4 3 5 4V I I Z 

 6 5 7 6V I I Z 

8 7 8V I Z

 5 4 6 5I V V Y 

 7 6 8 7I V V Y 

Complete set of independent equations 

that characterize this filter 

All sensitivity properties of this 

circuit are inherently embedded in 

these equations!   

Solution of this set of equations is tedious 
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Lossless LC Network

Consider now only the set of equations and disassociate them from  

the circuit from where they came 

 1 0 2 1I V V Y 

 2 1 3 2V I I Z 

 3 2 4 3I V V Y 

 4 3 5 4V I I Z 

 6 5 7 6V I I Z 

8 7 8V I Z

 5 4 6 5I V V Y 

 7 6 8 7I V V Y 

Make the associations 

1 1I V'

3 3I V'

5 5I V'

7 7I V'

 1 0 2 1V V V Y'  

 2 1 3 2V V V Z' ' 

 3 2 4 3V V V Y'  

 4 3 5 4V V V Z' ' 

 6 5 7 6V V V Z' ' 

8 7 8V V Z'

 5 4 6 5V V V Y'  

 7 6 8 7V V V Y'  

Rewrite the equations as 

This association is nothing more than a renaming 

of variables so all sensitivities WRT Y’s and Z’s will 

remain unchanged! 
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Y5

Z4

I5V4
Y7

Z6

I7V6

Z8

V8 =VoutVin=V0

Vin

Lossless LC Network

Consider now only the set of equations and disassociate them from  

the circuit from where they came 

 1 0 2 1V V V Y'  

 2 1 3 2V V V Z' ' 

 3 2 4 3V V V Y'  

 4 3 5 4V V V Z' ' 

 6 5 7 6V V V Z' ' 

8 7 8V V Z'

 5 4 6 5V V V Y'  

 7 6 8 7V V V Y'  
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For the LC filter, recall 
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These can be written as 

Observe that in the new 

parameter domain the equations 

all look like integrator functions 

if the primed and unprimed 

variables are all voltages ! 

1

1

1
Y

R


8 8Z R

And the source and load termination relationships were 
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Lossless LC Network

Consider now only the set of equations and disassociate them from  

the circuit from where they came 
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1
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Observe that in the new parameter domain the equations all look like 

integrator functions if the primed and unprimed variables are all voltages ! 

If any circuit is characterized by these equations, the sensitivities to the 

integrator gains will be identical to the sensitiviies of the original circuit to 

the Ls and Cs ! 
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Lossless LC Network

Consider now only the set of equations and disassociate them from  

the circuit from where they came 
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Each equation corresponds to either an integrator or summer with the output 

voltage output variables and the gain indicated (don’t worry about the units) 
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Consider now only the set of equations and disassociate them from  

the circuit from where they came 

 1 0 2

1

1
V V V

R

'  

 2 1 3

2

1
V V V

sC

' ' 

 3 2 4

3

1
V V V

sL

'  

 4 3 5

4

1
V V V

sC

' ' 

 6 5 7

6

1
V V V

sC

' ' 

8 7 8V V R'

 5 4 6

5

1
V V V

sL

'  

 7 6 8

7

1
V V V

sL

'  

The interconnections that complete each equation can now be added 
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Lossless LC Network

Consider now only the set of equations and disassociate them from  

the circuit from where they came 
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Integrators Corresponding to Lossless Network 
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The Leapfrog Configuration  

0 inV V 8 outV V
Integrators Corresponding to Lossless Network 
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Input summing and weighting can occur at input to the first integrator 

The difference between V8 and V’7 is only a scale factor that does not affect shape, 

and the weighting on the Vin input also does not affect shape, thus 

Integrators Corresponding to Lossless Network 
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Lossless LC Network

The Leapfrog Configuration  

Integrators Corresponding to Lossless Network 
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The terminations on both sides have local feedback around an integrator 

which can be alternately viewed as a lossy integrator  

 

Could redraw the structure as a cascade of internal lossless integrators with 

terminations that are lossy integrators but since there are so many different 

ways to implement the integrators and summers, we will not attempt to 

make that association in the block diagram form but in most practical 

applications a lossy integrator is often used on the input or the output or 

both 
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Lossless LC Network

The Leapfrog Configuration  
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Integrator
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Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

In the general case, this can be redrawn as shown below  

Note the first and last integrators become lossy because of the local feedback 
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Integrators Corresponding to Lossless Network 
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The Leapfrog Configuration  

Integrators Corresponding to Lossless Network 

2

1

sC
3

1

sL 4

1

sC
5

1

sL 6

1

sC
7

1

sL

1

1

R
8R

1
'V 3

'V
5
'V

7
'V

2V 4V outV
6V

inV

The passive prototype filter from which the leapfrog was designed has 

all shunt capacitors and all series inductors and is thus lowpass. 

 

The resultant leapfrog filter has the same transfer function and  is thus lowpass 
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Leapfrog Networks 



Leapfrog Filters 

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

Introduced by Girling and Good, Wireless World, 1970 

This structure has some very attractive properties and is widely used though 

the real benefits and limitations of the structure are often not articulated  

Review from last time 



Background Information for Leapfrog Filters 

Theorem 1:  If the LC network delivers maximum power to the load at 

a frequency  ω, then 

 

for any circuit element in the system except for x = RL  

 
0

T jω

x
S 

RS

RLVIN VOUT

LC 

Network

This theorem will follow after we prove the following theorem: 

Assume the impedance RS is fixed 

Review from last time 



Implications of Theorem 1 

L1

C1

L2

C2

L3

C3

L4

C4

RS

VIN RL VOUT

Many passive LC filter such as that shown below exist that have near 

maximum power transfer in the passband 

 T jω

ω

If a component in the LC network changes a little, there is little change 

in the passband gain characteristics (depicted as bandpass) 

in passband  T j

x
0S 

Review from last time 



Implications of Theorem 1 

Cascaded Biquad has a response that is the product of the individual 

second-order transfer functions 

If a component in a biquad changes a little, there is often a large  change 

in the passband gain characteristics (depicted as bandpass) 

 T jω

ω

 T jω

ω

Vout
Vin

Biquad

 1

Biquad

 2

Biquad

 3

Biquad

 4

Review from last time 



Implications of Theorem 1 

If a component in a biquad changes a little, there is often a large  change 

in the passband gain characteristics (depicted as bandpass) 

 T jω

ω

 T jω

ω

 T jω

ω

 T jω

ω

 T j

x
0S   in passband 
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Biquad

 1

Biquad

 2
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 3
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Review from last time 



Y1 Y3

Z2

I1 I3V2
Y5

Z4

I5V4
Y7

Z6

I7V6

Z8

V8 =VoutVin=V0

Vin

Lossless LC Network

Consider now only the set of equations and disassociate them from  

the circuit from where they came 
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Each equation corresponds to either an integrator or summer with the output 

voltage output variables and the gain indicated (don’t worry about the units) 

0 inV V
8 outV V

Review from last time 
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Lossless LC Network

The Leapfrog Configuration  

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

In the general case, this can be redrawn as shown below  

Note the first and last integrators become lossy because of the local feedback 
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Integrators Corresponding to Lossless Network 

Review from last time 



The Passive Prototypes with Maximum Power 

Transfer in Passband 

Doubly-terminated LC filters with near maximum power transfer in the passband 

were developed from the 30’s to the 60’s 

 

Seldom discussed in current texts but older texts and occasionally software tools 

provide the passive structures needed to synthesize leapfrog networks 

One good book is that by Zverev 



The Passive Prototypes with Maximum Power 

Transfer in Passband 

Must start with correct filter type: 

(e.g. BW, CC, Cauer) 



The Passive Prototypes with Maximum Power 

Transfer in Passband 

Leading element is a shunt capacitor 

Leading element is a series capacitor 

The Butterworth Low-Pass Filters 

(appear from top to bottom in table) 

(appear from bottom to top in table) 

Can do Thevenin-Norton Transformations 



The Passive Prototypes with Maximum Power 

Transfer in Passband 

Normalized so RL=1 





Example: 

Design a 6th-order BW lowpass Leapfrog filter with a leading capacitor, with equal 

source and load terminations,  and with a 3dB band edge of 4KHz. 

Start with the normalized BW lowpass filter 

(appear from top to bottom in table) 

Do Norton to Thevenin transformation at input 



Rs=1,  C1=.5176, L2=1.414, C3=1.939, L4=1.9319, C5=1.4142, L6=0.5176 

Note index differs by 1 from that used for Leapfrog formulation 
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R1=1,  C2=.5176, L3=1.414, C4=1.939, L5=1.9319, C6=1.4142, L7=0.5176 

Changing the index notation: 

Implement in the technology of choice 

 

Combine loss on input and output integrators to eliminate two stages 

 

Do frequency denormalization to obtain band-edge at 4KHz 

 

Do impedance scaling to obtain acceptable component values 

 

 

Labeled voltages are single-ended voltages at “+” inputs to the integrators 



Bandpass Leapfrog Structures 
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Consider lowpass to bandpass transformations 

Un-normalized Normalized 



Bandpass Leapfrog Structures 
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Bandpass Leapfrog Structure obtained by replacing integrators 

by the corresponding transformed block 

 

Zero sensitivity to parameters in the transformed blocks will be 

retained  at the image frequencies of the bandpass filter 

 

Integrators map to bandpass biquads  

with infinite Q 
Lossy integrators map to bandpass biquads  

with finite Q 



Bandpass Leapfrog Structures 
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Bandpass Leapfrog Structures 
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Integrators Corresponding to 

Lossless Network 
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Biquads  Corresponding to Lossless Network 
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Third-order lowpass 

leapfrog filter 

Sixth-order bandpass 

leapfrog filter 



Bandpass Leapfrog Structures 
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Biquads  Corresponding to Lossless Network 
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“Loss” at input and/or output can usually be incorporated into  finite-Q 

terminating biquads instead of requiring additional voltage amplifiers  



Bandpass Leapfrog Structures 
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• The bandpass biquads can be implemented with various architectures and the  

architecture does not ideally affect the passband sensitivity of the filter 

• Integrator-based biquads are often used in integrated applications 

• Note the lossless biquads are infinite Q structures ! 

Is it easy or practical to implement infinite Q biquads? 

Are there stability concerns about the infinite Q biquads? 



Bandpass Leapfrog Structures 
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Integrator-based biquads 

s
0ω

s
0ω

2C 0

BW

ω  
 
2 2

0

BW Cs
T s

s

/

ω




s
0ω

β s
0ω

2C 0

BW

ω  
 

2 2
0

BW C

BW

s
T s

s s

/

ω


 



Bandpass Leapfrog Structures 
Integrator-based biquads 
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OTA-C Implementations 

(Concept) 
Infinite Q bandpass biquad 

Finite Q bandpass biquad 

(Not Differential) 

(Not Differential) 



Bandpass Leapfrog Structures 
Integrator-based biquads 
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OTA-C Implementations 

Infinite Q bandpass biquad 
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Multiple inputs can be added to lossy integrator too! 



Bandpass Leapfrog Structures 
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Biquads  Corresponding to Lossless Network 
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Note the lossless biquads are infinite Q structures ! 

Is it easy or practical to implement infinite Q biquads? 

Are there stability concerns about the infinite Q biquads? 

Yes – have shown by example in gm-C family and also easy in other 

families 

Stability of overall leapfrog structure of concern, not stability of individual biquads 

Overall leapfrog structure is robust with low passband sensitivities ! 



Leapfrog Implementations 
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Practically can either fix gms and vary capacitors or fix capacitors and vary gm’s 
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Some leapfrog properties 
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Integrators Corresponding to Lossless Network 

Instead of having components (such as L’s or C’s) in the image of the lossless  

ladder network there are circuits such as integrators or biquads with more than 

one characterization parameters.  Are the sensitivities of |T(jω)| to these  

components also 0 at frequencies where the “parent” passive filter are 0?  

What can be said about sensitivities of parameters such as band edges of 

leapfrog filters?  If these sensitivities are not at or near 0, are they at least 

very small? 

No!  Nothing can be said about these sensitivities and they are not 

necessarily any smaller than what one may have for other structures such 

as cascaded biquads 

Yes!  The following theorem addresses this issue in the case of integrators 



Theorem:  If f(u) is a function of a variable u where u=x1x2, then 

 

1 2

f f f
u x xS S S 

Note:  Although the results are the same as for the sensitivity of kf, 

in this case both x1 and x2 are variables whereas in the former case 

k is a constant. 

As a consequence, if the unity gain frequency of an integrator which 

may be expressed (for example) as 1/RC, the transfer function 

magnitude sensitivity to both R and C vanish at frequencies where 

the sensitivity to I0 vanishes 
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Transconductor Design 



Transconductor Design 

Transconductor-based filters depend directly on the gm of the transconductor 

 

Feedback is not used to make the filter performance insensitive to the 

transconductance gain 

 

Linearity and spectral performance of the filter strongly dependent upon the 

linearity of the transconductor 

 

Often can not justify elegant linearization strategies in the transconductors 

because of speed, area, and power penalties 

VOUT
VIN

C

gm



Seminal Work on  the OTA 

1969 N.E.C. PROCEEDINGS 

December 1969 

From: 
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Often termed an OTA 
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Introduced by Wheatley and Whitlinger in 1969 
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Telescopic Cascode OTA 

• Current-Mirror p-channel Bias to Eliminate CMFB 

• Only single-ended output available 
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Signal Swing and Linearity 
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Input 

Range

Output 

Range

Ideal Scenario: 

 

Completely Linear over Input and Output Range 



Signal Swing and Linearity 

Realistic  Scenario: 

 

•   Modest Nonlinearity throughout Input Range 

 

•   But operation will be quite linear over subset of this range 

IOUT

VIN

Input 

Range

Output 

Range



Signal Swing and Linearity 
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Linearity of Amplifiers 
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Strongly dependent upon linearity of transconductance of differential pair 



Differential Input Pairs 
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MOS Differential Pair 
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What values of Vd will cause all of the current to be steered to the left or the right ? 
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Observe !! 
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How linear is the amplifier ? 



How linear is the amplifier ? 

 D1D1T

OX

d III
WμC

2L
V 

V
d

?

I
T

I

EB1V2

I
D1

Consider the fit line: 

hmVI d 

2

I
h T

When Vd=0, I=IT/2, thus 

2m

I

m

h
V T

dint 

ptQd

D1

V

I
m









How linear is the amplifier ? 
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How linear is the amplifier ? 
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How linear is the amplifier ? 

 % deviation

I

Vd

2

d

EB

V
V

100 1 1
4

θ %

 
   
    

 
 
 

Vd/VEB θ Vd/VEB θ Vd/VEB θ

0.02 0.005 0.22 0.607 0.42 2.23

0.04 0.020 0.24 0.723 0.44 2.45

0.06 0.045 0.26 0.849 0.46 2.68

0.08 0.080 0.28 0.985 0.48 2.92

0.1 0.125 0.3 1.13 0.5 3.18

0.12 0.180 0.32 1.29 0.52 3.44

0.14 0.245 0.34 1.46 0.54 3.71

0.16 0.321 0.36 1.63 0.56 4.00

0.18 0.406 0.38 1.82 0.58 4.30

0.2 0.501 0.4 2.02 0.6 4.61

It can be shown that the deviation 

from the line in % is given by 



How linear is the amplifier ? 

X % deviation
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What swings on drain currents are typical when 

using the differential pair in an amplifier?  
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EB1V2

ID1

1% Linear = 

0.5VEB1

Assume the differential amplifier is the input stage to an op amp with gain Av and  

signal swing VOUTpp 

The differential swing at the input is thus 

 
OUTpp

INpp
V

V
V =

A



What swings on drain currents are typical when 

using the differential pair in an amplifier?  

Vd

VEB1

IT

I

EB1V2

ID1

1% Linear = 

0.5VEB1

If the amplifier is the simple differential amplifier with current source loads 

OUTpp
INpp

V

V
V =

A

DQ

m1 EB1
V

0 DQ

2I
g V

A  = -  = 
2g 2λIVOUT

Vid/2-Vid/2

IT

IT/2 IT/2

M1 M2 V
EB1

1
A  = -

λV

INpp OUTpp EB1V =( V )V

If λ=.01V-1 and VOUTpp=5V,  

INpp EB1V =0.05V

This results in a very small nonlinearity and a very small change in current 

When used in two-stage structure, even much smaller! 



Bipolar Differential Pair 

12d VVV 


I
T

Q
1 Q

2

I
C1 I

C2

V
1

V
2

V
E

t

E1

V

VV

E1SC1 eAJI





t

E2

V

VV

E2SC2 eAJI





TC2C1 III 













E1S

C1
tE1

AJ

I
lnVVV













E2S

C2
tE2

AJ

I
lnVVV


















































C1

C2
t

AA

E1S

C1

E2S

C2
td

I

I
lnV

AJ

I
ln

AJ

I
lnVV

E2E1



Bipolar Differential Pair 

12d VVV 
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As IC1 approaches 0, Vd approaches infinity 

As IC1 approaches IT, Vd approaches minus infinity 

At IC1=IC2=IT/2, Vd=0 

Transition much steeper than for MOS case 



-0.2 -0.1 0 0.1 0.2
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I
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d

Differential input in Volts

2

IT

I
C1

I
C2

Transfer Characteristics of Bipolar Differential Pair 

Transition much steeper than for MOS case 

Asymptotic Convergence to 0 and IT 
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Signal Swing and Linearity of Bipolar Differential Pair 
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Signal Swing and Linearity of Bipolar Differential Pair 

for 1% deviation, Vd=.56Vt 

for 0.1% deviation, Vd=.27Vt 
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Signal Swing and Linearity of Bipolar Differential Pair 



Signal Swing and Linearity Summary 

• Signal swing of MOSFET can be rather large if 
VEB is large but this limits gain 

• Signal swing of MOSFET degrades significantly if 
VEB is changed for fixed W/L 

• Bipolar swing is very small but independent of gm 

• Multiple-decade adjustment of bipolar gm is 
practical 

• Even though bipolar input swing is small, since 
gain is often very large, this small swing does 
usually not limit performance in feedback 
applications 



End of Lecture 34 
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Transconductor Design and Applications 



VG

Vin

Iout

-VG1

VSS

VDD

M1

M2

M3

M4

Simple single-ended OTA  



VG

Vin

Iout

-VG1

VSS

VDD

M1

M2

M3

M4

VX

VY

I1

I2

Simple single-ended OTA  

0 1 2I I I 

 
2

1 1 G X TnI V V V  

 
2

1 2 X in TpI V V V  

 
2

2 3 in Y TnI V V V  

 
2

2 4 Y G1 TpI V V V  

Taking the square root of the two I1 equations 

 1 G X Tn

1

1
I V V V


  

 1 X in Tp

2

1
I V V V


  

Adding these two equations, we obtain 

 1 G in Tp Tn

2 1

1 1
I V V V V

 

 
     

 
Similarly, for the last two equations, obtain 

 2 G1 in Tp Tn

3 4

1 1
I V V V V

 

 
     

 



VG

Vin

Iout

-VG1

VSS

VDD

M1

M2

M3

M4

VX

VY

I1

I2

Simple single-ended OTA  

0 1 2I I I 

Squaring the last two equations we obtain  

Equating the difference to I0,  we obtain 

 1 G in Tp Tn

2 1

1 1
I V V V V

 

 
     

 

 2 G1 in Tp Tn

3 4

1 1
I V V V V

 

 
     

 

2 1 5

1 1 1

  

 
  

 

3 4 6

1 1 1

  

 
  

 

Define 

 
2

1 5 G in Tp TnI V V V V   

 
2

2 6 G1 in Tp TnI V V V V   

 

 

2
0 5 6 in

in 5 Tn Tp G 6 Tn Tp G1

2 2

5 Tp Tn G 6 Tp Tn G1

I V

V 2 V V V 2 V V V

V V V V V V

 

 

 

 

           

           



VG

Vin

Iout

-VG1

VSS

VDD

M1

M2

M3

M4

VX

VY

I1

I2

Simple single-ended OTA  

Note this behaves as a linear transconductor ! 

If size devices so that β5=β6 and VG=VG1, this simplifies to 

 0 in 5 Tn Tp GI V 4 V V V     

 

 

2
0 5 6 in

in 5 Tn Tp G 6 Tn Tp G1

2 2

5 Tp Tn G 6 Tp Tn G1

I V

V 2 V V V 2 V V V

V V V V V V

 

 

 

 

           

           

 

• Since both M2 and M3 are driven, this is a power-efficient 

   method for generating a given gm 

 

• Behavior will degrade with bulk-dependent threshold 

voltages of n-channel devices 

 

• Would like to generate VG and VG1 independent of VDD 

m 5 Tn Tp Gg 4 V V V     



VDD Independent Bias Generators  

VDD

M1

M2M3

M4

R1

V01

I1VX

Two widely-used VDD independent bias generators (start-up ckts not shown) 

2

X

1 4 1

1 1 1
V

R M 

 
  

 

OX k
k

k

C W

2L


 

M is the M3:M2 mirror gain 

01 Tn

4 1 4

1 1 1
V V

MR M  

  
       

D2 D1 D3I I MI 

 
2OX 4

D4 D3 01 Tn

4

C W
I I V V

2L


  

 
2OX 1

D1 01 X Tn

1

C W
I V V V

2L


  

X D1 1V I R

Define: 

4 equations and 4 unknowns 

{ID1,ID3,V01,VX} 



VDD Independent Bias Generators  

VDD

M1

M2M3

M4

R1

V01

I1VX

Two widely-used VDD independent bias generators (start-up ckts not shown) 

2

X

1 4 1

1 1 1
V

R M 

 
  

 

OX k
k

k

C W

2L


 

M is the M3:M2 mirror gain 

01 Tn

4 1 4

1 1 1
V V

MR M  

  
       

Define: 

Observe VX is independent of both VT and VDD 

Offers some attractive properties when used as 

part of a temperature sensor as well 

Requires Start-up Circuit 

May need compensation for stability 

Pseudo-static operation so frequency response of 

little concern 



VDD Independent Bias Generators  

VDD

M1

M2M3

M4

R1

V01

I1VX

Stability Concerns  

Since there is a local feedback loop, the issue of stability 

must be addressed.  To do this, consider the small-signal 

equivalent circuit 

R1

VA
VB

CA

CB

m3 03g g

g01
gm1Vgs1

Vgs1

g02
gm2Vgs2

Vgs2

g04

gm4Vgs4

Vgs4

VS



VDD Independent Bias Generators  

Stability Concerns  

R1

VA
VB

CA

CB

m3 03g g

g01
gm1Vgs1

Vgs1

g02
gm2Vgs2

Vgs2

g04

gm4Vgs4

Vgs4

VS

Summing current at the three nodes, we obtain 

   A 01 02 A m2 B m1 A S 01 Sg g sC g g g     V V V V V

 B m3 01 03 B m1 Ag g g sC g 0    V V

   S 01 1 01 A m1 A Sg g g g   V V V V

Solving and neglecting g0 terms compared to gm terms, we obtain the 

characteristic polynomial 

   
2

2 m1
A B A m3 B m1 m3 m2

1 m1

g
D s s C C s C g C g g g

g g

 
     

 



VDD Independent Bias Generators  

Stability Concerns  

VDD

M1

M2M3

M4

R1

V01

I1VX

Thus, for stability, must have 

m3 m2g g

2
m1

A m3 B

1 m1

g
C g C

g g




   
2

2 m1
A B A m3 B m1 m3 m2

1 m1

g
D s s C C s C g C g g g

g g

 
     

 



VDD Independent Bias Generators  

VDD

M1

M2M3

M4

M5

I1

V01

Vy

Two widely-used VDD independent bias generators (start-up ckts not shown) 

4 equations and 4 unknowns 

{ID1,ID3,V01,VY} 

1 5

5 1

01 Tn

1 5

5 1

W L
M 1 2

W L
V V

W L
M 1 1

W L

  
   

     
  
    
  M to be the M3:M2 mirror gain 

1 5

5 1
5 1

Y Tn

1 5 5 1 1 5

1 5 5 1

W L
M 1 2

W LW L 1
V V 1

W L W L W L1 M 1 1
W L W L

   
     
              
                   

Define: 

D2 D1 D5 D3I I I MI  

 
2OX 4

D4 D3 01 Tn

4

C W
I I V V

2L


  

 
2OX 1

D1 01 Y Tn

1

C W
I V V V

2L


  

 
2OX 5

D5 Y Tn

5

C W
I V V

2L


 



VDD Independent Bias Generators  
Two widely-used VDD independent bias generators (start-up ckts not shown) 

1 5

5 1

01 Tn

1 5

5 1

W L
M 1 2

W L
V V

W L
M 1 1

W L

  
   

     
  
    
  

M to be the M3:M2 mirror gain 

1 5

5 1
5 1

Y Tn

1 5 5 1 1 5

1 5 5 1

W L
M 1 2

W LW L 1
V V 1

W L W L W L1 M 1 1
W L W L

   
     
              
                   

Define: 
Note V01and VY are dependent only upon VT 

VDD

M1

M2M3

M4

M5

I1

V01

Vy

Requires Start-up Circuit 

May need compensation for stability 

Pseudo-static operation so frequency response of 

little concern 

Applications well beyond this biasing requirement 



VDD Independent Bias Generators  

VDD

M1

M2M3

M4

R1

V01

I1VX

Two widely-used VDD independent bias generators (start-up ckts not shown) 

2

X

1 4 1

1 1 1
V

R M 

 
  

 

OX k
k

k

C W

2L


 

1 5

5 1

01 Tn

1 5

5 1

W L
M 1 2

W L
V V

W L
M 1 1

W L

  
   

     
  
    
  

where and M is the M3:M2 mirror gain 

01 Tn

4 1 4

1 1 1
V V

MR M  

  
       

1 5

5 1
5 1

Y Tn

1 5 5 1 1 5

1 5 5 1

W L
M 1 2

W LW L 1
V V 1

W L W L W L1 M 1 1
W L W L

   
     
              
                   

VDD

M1

M2M3

M4

M5

I1

V01

Vy



Transconductance Linearization Strategies 

IT

M1 M2
V1 V2

VX

ID2ID1

RS1 RS2

Widely used source degeneration I

Vd

ID1

EB2VEB2V
EBV

IT

IT/2

Recall with RS=0 



Transconductance Linearization Strategies 

IT

M1 M2
V1 V2

VS1

ID2ID1

RS1 RS2

VS2

 
2

D1 1 S1 TI V V Vβ  

 
2

D2 2 S2 TI V V Vβ  

S1 D1 S1 S2 D2 S2V I R V I R  

D1 D2 TI I I 

   T D1 D1 S T D1 d

1
I I I R I 2I V

β
    

With a straightforward analysis, we obtain the expression 

The first term on the right is the nonlinear term of the 

original source coupled pair and the second is linear in ID1 

 

The larger the second term becomes, the more linear the 

transfer characteristics are 



Transconductance Linearization Strategies 

IT

M1 M2
V1 V2

VS1

ID2ID1

RS1 RS2

VS2

   T D1 D1 S T D1 d

1
I I I R I 2I V

β
    

The transconductance of this structure can be readily 

derived to obtain 

 

11
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d 22
m T D1 D1 S

D1 Q pt Q pt
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g I I I 2R

I 2β
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d EB
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This can be expressed as 



Transconductance Linearization Strategies 

IT

M1 M2
V1 V2

VS1

ID2ID1

RS1 RS2

VS2

   T D1 D1 S T D1 d

1
I I I R I 2I V

β
    

I

Vd

ID1

ID2

EB2VEB2V



Transconductance Linearization Strategies 

There are a host of transconductance linearization strategies that have 

been discussed in the literature 

 

Some are shown below 

 

Many are strongly dependent upon a precise square-law model of the 

MOS devices and do not provide practical solutions when the devices are 

not square-law devices 

 

Analysis or simulation with a more realistic model is necessary to validate 

linearity and practical applications of these structures 



Transconductance Linearization Strategies 

How good is the square-law model that we have been using for predicting 

filter performance?  

It is reasonably good when analyzing structures whose linearity characteristics 

are not strongly dependent upon the device model 

 

The circuits considered to date are not particularly linear so the square-law 

model probably does a pretty good job of predicting their performance 

 

More accurate models are usually  unwieldy for hand analysis  



Transconductance Linearization Strategies 



From CAS 2006 P 811  Jose Silva 

Transconductance Linearization Strategies 



Linearity Enhancement with Source Degeneration 

Transconductance Linearization Strategies 



Linearization with active source degeneration 

Transconductance Linearization Strategies 





Linearity compensation with cross-coupled feedback 



Single-ended input TAs 



Differential input and output OTAs 

Differential input OTAs 



VOUT

VIN

R3

R1

R2

C1 C2

CP1

CP2 CP3

CP4

Parasitic Capacitances and Floating Nodes 

VIN

VOUT

R0

R1
RQ

R4

R3
R2

C1 C2

CP1 CP7
CP6CP5

CP4
CP3

CP2

C1

C2

R1 R2
K

VIN

VOUT
CP1 CP2 CP3 CP4

There is invariably a parasitic capacitance 

associated with every terminal of every element 

in a filter 

 

These parasitic capacitances can be significant 

in integrated filters 

 

These can be combined into a single parasitic 

capacitance on each node 



VOUT

VIN

R3

R1

R2

C1 C2

CP1

CP2 CP3

CP4

Parasitic Capacitances and Floating Nodes 

A floating node is a node that is not connected to either a zero-

impedance element or across a null-port 

 

Floating nodes are generally avoided in integrated filters because the 

parasitic capacitances on the floating nodes usually degrades filter 

performance and often increases the order of the filter 

 

Some filter architectures inherently have no floating nodes, 

specifically, most of the basic integrator-based filters have no floating 

nodes 



Parasitic Capacitances and Floating Nodes 

VOUT

VIN

R3

R1

R2

C1 C2

CP1

CP2 CP3

CP4

Floating 

Node

C1

C2

R1 R2
K

VIN

VOUT
CP1 CP2 CP3 CP4

Floating 

Node
Floating 

Node



Parasitic Capacitances and Floating Nodes 

VIN

VOUT

R0

R1
RQ

R4

R3
R2

C1 C2

CP1 CP7
CP6CP5

CP4
CP3

CP2

No floating nodes ! 



gm
Rθ

Rθ

 R1-θ

 R1-θ

Signal Swing in OTA Circuits 
The signal swing for the basic bipolar OTA is limited to a few mV for 

reasonably linear operation 

 

This limited signal swing limits the use of the OTS 

 

The following circuit (with maybe a 100:1 or more attenuation)  can be 

used to increase the input signal swing to the volt range and although it 

involves quite a few more components, the functionality can be most 

significant 

 

Program range is not affected by adding the attenuators 

meq mg gθ





Programmable Filter Structures 

It will be assumed that the transconductance gain can be programmed with 

either a dc current or a dc voltage 

Vin

Vout

C

gm

  m

m

g
T s

g sC




ω

 T jω

Programmable First-Order Low-Pass Filter 



Programmable Filter Structures 

Vin

Vout

C
gm  

m
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Programmable First-Order High-Pass Filter 

ω

 T jω



End of Lecture 35 
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Oscillators, VCOs, and  

Oscillator/VCO-Derived Filters 



Question: 

What is the relationship, if any, between a filter and 

an oscillator or VCO? 

XOUT=? T s

XIN XOUT T s

XOUT
Oscillator



What is the relationship, if any, between a filter and 

an oscillator or VCO? 

XOUT=? T s
XOUT

Oscillator

• When power is applied to an oscillator, it initially behaves as a small-

signal linear network 

 

• When operating linearly, the oscillator has poles (but no zeros) 

 

• Poles are ideally on the imaginary axis or appear as cc pairs in the RHP 

 

• There is a wealth of literature on the design of oscillators 

 

• Oscillators often are designed to operate at very high frequencies 

 

• If cc poles of a filter are moved to RHP is will become an oscillator 

 

• Can oscillators be modified to become filters? 



What is the relationship, if any, between a filter and 

an oscillator or VCO? 

XOUT=? T s
XOUT

Oscillator

Will focus on modifying oscillator structures to form high frequency narrow-

band  filters 

 



Consider a cascaded integrator loop comprised of 

n integrators 

XOUT=? T s

0I

s
 0I

s
0I

s
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0

n

OUT OUT

I
X X

s

 
  

 

 0 0n n

OUTX s I 

  0

n nD s s I 



Consider the poles of    n n
0D s s + I
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Poles are the n roots of -1 scaled by I0 

Im

Re

n=2

1
-1

Im

Re

n=3

1-1

Roots of -1: 

Roots are uniformly spaced on a unit circle  
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Consider the poles of    n n
0D s s + I
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Some useful theorems 

Theorem:   A rational fraction                           with simple poles can be expressed 

 

 

in partial fraction form as           

 

 

where                                            for 1 ≤ j ≤ n 

 
 

 
n

i
i=1

N s
T s

s-p





 
n

i

i=1 i

A
T s =

s-p


   
i

i i s=p
A = s-p T s

  i

n
p t

i
i=1

T s = A e

Theorem:   The impulse response of a rational fraction T(s) with simple poles can  

be expressed as                             where the  numbers Ai are the coefficients 

 

in the partial fraction expansion of T(s) 



Theorem:  If  pi is a simple complex pole of the rational fraction T(s), then the  

partial fraction expansion terms in the impulse response corresponding to pi and pi*  

can be expressed as *
i i

*
i i

A A

s-p s-p


Theorem:  If pi = αi+jβi   is a simple pole with non-zero imaginary part of the rational  

fraction T(s), then the impulse response terms corresponding to the poles pi and pi*  

in the partial fraction expansion can be expressed as 

 

 

where  θi is the angle of the complex quantity Ai 

 i
α t

i i iA e cos β t+θ



Theorem:  If all poles of an n-th order rational fraction T(s) are simple and have a  

non-zero Imaginary part, then the impulse response can be expressed as  

 

 

 

where  θi ,Ai,αi, and βi are as defined before 

 
1

i

n/2
α t

i i i
i

A e cos β t+θ




Theorem:  If an odd-order rational fraction has one pole on the negative real axis  

at α0 and n simple poles that have a non-zero Imaginary part, then the impulse  

response can be expressed as  

 

 

 

where  θi ,Ai,αi, and βi are as defined before 

 
1

0 i

n/2
α t α t

0 i i i
i

A e A e cos β t+θ


 



Im

Re

n=3

I0

Poles of    n n
0D s s + I

Consider the following 

 i
α t

i i iA e cos β t+θ

0.5 -0.866025404

0.5 0.866025404

-1 3.67545E-16

α=0.5 I0 

β=0.866 I0 

frequency of oscillation: 

Starts at ω=0.866I0 and will slow down as nonlinearities limit amplitude 



Poles of    n n
0D s s + I

Consider the following 

α=0.5 I0 - Δα 

β=0.866 I0 
Im

Re

n=3

I0

ω0

Δα 
2 2

0ω β    

So, to get a high ω0, want β as large as possible 



Define the location of the filter pole to be 

F Fα +jβ

Consider now the filter by adding a loss of αL to the integrator 

It follows that 

Fβ β F Lα =α-α

Will now determine αL and I0 needed  to get a desired pole Q and ω0 

The relationship between the filter parameters 

is well known 

0
F

ω
α = - 

2Q
20

F

ω
β = 4Q -1

2Q

The values of α and β are dependent upon I0 but 

the angle θ is only dependent upon the number of 

integrators in the VCO 
Im

Re

I0

ω0

Δα=αL

α+jβ

-αL

F Fα +jβ

θ

 0
20 0 0

L

ω ω ω
α = cos 4Q -1

2Q 2Q 2Q tanθ
I   

 0α+jβ cosθ jsinθI 

 
20

0

ω
= 4Q -1

sinθ 2Q
I

Thus 



 
2 2

0ω β    

Will a two-stage structure give the highest frequency of operation? 

Im

Re

n=2

I0

 
2 2

0ω β  

• Even though the two-stage structure may not oscillate, can work as a filter! 

• Can add phase lead if necessary 



Re

Imn=7

I0

What will happen with a circuit that has two pole-pairs in the RHP? 

The impulse response will have three decaying exponential terms and two 

growing exponential terms 
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0 i
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α t α t

0 i i i
i

A e A e cos β t+θ


 



Re

Imn=7

I0

What will happen with a circuit that has two pole-pairs in the RHP? 

Consider the growing exponential terms and normalize to  I0=1  

   1 2
α t α t

1 1 1 2 2 2A e cos β t+θ  + A e cos β t+θ

α1=0.2225 

-0.62349 -0.781831482

0.222521 -0.974927912

0.900969 -0.433883739

0.900969 0.433883739

0.222521 0.974927912

-0.62349 0.781831482

-1 3.67545E-16

β1=0.974 

α2=0.9009 β2=0.4338 

At t=145 (after only 10 periods of the lower frequency signal) 

145

2

1

α t .9009 145
42

α t .2225 145

e e
r 5.2x10

ee
t







  

The lower frequency oscillation will completely dominate ! 



What will happen with a circuit that has two pole-pairs in the RHP? 

Can only see the lower frequency component ! 

Re

Imn=8

I0

Thanks to Chen for these plots 



What will happen with a circuit that has two pole-pairs in the RHP? 

Consider the growing exponential terms and normalize to  I0=1  

α1=0.2225 

α2=0.9009 

After even only  two periods of the lower frequency waveform, it 

completely dominates ! 

Re

Imn=8

I0

Thanks to Chen for these plots 



How do we guarantee that we have a net coefficient of +1 in D(s)? 

1
0I

s
a 2

0I

s
a 0I

s
na Xout

  n n
0D s s + I

0

1

a
n

out i out
i

I

s

  
    

  
X X  ia -1,1

 
1

n n
0D s s a

n

i
i

I


 
   

 

Must have an odd number of inversions in the loop ! 

If n is odd, all stages can be inverting and identical ! 

1

1a
n

i
i

 



How do we guarantee that we have a net coefficient of +1 in D(s)? 

  n n
0D s s + I

If fully differential or fully balanced, must have an odd number of 

crossings of outputs 

 

Applicable for both even and odd order loops  

0I

s
0I

s
0I

s
Xout



A lossy integrator stage  

  m1 X

m2 X

-g /C

s+g /C
I s 

0 m1 Xg /CI 

m2 Xg /CL 

Vin

Vout

XC
M1

DDV

M2
IB



A fully-differential voltage-controlled integrator stage  

Will need CMFB circuit 

VCTRL

VB

Vin
 Vin



Vout
 Vout



XC XC

DDV

M1

1
0

m
d

X

g
I

C




A fully-differential voltage-controlled integrator stage with loss  

  m1
0

X m3

g
s

sC +g
I 

Will need CMFB circuit 

VCTRL

VB

Vin
 Vin



Vout
 Vout



XC XC

DDV

M1



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

 
20

0

ω
= 4Q -1

sinθ 2Q
I

 
20 0

L

ω ω
α 4Q -1

2Q 2Q tanθ
 

0 m1 Xg /CI 

m2 Xg /CL 

 
20m1

X

ωg
= 4Q -1

C sinθ 2Q

 
20 0m2

X

ω ωg
4Q -1

C 2Q 2Q tanθ
 

Recall: 

Substituting for I0 and αL we obtain: 

Vin

Vout

XC
M1

DDV

M2
IB

(1) 

(2) 

(3) 

(4) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

0 m1 Xg /CI 

m2 Xg /CL 

 
2OX 1 EB1 0

1 X

C W V ω
= 4Q -1

L C sinθ 2Q



 
2OX 2 EB2 0 0

2 X

C W V ω ω
4Q -1

L C 2Q 2Q tanθ


 

1 2
EB2 EB1

2 1

W L
V =V

W L

 
2OX EB1 0 01 2

X 1 2

C V ω ωW W
4Q -1

C L L 2Q 2Q tanθ

  
  

 

 
1

1

2OX EB1 0

X

W

L

C V ω
= 4Q -1

C sinθ 2Q

  
 

Vin

Vout

XC
M1

DDV

M2
IB

Expressing gm1 and gm2 in terms of design parameters: 

If we assume IB=0, equating drain currents obtain: 

Thus the previous two expressions can be rewritten as : 

(5) 

(6) 

(7) 

(8) 

(9) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

0 m1 Xg /CI 

m2 Xg /CL 

 
2OX EB1 0 01 2

X 1 2

C V ω ωW W
4Q -1

C L L 2Q 2Q tanθ

  
  

 

 
1

1

2OX EB1 0

X

W

L

C V ω
= 4Q -1

C sinθ 2Q

  
 

Vin

Vout

XC
M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1




Taking the ratio of these two equations we obtain: 

Observe that the pole Q is determined by the dimensions of the lossy device ! 

(8) 

(9) 

(10) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

 
1

1

2OX EB1 0

X

W

L

C V ω
= 4Q -1

C sinθ 2Q

  
 

Vin

Vout

XC
M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1




Still must obtain W1/ L1, VEB1, and CX from either of these equations 

Although it appears that there might be 3 degrees of freedom left and only 

one constraint (one of these equations), if these integrators are connected in a  

loop, the operating point (Q-point) will be the same for all stages and will be that value  

where Vout=Vin.  So, this adds a second constraint. 

Setting Vout=Vin , and assuming VT1=VT2,  we obtain from KVL  

DD EB1 EB2 TV =V +V +2V

(8) 

(10) 

(11) 

But VEB1 and VEB2 are also related in (7) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

 
1

1

2OX EB1 0

X

W

L

C V ω
= 4Q -1

C sinθ 2Q

  
 

Vin

Vout

XC
M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1




Still must obtain W1/ L1, VEB1, and CX from either of these equations 

DD EB1 EB2 TV =V +V +2V

(8) 

(10) 

(11) 

1 2
EB2 EB1

2 1

W L
V =V

W L (7) 

DD T
EB1

2 1

1 2

V -2V
V =

W L
1+

W L

(12) 

Substituting (10) into (12) and then into (8) we obtain 

 
1

1

2OX 0DD T

-1 2X
1

2
1

W

L

C ωV 2V
= 4Q -1

C sinθ 2Q
W sinθ+cosθ 4Q -1

1+
L 4Q -1



 
 
    

     
          

(13) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

Vin

Vout

XC
M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1




There is still one degree of freedom remaining. Can either pick W1/L1 and solve for CX 

or pick CX and solve for W1/L1.  

 

Explicit expression for W1/L1 not available 

 

Tradeoffs between CX and W1/L1 will often be made 

 

Since VOUTQ=VT+VEB1, it may be preferred to pick VEB1, then solve (12) for W1/L1  and 

then solve (13) for CX 

 

Adding IB will provide one additional degree of freedom and will relax the relationship 

between VOUTQ and W1/L1 since  (7) will be modified 

 
 

(10) 

 
1

1

2OX 0DD T

-1 2X
1

2
1

W

L

C ωV 2V
= 4Q -1

C sinθ 2Q
W sinθ+cosθ 4Q -1

1+
L 4Q -1



 
 
    

     
          

(13) 
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High Frequency Filters 



A lossy integrator stage  

  m1 X

m2 X

-g /C

s+g /C
I s 

0 m1 Xg /CI 

m2 Xg /CL 

Vin

Vout

XC
M1

DDV

M2
IB



A fully-differential voltage-controlled integrator stage  

Will need CMFB circuit 

VCTRL

VB

Vin
 Vin



Vout
 Vout



XC XC

DDV

M1

1
0

m
d

X

g
I

C




A fully-differential voltage-controlled integrator stage with loss  

  m1
0

X m3

g
s

sC +g
I 

Will need CMFB circuit 

VCTRL

VB

Vin
 Vin



Vout
 Vout



XC XC

DDV

M1



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

 
20

0

ω
= 4Q -1

sinθ 2Q
I

 
20 0

L

ω ω
α 4Q -1

2Q 2Q tanθ
 

0 m1 Xg /CI 

m2 Xg /CL 

 
20m1

X

ωg
= 4Q -1

C sinθ 2Q

 
20 0m2

X

ω ωg
4Q -1

C 2Q 2Q tanθ
 

Recall: 

Substituting for I0 and αL we obtain: 

Vin

Vout

XC
M1

DDV

M2
IB

(1) 

(2) 

(3) 

(4) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

0 m1 Xg /CI 

m2 Xg /CL 

 
2OX 1 EB1 0

1 X

C W V ω
= 4Q -1

L C sinθ 2Q



 
2OX 2 EB2 0 0

2 X

C W V ω ω
4Q -1

L C 2Q 2Q tanθ


 

1 2
EB2 EB1

2 1

W L
V =V

W L

 
2OX EB1 0 01 2

X 1 2

C V ω ωW W
4Q -1

C L L 2Q 2Q tanθ

  
  

 

 
1

1

2OX EB1 0

X

W

L

C V ω
= 4Q -1

C sinθ 2Q

  
 

Vin

Vout

XC
M1

DDV

M2
IB

Expressing gm1 and gm2 in terms of design parameters: 

If we assume IB=0, equating drain currents obtain: 

Thus the previous two expressions can be rewritten as : 

(5) 

(6) 

(7) 

(8) 

(9) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

0 m1 Xg /CI 

m2 Xg /CL 

 
2OX EB1 0 01 2

X 1 2

C V ω ωW W
4Q -1

C L L 2Q 2Q tanθ

  
  

 

 
1

1

2OX EB1 0

X

W

L

C V ω
= 4Q -1

C sinθ 2Q

  
 

Vin

Vout

XC
M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1




Taking the ratio of these two equations we obtain: 

Observe that the pole Q is determined by the dimensions of the lossy device ! 

(8) 

(9) 

(10) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

 
1

1

2OX EB1 0

X

W

L

C V ω
= 4Q -1

C sinθ 2Q

  
 

Vin

Vout

XC
M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1




Still must obtain W1/ L1, VEB1, and CX from either of these equations 

Although it appears that there might be 3 degrees of freedom left and only 

one constraint (one of these equations), if these integrators are connected in a  

loop, the operating point (Q-point) will be the same for all stages and will be that value  

where Vout=Vin.  So, this adds a second constraint. 

Setting Vout=Vin , and assuming VT1=VT2,  we obtain from KVL  

DD EB1 EB2 TV =V +V +2V

(8) 

(10) 

(11) 

But VEB1 and VEB2 are also related in (7) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

 
1

1

2OX EB1 0

X

W

L

C V ω
= 4Q -1

C sinθ 2Q

  
 

Vin

Vout

XC
M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1




Still must obtain W1/ L1, VEB1, and CX from either of these equations 

DD EB1 EB2 TV =V +V +2V

(8) 

(10) 

(11) 

1 2
EB2 EB1

2 1

W L
V =V

W L (7) 

DD T
EB1

2 1

1 2

V -2V
V =

W L
1+

W L

(12) 

Substituting (10) into (12) and then into (8) we obtain 

 
1

1

2OX 0DD T

-1 2X
1

2
1

W

L

C ωV 2V
= 4Q -1

C sinθ 2Q
W sinθ+cosθ 4Q -1

1+
L 4Q -1



 
 
    

     
          

(13) 



Example: 

Using the single-stage lossy integrator, design the integrator to meet a given 

ω0 and Q requirement 

Vin

Vout

XC
M1

DDV

M2
IB

2
2

2
2

W sinθ cosθ 4Q -1

L 4Q -1




There is still one degree of freedom remaining. Can either pick W1/L1 and solve for CX 

or pick CX and solve for W1/L1.  

 

Explicit expression for W1/L1 not available 

 

Tradeoffs between CX and W1/L1 will often be made 

 

Since VOUTQ=VT+VEB1, it may be preferred to pick VEB1, then solve (12) for W1/L1  and 

then solve (13) for CX 

 

Adding IB will provide one additional degree of freedom and will relax the relationship 

between VOUTQ and W1/L1 since  (7) will be modified 

 
 

(10) 

 
1

1

2OX 0DD T

-1 2X
1

2
1

W

L

C ωV 2V
= 4Q -1

C sinθ 2Q
W sinθ+cosθ 4Q -1

1+
L 4Q -1



 
 
    

     
          

(13) 
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High Frequency Filter Design 

• Architecture selection is critical 

 

• At high frequencies, simplicity of the structures is important 

 

• Parasitic capacitances and their relationship to the time constants 

that can be achieved provide the ultimate limit on speed 

 

• Will limit discussions to  “inductorless” structures 



High Frequency Filter Design 

• Degenerate VCOs 

 

• Simple high-frequency integrator-based filters 

 

Following two methods will provide highest frequency of operation 



Integrator Architecture Selection 

 I s  
1

sRC

IIN

IOUT

R

C

ZL

V1

V2

C

VOUT

VIN
gm

IOUT

VBB

VOUT

C

VIN
R

VOUT

C

VIN
RMOS

VC

VOUT

VIN

C

gm

IOUT

 I s  
1

sRC

 I s  
MOS

1

sR C
 I s   mg

sC

 I s   mg

sC

C

VIN

VOUT

C1

φ1 φ2

 I s 1 CLKC f

sC
 

IIN

φ1

M1
M2

CP

φ2

IB1

CP1: :1

VDD

I1 IOUT

M4

IB3

:A

φ2

 I s CLKAf

s
 

CIIN
IOUT

IB1

C
IIN IOUT

 I s   mg

sC
 I s mg

sC




Integrators for High-Speed Operation 

 I s  
1

sRC

IIN

IOUT

R

C

ZL

V1

V2

C

VOUT

VIN
gm

IOUT

VBB

VOUT

C

VIN
R

VOUT

C

VIN
RMOS

VC

VOUT

VIN

C

gm

IOUT

 I s  
1

sRC

 I s  
MOS

1

sR C

 I s   mg

sC

 I s   mg

sC

C

VIN

VOUT

C1

φ1 φ2

 I s 1 CLKC f

sC
 

IIN

φ1

M1
M2

CP

φ2

IB1

CP1: :1

VDD

I1 IOUT

M4

IB3

:A

φ2

 I s CLKAf

s
 

C
IIN IOUT

 I s mg

sC


CIIN
IOUT

IB1

 I s   mg

sC

Slow Reasonably Fast Very Fast 



C

VOUT

VIN

gm1

IB1

M1

M
C

VOUT

VIN

gm1

IB1 IB2

M1

Single-ended High-Frequency TA Integrators 

gm
gm

CIIN
IOUT

IB1

M

VINgm1

IB1 IB2

M1

IIN

IOUT

 I s   mg

sC

 I s   mg

sC

 I s mMg

sC


 I s mMg

sC


Structures of choice for highest-frequency of operation 

Some authors focus on voltage mode and others on current mode 

But overall structures and performance appears to be identical  



C

VOUT

VIN

gm1

IB1

M1

Single-ended High-Frequency TA Integrators 

 I s   mg

sC 0I
mg

C


How high can I0 be? 

Recall:  ω0 for integrator-based filters generally port ional to I0   

EB
0

W / LV
I OXC

C




Looks like we can make I0 as large as we want by making VEB large, C 

small, L small, and W large 



Single-ended High-Frequency TA Integrators 

How high can I0 be? 

EB
0

W / LV
I OXC

C




0I

s

0I

s
XIN

α

Consider a typical filter – the two integrator loop 

C

VOUT

VIN

gm1

IB1

M1

Integrator is loaded by another integrator! 

C

VOUT

VIN
gm

IB1

C

VOUT

gm

IB1

CPM1

M2

1 1 EB1
0

2 2

W / L V
I

W L

OX

P OX

C

C+C C






Even if C goes to 0, I0 is limited! 

CP is the parasitic capacitances on the output node 



Single-ended High-Frequency TA Integrators 

How high can I0 be? 

C

VOUT

VIN
gm

IB1

C

VOUT

gm

IB1

CPM1

M2

1 1 EB1
0

2 2

W / L V
I

W L

OX

P OX

C

C+C C






Setting C to 0 and assuming Cp is small,  

1 1 EB1
0

2 2

W / L V
I

W L

OX

OX

C

C




1 EB1
0

2 1 2

W V
I

W L L




Assuming the integrator stages are identical, it follows that  

EB1
0 2

min

V
I

L






Transition (transit) frequency (fT) of a process 

VDSX

gm

CGS
IIN

IOUT

The transit frequency of a process is the frequency where the short-circuit 

current gain of the common-source configuration drops to 1. 

OUT m gs

IN  gs

GS

i  = g

1
i •  = 

sC

V

V

OUT m

IN GS

i g
 = 

i sC

m

GS T

g
 1= 

C ω

OX EB

m EB
T 2

GS OX

W
μC V

g μVL
 ω = 

C C WL L

 
 
  

EB
T 2

min

μV
 ω = 

L



Transition (transit) frequency (fT) of a process 

VDSX

gm

CGS
IIN

IOUT

The transit frequency of a process is the frequency where the short-circuit 

current gain of the common-source configuration drops to 1. 

EB
T 2

min

μV
 ω = 

L

This is dependent upon VEB 

Does not include effects of diffusion capacitances or overlap capacitances 

fMAX is another figure that characterizes the speed of a process 



Single-ended High-Frequency TA Integrators 

How high can I0 be? 

C

VOUT

VIN
gm

IB1

C

VOUT

gm

IB1

CPM1

M2

EB1
0M 2

min

V
I

L




0M TI ω

Speed of operation increases with VEB1 

 
VEB1 is limited by signal swing requirements and VDD 

Signal Swing: 

min{SW-0P DD OQ OQ TV V -V ,V - (V +100mV)}

OQ T EBV = V +V

min{SW-0P DD T EB T EB TV V -V -V ,V +V - (V +100mV)}



Single-ended High-Frequency TA Integrators 

How high can I0 be? 

C

VOUT

VIN
gm

IB1

C

VOUT

gm

IB1

CPM1

M2

EB1
0M 2

min

V
I

L




0M TI ω

Speed of operation increases with VEB 

 
VEB is limited by signal swing requirements and VDD 

Signal Swing: 

DD T EB T EB TV -V -V V +V - (V +100mV)

DD T
EB

V +100mV-V
V

2


 
2

DD T

OMAX

min

μ V +100mV-V
I

2L
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High Frequency Filters 



Integrators for High-Speed Operation 

 I s  
1

sRC

IIN

IOUT

R

C

ZL

V1

V2

C

VOUT

VIN
gm

IOUT

VBB

VOUT

C

VIN
R

VOUT

C

VIN
RMOS

VC

VOUT

VIN

C

gm

IOUT

 I s  
1

sRC

 I s  
MOS

1

sR C

 I s   mg

sC

 I s   mg

sC

C

VIN

VOUT

C1

φ1 φ2

 I s 1 CLKC f

sC
 

IIN

φ1

M1
M2

CP

φ2

IB1

CP1: :1

VDD

I1 IOUT

M4

IB3

:A

φ2

 I s CLKAf

s
 

C
IIN IOUT

 I s mg

sC


CIIN
IOUT

IB1

 I s   mg

sC

Slow Reasonably Fast Very Fast 
Review from last time 



Single-ended High-Frequency TA Integrators 

How high can I0 be? 

EB
0

W / LV
I OXC

C




0I

s

0I

s
XIN

α

Consider a typical filter – the two integrator loop 

C

VOUT

VIN

gm1

IB1

M1

Integrator is loaded by another integrator! 

C

VOUT

VIN
gm

IB1

C

VOUT

gm

IB1

CPM1

M2

1 1 EB1
0

2 2

W / L V
I

W L

OX

P OX

C

C+C C






Even if C goes to 0, I0 is limited! 

CP is the parasitic capacitances on the output node 

Review from last time 



Single-ended High-Frequency TA Integrators 

How high can I0 be? 

C

VOUT

VIN
gm

IB1

C

VOUT

gm

IB1

CPM1

M2

EB1
0M 2

min

V
I

L




0M TI ω

Speed of operation increases with VEB1 

 
VEB1 is limited by signal swing requirements and VDD 

Signal Swing: 

min{SW-0P DD OQ OQ TV V -V ,V - (V +100mV)}

OQ T EBV = V +V

min{SW-0P DD T EB T EB TV V -V -V ,V +V - (V +100mV)}

Review from last time 



Single-ended High-Frequency TA Integrators 

How high can I0 be? 

C

VOUT

VIN
gm

IB1

C

VOUT

gm

IB1

CPM1

M2

EB1
0M 2

min

V
I

L




0M TI ω

Speed of operation increases with VEB 

 
VEB is limited by signal swing requirements and VDD 

Signal Swing: 

DD T EB T EB TV -V -V V +V - (V +100mV)

DD T
EB

V +100mV-V
V

2


 
2

DD T

OMAX

min

μ V +100mV-V
I

2L

Review from last time 



Single-ended High-Frequency TA Integrators 

How high can I0 be? 

EB1
0M 2

min

V
I

L




0M TI ω

 
2

DD T

OMAX

min

μ V +100mV-V
I

2L

1 1 EB1
0

1 1

W / L V
I

W L

OX

P OX

C

C+C C






Neglecting Cp and C, obtained 

How much power is required to realize I0MAX?  

QPT DD D

2

1 EB1
QPT DD

min

P V I

W V
P V

2L

OXC





C

VOUT

VIN

CP

VDD

M1

M2

Note this is independent of W1 

Note this is proportional to W1 

min min

T DD

2 2W L
min EB1 EB1

QPT DD DD

min

2 2V 0.25V
3DD T DD

DD DD DD

W V V
P V V

2L 2

V 100mV V 0.75V
V V .07 V

2 2 2 2

OX OX

OX OX
OX

C C

C C
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Single-ended High-Frequency TA Integrators 

How high can I0 be? 
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Neglecting Cp and C, obtained 

CP will modestly reduce the speed of the circuit  
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Consider the diffusion capacitances on M1 and M2 



How high can I0 be? 

Consider a basic layout of a transistor 

The capacitance density along the sw of the drain is 

usually somewhat less than that along the outer 

perimeters but may not easily be modeled separately 

Assuming the same, drain diffusion capacitance of a transistor is given by 

   DIFFC BOT  1 SW  1 C W d C 2d 2W  

W

d1

L

CDIFF

The parasitic diffusion capacitances are 

strongly layout dependent 

CBOT is the bottom diffusion capacitance density 

CSW is the sidwall diffusion capacitance density 



How high can I0 be? 
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Consider a basic layout 
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Assume LMIN=2λ 
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How high can I0 be? 

C

VOUT

VIN

CP

VDD

M1

M2

Consider a basic layout of a transistor 
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How high can I0 be? 
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Consider a basic layout 
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Define and assume 
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How high can I0 be? 

C

VOUT

VIN

CP

VDD

M1

M2

Consider a basic layout 
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How high can I0 be? 

C

VOUT

VIN

CP

VDD

M1

M2

Consider a basic layout 
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How high can I0 be? 
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VOUT

VIN

CP

VDD

M1

M2

Consider a basic layout 
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Example:   Consider the 0.25u TSMC CMOS Process 
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How high can I0 be? 

C

VOUT

VIN

CP

VDD

M1

M2

Consider a basic layout 
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Example:   Consider the 0.25u TSMC CMOS Process 
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SW term BOT term 
GATE 

term 



How high can I0 be? 

C

VOUT

VIN

CP
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M1
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Consider a basic layout 
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Example:   Consider the 0.25u TSMC CMOS Process 
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SW term 
BOT term 

• The diffusion capacitance term can dominate the CGS term 

• The SW capacitance can be the biggest contributor to the speed limitations 

• A factor of 10 or even much more reduction in speed is possible due to the   

diffusion parasitics and layout 

• Maximizing W1 will minimize I0 but power will get very large for marginal 

improvement in speed 

If W1=1.5u and VEB1=VEB2  
0I .102

1 4.73 4.03

T
T

ω
ω 

 



How high can I0 be? 

C

VOUT

VIN

CP

VDD

M1

M2

Consider a basic layout 

W1

W2
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d2
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Example:   Consider the 0.25u TSMC CMOS Process 
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SW term BOT term 

This example shows that layout is really critical when high speed operation is needed 

What can be done with layout to improve performance? 



How high can I0 be? 

C

VOUT

VIN

CP

VDD

M1

M2

Consider a basic layout 

W1

W2

d1

d2

LMIN

LMIN

Reducing the diffusion capacitances on the drains will have a major impact on speed! 

What can be done with layout to improve performance? 

Gate

Drain

Source

Consider a concentric layout approach: 



Concentric Layouts 

Gate

Drain

Source

Can be shown this is equivalent to a rectangular transistor (WEQ/LEQ) 

Drain area and perimeter dramatically reduced 

Source area and perimeter dramatically increased (but does not degrade performance) 

Only sidewall is adjacent to the gate and CSW is usually considerably lower 

here though some models do not provide separate characterization 



Concentric Layouts 
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Exact closed-form expressions exist which are somewhat more complicated 
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EQ 2
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Recall 

Assume W2>W1 

Will minimize the diffusion capacitance by starting with a minimum-

sized concentric device 

y2=6λ Thus x2=2λ y1=10λ 

Define K1 to be the scaling factor of W1 above that of the minimum-sized concentric 

device 
1

1

1min

W
K  = 

W

Assume, for convenience, that K is an integer 

M1 realized by placing K1 minimum-sized concentric devices in parallel 

 2
1min

W 4λ 6 

How high can I0 be? Consider concentric layouts for M1 and M2 
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y2=6λ x2=2λ y1=10λ 

1

1
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W
K  = 

W

 2
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W 4λ 6 

PD1=K124λ AD1=K1(6λ)2 AGATE1=K1(48λ2+16λ2) 

How high can I0 be? Consider concentric layouts for M1 and M2 

Consider now the concentric layout for M1 

Consider now the concentric layout for M2 

The minimum-sized layout (gate,source, and drain)  for the p-channel 

transistors are identical to those for n-channel transistors 

Define K2 to be the scaling factor for W2 above that of a minimum-sized 

concentric device 

PD2=K224λ AD2=K2(6λ)2 



How high can I0 be? Consider concentric layouts for M1 and M2 

Individual segments can be a little bigger than minimum sized w/o major change 

in performance 

May select K1=K2=1 
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How high can I0 be? Consider concentric layouts for M1 and M2 
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How high can I0 be? Consider concentric layouts for M1 and M2 
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How high can I0 be? Consider concentric layouts for M1 and M2 
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How high can I0 be? 

C

VOUT

VIN

CP

VDD

M1

M2

Consider concentric layout 

Example:   Consider the 0.25u TSMC CMOS Process 

SW term BOT term 

with W1=1.5u and VEB1=VEB2 
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Diffusion parasitics still dominate frequency degradation 

But a factor of 3 faster with the concentric layout compared to standard layout 
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SW term probably over-estimated since it is an internal SW capacitance 



How high can I0 be? 

C

VOUT

VIN

CP

VDD

M1

M2

Other layouts for enhancing speed of operation 

Goal:  reduce area and perimeter on drain 

Shared-drain structure Circular-concentric structure 

Though the reduced size drain structures work very well, CAD support may be 

limited for layout, simulation, and extraction 



How high can I0 be? 

C

VOUT

VIN

CP

VDD

M1

M2

Other layouts for enhancing speed of operation 

Goal:  reduce area and perimeter on drain 

Useful for adding loss or in high-speed gain stages 



Note:  Significant change in 

speed with optimal choice 

of design variables 
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Current Mode Filters 
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Current-Mode Filters 

Current-Mode Filters have become a topic of 

considerable interest in recent years 

 

 

 
Consider first a brief background about filters 
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Recall: 
John Hughes introduced the concept of the switched-current filter in 1989 

 

This was considered a revolutionary concept since it offered potential for 

operating  at very high frequencies with simple amplifiers (current mirrors) 

but no operational amplifiers.  Some properties of Hughes’s current-mode 

filters 
1. Filter parameters dependend only on geometric ratios and clock frequency 

2. Insensitive to value of parasitic capacitors 

3. Operates at both low and high frequencies 

4. Very small 

5. Can operate at very low voltages (one VT and one VEB between rails if switches 

are neglected) 

Others argued that these properties were inherent in the current-mode of 

operation and that continuous-time structures may perform even better ! 

 

A current-conveyor community had been struggling for years to get any adoption 

and this seemed to propel them to the forefront of the technology field 

 

Literally hundreds of researchers jumped on the current-mode filter bandwagon 
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Recall: 
John Hughes introduced the concept of the switched-current filter in 1989 

  Hughes has been recognized as a renowned filter design expert for many 

years and has had the benefits of an industrial research environment to 

support his work 

 Update on Hughes Work 

  1

B
H z

1 Az



Recall the Hughes integrator: 

Hughes found the sensitivity of the parameter A was too large in his 

original structure to make an acceptable lossless integrator 

 

He made some modifications to this approach to improve the sensitivity 

problem 

 

He worked for about another 10 years to develop practical switched-

current filters at Phillips but struggled to get good practical experimental 

results.  He retired several years ago 

 

There appears to be little work going on today on the switched-current 

filter and there appears to be little adoption of the concept 
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Filter Background 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

XOUTXIN Tm(s)

Biquad

  1 2 mT s T T T

Conventional Wisdom:   
• A current-mode filter is a filter where the input and output variables are currents 

• A voltage-mode filter is a filter where the input and output variables are voltages 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

  OUT
1 2 m

IN

V
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Tk(s)
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1 2 m
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I


Voltage Mode Filter 

Current Mode Filter 



6 

 Filter Background 
• Most higher-order filters today are built around one of the following architectures 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad
XOUT

XIN

α1
α2 αk

α0


T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

XOUTXIN Tm(s)

Biquad

  1 2 mT s T T T

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator
XIN XOUT

Ik-1(s)

Integrator

a2a1

  0 1 2 k

1 1 2 1 2 k 1 2 k

-a T T T
T s

1+a T +a T T + +a T T T
 F

k
k

α
a

α


Cascaded Biquad 

Leapfrog 

Primary Resonator Block 

• These basic structures have evolved because of their performance capabilities  
(e.g. sensitivities, component spread, …)  

• These basic structures are used irrespective of whether the filter is a “voltage 

mode” or a “current mode” filter 
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 Filter Background 
Most filters today, particularly integrated structures, are built with integrators 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

XOUTXIN Tm(s)

Biquad

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator
XIN XOUT

Ik-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad
XOUT

XIN

α1
α2 αk

α0


Biquads are usually built with integrators ! 
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Filter Background 
Most filters today, particularly integrated structures, are built with integrators 

Typical integrator-based biquadratic  structure (shown LP only) 

0

0

I

s+αI
 0I

sXIN
XOUT

 
2
0

2 2
0 0

I
T s

s + I s+I




Tow-Thomas Biquad 

• State Variable Biquad 

• Two Integrator Loop  

Similar to: 

• KHN Biquad 

• Lead and Lag in a Loop 
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 Filter Background 
Most filters today, particularly integrated structures, are built with integrators 

Variants of two integrator loop 
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Filter Background 
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Voltage-Mode Biquad 

Current-Mode Biquad 
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 Filter Background 
Voltage-Mode Biquad 

Current-Mode Biquad 

RARAR

R

RQ

CR1

C

VIN
VOUT

RARQ R

IOUT

C
RA

C R RLIIN

Notice considerable differences in the circuit-level implementations 
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Filter Background 

0
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Observations: 

 

•   Structures for voltage mode and current mode Integrators are often the same 

 

•   Structures for voltage mode and current mode filters are often the same 

 

•   Circuit-level implementations appear to be quite different 
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Current-Mode Filters 

0

0

I
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 0I
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2

OUT 0
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T s
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Concept of Current-Mode Filters is Somewhat Recent:  

     

Key paper that generated interest in current-mode filters: 

(from Google Scholar Nov 25, 2012) 
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Current-Mode Filters 

Advanced Search for “current-mode” and “filters” in Metadata 

119 

Updated Nov 22, 2012 
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Current-Mode Filters 

Steady growth in research in the area since 1990 and publication 

rate is growing with time !! 
Updated Nov 22, 2012 
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Current-Mode Filters 

TSP 2012: 

The Conventional Wisdom: 

CECNet 2012  
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Current-Mode Filters 

1 Introduction 

Current-mode circuits have been proven to offer advantages over their 

voltage-mode counterparts [1, 2]. They possess wider bandwidth, greater 

linearity and wider dynamic range. Since the dynamic range of the 

analogue circuits using low-voltage power supplies will be low, this 

problem can be solved by employing current-mode operation. 

Proc. IEE Dec 2006: 

1. INTRODUCTION 

It is well known that current-mode circuits have been receiving 

significant attention owing to its advantage over the voltage-mode 

counterpart, particularly for higher frequency of operation and 

simpler filtering structure [1]. 

The Conventional Wisdom: 

Proc. SICE-ICASE, Oct. 2006  
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Current-Mode Filters 

JSC April 1998: 

The Conventional Wisdom: 

CAS  June  1992  
  

“Current-mode signal processing is a very attractive approach due to the 

simplicity in implementing operations such as … and the potential to 

operate at higher signal bandwidths than their voltage mode analogues” 

…  “Some voltage-mode filter architectures using transconductance 

amplifiers and capacitors (TAC) have the drawback that  …” 

  

 

“… current-mode functions exhibit higher frequency potential, simpler 

architectures, and lower supply voltage capabilities than their voltage-

mode counterparts.”  
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Current-Mode Filters 

ISCAS 1993: 

The Conventional Wisdom: 

“In this paper we propose a fully balanced high frequency current-

mode integrator for low voltage high frequency filters.  Our use of the 

term current mode comes from the use of current amplifiers as the 

basic building block for signal processing circuits.  This fully 

differential integrator offers significant improvement even over 

recently introduced circuit with respect to accuracy, high frequency 

response, linearity and power supply requirements.  Furthermore, it is 

well suited to standard digital based CMOS processes.” 
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Current-Mode Filters 

The Conventional Wisdom: 

Two key publications where benefits of the current-mode circuits are often 

referenced: 

All current-mode frequency selective circuits  GW Roberts, AS 

Sedra - Electronics Letters,  June 1989 -  pp. 759-761 Cited by 161    

 

“To make greatest use of the available transistor bandwidth fT , and operate at low 

voltage supply levels, it has become apparent that analogue signal processing 

can greatly benefit from processing current signals rather than voltage signals.  

Besides this, it is well known by electronic circuit designers that the mathematical 

operations of adding, subtracting or multiplying signals represented by currents 

are simpler to perform than when they are represented by voltages. This also 

means that the resulting circuits are simpler and require less silicon area.” 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31881
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31881
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31881
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=31881
http://scholar.google.com/scholar?num=100&hl=en&lr=&cites=10863390984668700995
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Current-Mode Filters 

The Conventional Wisdom: 

Two key publications where benefits of the current-mode circuits are often 

referenced: 

Recent developments in current conveyors and current-mode 

circuits  B Wilson - Circuits, Devices and Systems, IEE 

Proceedings G, pp. 63-77, Apr. 1990 Cited by 203 

“The use of current rather than voltage as the active parameter can result in higher 

usable gain, accuracy and bandwidth due to reduced voltage excursion at sensitive 

nodes. A current-mode approach is not just restricted to current processing, but 

also offers certain important advantages when interfaced to voltage-mode circuits.” 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=217061
http://scholar.google.com/scholar?num=100&hl=en&lr=&cites=2145049747873587679
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Current-Mode Filters 

 

– Current-Mode filters operate at higher-frequencies 

than voltage-mode counterparts 

– Current-Mode filters operate at lower supply voltages 

and lower power levels than voltage-mode 

counterparts 

– Current-Mode filters are simpler than voltage-mode 

counterparts 

– Current-Mode filters offer better linearity than voltage-

mode counterparts 

– Integrated Current-Mode filters require less area 

 Conventional Wisdom: 
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Observation 

• Many papers have appeared that tout the 
performance advantages of current-mode 
circuits 

• In all of the current-mode papers that this 
author has seen, no attempt is made to 
provide a quantitative comparison of the key 
performance features of current-mode circuits 
with voltage-mode counterparts 

• All justifications of the advantages of the 
current-mode circuits this author has seen 
are based upon qualitative statements 
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Observations (cont.) 

• In selected comparisons this author has made,  

performance characteristics of current-mode 

filters do not appear to be substantially better 

than those reported for “other” approaches 

• It appears easy to get papers published that 

have the term “current-mode” in the title 

• Over 1200 papers have been published in IEEE 

forums alone ! 
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Research Opportunity (for academia) 

• Provide a formal justification of the high 

frequency, low voltage and low power 

benefits of current-mode circuits 

• Gain insight into how these benefits can 

be further exploited 

• Sounds like a simple problem 
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Questions about the Conventional Wisdom 

• Why does a current-mode circuit work better at 

high frequencies?  

• Why is a current-mode circuit better suited for 

low frequencies? 

• Why do some “voltage”-mode circuits have 

specs that are as good as the current-mode 

circuits?  
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• Why are most of the papers on current-mode 

circuits coming from academia? 

• Why haven’t current-mode circuits replaced 

“voltage”-mode circuits in industrial applications? 

Questions about the Conventional Wisdom 
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• Are current-mode circuits really better than their 
“voltage-mode” counterparts? 

 

• What is a current-mode circuit? 

– Must have a simple answer since so many 
authors use the term 

 

• Do all agree on the definition of a current-mode 
circuit? 

Questions about the Conventional Wisdom 
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Questions about the Conventional Wisdom 

What is a current-mode circuit? 

• Everybody seems to know what it is 

 

• Few have tried to define it 

 

• Is a current-mode circuit not a voltage-

mode circuit? 
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Questions about the Conventional Wisdom 

“Several analog CMOS continuous-time filters for high frequency 

applications have been reported in the literature… Most of these 

filters were designed to process voltage signals.  It results in high 

voltage power supply and large power dissipation.  To overcome 

these drawbacks of the voltage-mode filters, the current-mode 

filters circuits , which process current signals have been 

developed” 

  

A 3V-50MHz Analog CMOS Current-Mode High Frequency 

Filter with a Negative Resistance Load,  pp. 260…,,IEEE Great 

Lakes Symposium March 1996. 

 

What is a current-mode circuit? 
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Questions about the Conventional Wisdom 

•  A current-mode circuit is a circuit that processes   

   current signals 

•  A current-mode circuit is one in which the defined  

   state variables are currents 

Conventional Wisdom Definition: 

IIN

IOUT

R1
RL

R2

Is this a current-mode circuit? 

Example: 

Is this a voltage-mode circuit? 

VIN

VOUT

R1

R2

RL



3-08 35 

A current-mode circuit is a circuit that 

processes current signals 

Conventional Wisdom Definition: 

IIN

IOUT

R1
RL

R2

Is this a current-mode circuit? 
Example: 

Is this a voltage-mode circuit? 

VIN

VOUT

R1

R2

RL

• One is obtained from the other by a Norton to Thevenin Transformation 

• The poles and the BW of the two circuits are identical ! 
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Question?  

 
Is the following circuit a voltage mode-circuit 

or a current-mode circuit? 
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Question?  

 
Is the following circuit a voltage mode-circuit 

or a current-mode circuit? 

ID 

Current Mode ! 
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Question?  

 
Is the following circuit a voltage mode-circuit 

or a current-mode circuit? 

+ 

- 

VDS 

Voltage Mode ! 
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Observations: 

• Voltage-Mode or Current-Mode Operation of 
a Given Circuit is not Obvious 

• All electronic devices have a voltage-current 
relationship between the port variables that 
characterizes the device 

• The “solution” of all circuits is identical 
independent of whether voltages or currents 
are used as the state variables 

• The poles of any circuit are independent of 
whether the variables identified for analysis 
are currents or voltages or a mixture of the 
two 
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JSC April 1998: 

“… current-mode functions exhibit higher frequency potential, simpler 

architectures, and lower supply voltage capabilities than their voltage-

mode counterparts.”  

 

Questions about the Conventional Wisdom 

Is it possible that there are really no benefits from  

frequency response, supply voltage and power 

dissipation viewpoints for “current-mode” circuits? 
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Questions about the Conventional Wisdom 

Is it possible that there are really no benefits from a 

frequency response, supply voltage and power 

dissipation viewpoints for “current-mode” circuits? 

 

 

Observation:  If any so-called current-mode circuit is 

analyzed using voltages as the port variables, the 

poles, sensitivities, frequency response, power 

dissipation, supply voltage requirements and the power 

dissipation will all be the same! 
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Questions about the Conventional Wisdom 

Since a given structure can be implemented 

with either current-mode or voltage-mode 

circuits, is there a fundamental relationship 

between the performance of  so-called current-

mode circuits and their “voltage-mode” 

counterparts? 
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Comparison of Continuous-Time Current-

Mode and Voltage-Mode Filters 

 

• Current-Mode and Voltage-Mode Integrators 
– Op-amp based current-mode and voltage-mode 

integrators 

– gmC current-mode and voltage-mode integrators 

– High frequency current-mode and voltage-mode 
integrators 

• Structure Comparisons 
– Two integrator loop filters 

– Leapfrog filters 
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Basic Feedback Inverting Integrators 

Voltage-Mode Current-Mode 

OUT

IN

V 1

V sRC
  OUT

IN

I 1

I sRC
 

VOUTVIN

C

R IIN
C

R

IOUT
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Basic Feedback Non-Inverting Integrators 

Voltage-Mode Current-Mode 

OUT

IN

V 1

V sRC
 OUT

IN

I 1

I sRC


R

IOUT

R1 R1

C
IINVOUT

VIN

C

R R1

R1
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Basic OL Non-Inverting Integrators 

Voltage-Mode Current-Mode 

OUT m

IN

V g
=

V sC
OUT m

IN

I g
=

I sC

VOUT

VIN

C

gm C gm

IIN IOUT
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Basic OL Inverting Integrators 

Voltage-Mode Current-Mode 

OUT m

IN

V -g
=

V sC

OUT m

IN

I -g
=

I sC

VOUT

VIN

C

gm
C gm

IIN IOUT
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High-Frequency Non-Inverting 

Integrators 

Voltage-Mode Current-Mode 

OUT m

IN

I M g
=

I sC


OUT m

IN

V M g
=

V sC



C

gm
IIN

M

IOUT

C

VOUT

VIN
gm

M
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High-Frequency Non-Inverting 

Integrators 

Voltage-Mode Current-Mode 

OUT m

IN

I M g
=

I sC

OUT m

IN

V M g
=

V sC



M
C

VOUT

VIN
gm

IB1 IB2

M

C IOUT

gm

IB1 IB2

IIN
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High-Frequency Inverting 

Integrators 
Voltage-Mode 

Current-Mode 

OUT m

IN

I -g
=

I sC
OUT m

IN

V -g
=

V sC

C

VOUT

VIN
gm

IB1

C

gm
IIN IOUT

IB1
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Lossy  Integrators 

CRX

C

All voltage-mode and current-mode integrators can be made lossy by  

placing a resistor in shunt with the capacitor 

Well-known Property: 
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Basic Feedback Lossy Inverting Integrators 

Voltage-Mode Current-Mode 
OUT

IN

V 1

V sRC
 

VOUTVIN

C

R IIN
C

R

IOUT

VOUTVIN

C
R

RX

OUT

IN
X

V 1

RV sRC+
R

 

IIN
C

R

IOUT

RX

OUT

IN
X

I 1

RI sRC+
R

 

OUT

IN

I 1

I sRC
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Question: 
How does the performance of filters that 

use the current-mode and voltage-mode 

integrators compare? 

A fair comparison should be within a common 

structure and with a common integrator type 
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Question: 
How does the performance of filters 

that use the current-mode and voltage-

mode integrators compare? 

Will compare the filter performance of  

    -  a two-integrator loop biquad  

    -  a leapfrog filter 



3-08 55 

Two-Integrator-Loop Biquad 

0

0

I

s+αI
 0I

sXIN
XOUT

XOUT1

Lowpass output to XOUT 

 
2
0

2 2
0 0

I
T s

s + I s+I




Bandass output to XOUT1 

  0
1 2 2

0 0

sI
T s

s + I s+I




“Integrator and Lossy Integrator in a Loop” 



3-08 56 

Two-Integrator-Loop Biquad 

0

0

I

s+αI
 0I

sXIN
XOUT

XOUT1

Lowpass output to XOUT 

Bandass output to XOUT1 

0

0

ω

ω
s+

Q

 0ω

sXIN
XOUT

Alternate Equivalent Representation:  I0 1w0        0 1 ω0  

 
2
0

2 20
0

ω
T s

ω
s + s+ω

Q




  0

2 20
0

sω
T s

ω
s + s+ω

Q






3-08 57 

Two-Integrator-Loop Biquad 

0

0

I

s+αI
 0I

sXIN
XOUT

XOUT1

0I

s


0I

sXIN
XOUT

α

Alternate implementation of Lossy Integrator 
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Two-Integrator-Loop Biquad 

0

0

I

s+αI
 0I

sXIN
XOUT

XOUT1

• For notational convenience, the input signal can be suppressed and output 

will not be designated 

• This forms the “dead network” 

• Poles for dead network are identical to original network as are key 

sensitivities 

 

0

0

I

s+αI
0I

s

Two Integrator Loop Biquad 
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Two-Integrator-Loop Biquad 

Consider  a current-mode implementation: 

0

0

I

s+αI
0I

s

C
gm

C
gm

m

Q

g
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Two-Integrator-Loop Biquad 

Consider the corresponding voltage-mode implementation: 

0

0

I

s+αI
0I

s


C

gm

C

gm

m

Q

g
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Two-Integrator-Loop Biquad 

Current-mode 

C
gm

C
gm

m

Q

g

C
gm

C
gm

m

Q

g
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Two-Integrator-Loop Biquad 

Current-mode C
gm

C
gm

m

Q

g

C
gm

C
gm

m

Q

g

C

gm

C

gm

m

Q

g
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Two-Integrator-Loop Biquad 

Current-mode C
gm

C
gm

m

Q

g

C
gm

C
gm

m

Q

g

C

gm

C

gm

m

Q

g

Voltage-mode 
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Question: 

How does the performance of filters 

that use the current-mode and voltage-

mode integrators compare? 
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Question: 

How does the performance of filters 

that use the current-mode and voltage-

mode integrators compare? 

The corresponding current-mode and 

the voltage-mode two integrator loop 

biquad filters are identical! 
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Question: 

How does the performance of filters 

that use the current-mode and voltage-

mode integrators compare? 

The performance (speed, signal swing, 

sensitivity, linearity,power dissipation, etc.) 

of these circuits is identical  ! 
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Leap-Frog Filter 

Current-mode: 

k-1

1

sC k

1

sL k+1

1

sC

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck

gm

gm

Ck+1

gm

Standard OTA 
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Leap-Frog Filter 

Voltage-mode: 

gm

CB

gm

gm
CB

gm

gm

CB

gm

gm
CB

gm

k-1

1

sC k

1

sL k+1

1

sC

Standard OTA 
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Leap-Frog Filter 

Current-mode 

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck

gm

gm

Ck+1

gm

Consider lower OTA in stage k-2, capacitor in stage k-1 and upper OTA in stage k 

gm
Ck-1

gm

gm
Ck-1

gm



3-08 70 

gm

Ck

gm

Leap-Frog Filter 

Current-mode 

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck

gm

gm

Ck+1

gm

Consider upper OTA in stage k-1, capacitor in stage k and lower OTA in stage k+1 

gm

Ck

gm
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Leap-Frog Filter 

Current-mode 

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck

gm

gm

Ck+1

gm

Consider lower OTA in stage k, capacitor in stage k+1 and upper OTA in stage k+2 

gm
Ck+1

gm

gm
Ck+1

gm
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Leap-Frog Filter 

Current-mode 

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck

gm

gm

Ck+1

gm

gm

Ck-2

gm

gm
Ck-1

gm

gm

Ck

gm

gm
Ck+1

gm

gm

Ck-2

gm

gm
Ck-1

gm

gm

Ck

gm

gm
Ck+1

gm

Voltage-mode 



3-08 73 

Leap-Frog Filter 

1

1

sL 2

1

sC 3

1

sL
XIN

XOUT

IN

OUT

Terminated Leap-Frog Filter (3-rd order lowpass) 

Current-mode implementation 

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN
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Leap-Frog Filter 

Current-mode implementation 

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

Consider schematic view: 
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Leap-Frog Filter 

Current-mode implementation 

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

Re-group elements: 
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Leap-Frog Filter 

Current-mode implementation 

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

VOUTVIN

I/O Source Transformation 
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Leap-Frog Filter 

Current-mode implementation 

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

VOUTVIN

gm

C1

gmX

gm
C2

gm

gmY

C3

gm

VOUT
VIN

gmA

Redraw as: 
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Leap-Frog Filter 

Current-mode implementation 

gm

C1

gmX

gm
C2

gm

gmY

C3

gm

VOUT
VIN

gmA

gm

C1

gmX

gm
C2

gm

gmY

C3

gm

VOUT
VIN

gmA

Change notation: 

This is a voltage-mode implementation of the Leap-Frog Circuit ! 
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Leap-Frog Filter 

Current-mode implementation 

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

VOUTVIN

gm

C1

gmX

gm
C2

gm

gmY

C3

gm

VOUT
VIN

gmA

Voltage-mode implementation 

SUMMARY 
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Comment 

The current-mode and voltage-mode equivalence also 

exists for the high-frequency single transistor two-

integrator loop filters and leapfrog filter structures 
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Question: 

How does the performance of filters 

that use the current-mode and voltage-

mode integrators compare? 

Faster, lower supply 

voltages, less power, 

simpler, more linear 
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Question: 

How does the performance of filters 

that use the current-mode and voltage-

mode integrators compare? 

The current-mode and the voltage-

mode leapfrog filters  are identical! 
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Question: 

How does the performance of filters 

that use the current-mode and voltage-

mode integrators compare? 

The performance (speed, signal swing, 

sensitivity, linearity, etc.) of these circuits is 

identical  ! 
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Current-Mode Filters 

Conventional Wisdom 

– Current-Mode circuits operate at higher-frequencies 

than voltage-mode counterparts 

– Current-Mode circuits operate at lower supply 

voltages and lower power levels than voltage-mode 

counterparts 

– Current-Mode circuits are simpler than voltage-mode 

counterparts 

– Current-Mode circuits offer better linearity than 

voltage-mode counterparts 
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Reconciliation of Conventional 

Wisdom and Fundamental Concepts 

• The choice of state (or stated) port variables 
plays no role on the fundamental performance 
characteristics of a filter 

 

• Many current-mode and voltage-mode filters 
that have appeared in the literature are identical 

 

• The issue of whether there are any performance 
advantages from the viewpoint of supply 
voltage, speed of operation and linearity of  
continuous-time current-mode filters over volt-
mode counterparts is in question 

 





What filter architectures are really 
being used today? 

EE 508 
Lecture 40 



Today will consider the first 50 responses 



1 



2 







3 









4 









5 







6 



Programmable Current Element 



7 







8 
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What filter architectures are really 
being used today? 

EE 508 
Lecture 41 
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Mosfet-R integtator 











13 



Authors claim Op Amp is highly power efficient 











14 



15 
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17 



17 







ST transistors operating in weak inversion provide linearization of basic 
transconductance stage.  Transistor biasing not shown but described in [11] 

For the robust characteristics to variations of process, supply voltage, and temperature, the MT 
and ST are biased with current-mirror bias circuitry [11]. 

capacitor 









18 









Two integrator loop oscillators – different methods for controlling the loss  19 





What filter architectures are really 
being used today? 

EE 508 
Lecture 42 
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System requirements appear to not have played a role in defining the filter type 
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EE 508 

Lecture 43 

Basic Filter Components 

• All Pass Networks 
• Arbitrary Transfer Function Synthesis 
• Impedance Transformation Circuits 
• Equalizers 



All-Pass Circuits 

• Magnitude of Gain is Constant 
• Phase Changes with Frequency 
• Used to correct undesired phase 

characteristics of a filter 



First-Order All Pass 

 

1
s -

RCT s = 
1

s +
RC



Im
Re

s-plane

 T jω

-180

-90

ω
1
RC

First-Order All Pass 

 

1
s -

RCT s = 
1

s +
RC



First-Order All Pass 

 

1
s -

RCT s = - 
1

s +
RC



First-Order All Pass 

 

1
s -

RCT s = - 
1

s +
RC

Im
Re

s-plane

 T jω

-180

-90

ω
1
RC



Second-Order All Pass 

Based upon Bridged-T Feedback Structure 



Second-Order All Pass 

Im

Re

s-plane T jω

-180

-90

ω1 2

1

C R R

-360

-270



Arbitrary Transfer Function Synthesis 

• Based upon coefficient derivation 
• Can be used to implement/solve an 

arbitrary differential equation 
• Versatile 
• Basic concept of Analog Computer 



Applications of integrators to solving differential 
equations 

Linear

System
XIN XOUT

Standard Integral form of a differential equation 

1 2 3 0... ...OUT OUT OUT OUT IN IN INX b X b X b X a X X X           
Standard differential  form of a differential equation 

' '' ''' ' ''

1 2 3 1 2 3... ...OUT OUT OUT OUT IN IN INX X X X X X X            

Initial conditions not shown 
 
Can express any system in either differential or integral form 



Applications of integrators to solving differential 
equations 

Linear

System
XIN XOUT

Consider the standard integral form  

1 2 3 0... ...OUT OUT OUT OUT IN IN INX b X b X b X a X X X           

   
INX

   
OUTX

a0 a1 a2

a3 am

b1
b2

b3
bn

This circuit is comprised of summers and integrators 
Can solve an arbitrary linear differential equation 
This concept was used in Analog Computers in the past 



Applications of integrators to solving differential 
equations 

Linear

System
XIN XOUT

Consider the standard integral form  

1 2 3 0... ...OUT OUT OUT OUT IN IN INX b X b X b X a X X X           

Take the Laplace transform of this equation 

1 2 3 0 1 2 3

1 1 1
... ...

2 3 n 2 3 m

1 1 1 1 1

s s s s s s s s
OUT OUT OUT OUT n IN IN IN IN mb b b b a a a a a          X  X  X  X  X  X  X  X  

Multiply by sn and assume m=n   (some of the coefficients can be 0) 

1 2 3 0 1 2 3... ...n n-1 n-2 n-3 n n-1 n-2 n-3s s s s s s s sOUT OUT OUT OUT n IN IN IN IN nb b b b a a a a a          X  X  X  X  X  X  X  X  

   1 2 3 0 1 2 3... ...n n-1 n-2 n-3 n n-1 n-2 n-3s s s s s s s sOUT n IN nb b b b a a a a a          X  X  

  0 1 2 3

1 2 3

...

...

n n-1 n-2 n-3

n n-1 n-2 n-3

s s s s

s s s s
OUT n

IN n

a a a a a
T s

b b b b

    
 

    

X  

X  



Applications of integrators to solving differential 
equations 

Linear

System
XIN XOUT

Consider the standard integral form  

1 2 3 0... ...OUT OUT OUT OUT IN IN INX b X b X b X a X X X           

  0 1 2 3

1 2 3

...

...

n n-1 n-2 n-3

n n-1 n-2 n-3

s s s s

s s s s
OUT n

IN n

a a a a a
T s

b b b b

    
 

    

X  

X  

  1 1 0

1 1

...

...

n n-1

n n-1

0

s s s

s s s + 
n n

n

T s
   

  




  


  

This can be written in more standard form 



Applications of integrators to filter design 

Linear

System
XIN XOUT   1 1 0

1 1

...

...

n n-1

n n-1

0

s s s

s s s + 
n m

n

T s
   

  




  


  

   
INX

   
OUTX

-β0

-βn-1
-βn-2

-βn-3

n
n-1

n-2
n-3

0

Can design (synthesize) any T(s) with just integrators and summers ! 

Integrators are not used “open loop” so loss is not added 

  
Although this approach to filter design works, often more practical methods are 
used 



Impedance Synthesis 

• Focus on synthesizing impedance rather 
than transfer function 

• Gyrators will provide inductance 
simulation 

• Capacitance Multiplication 
• Synthesis of super components 



Impedance Converters 

Z1 Z2

Z5

V1

I1

ZIN
Z3

Z4

One Port

Z1

Z2

Z3

V1

I1

ZIN

One Port

Note these circuits are strictly one-ports and have no output node 



Impedance Converters 

Z1

Z2

Z3

V1

I1

ZIN

One Port

VX

 1 1 2 X 2V G +G  = V G

 1 1 X 3I = V -V G

1 3
IN

2

Z Z
Z = -

Z

Observe this input impedance is negative! 



Impedance Converters 

Z1

Z2

Z3

V1

I1

ZIN

One Port

VX

1 3
IN

2

Z Z
Z = -

Z

If Z1=R1, Z2=R2 and Z3=R3,  
1 3

IN

2

R R
Z = -

R
This is a negative resistor ! 

If Z2=1/sC, Z1=R1 and Z3=R3,  IN 1 3Z = -sCR R This is a negative inductor ! 

If Z2=R2, Z1=1/sC and Z3=R3,  
3

IN

2

R
Z = -

sCR
This is a negative capacitor ! 

This is termed a Negative Impedance Converter 



Impedance Converters 

Z1

Z2

Z3

V1

I1

ZIN

One Port

VX

1 3
IN

2

Z Z
Z = -

Z

If Z2=1/sC, Z1=R1 and Z3=R3,  IN 1 3Z = -sCR R

Modification of NIC to provide a positive inductance: 

Replace Z1 itself with a second NIC that has a negative input impedance 



Negative Impedance Converter 

R1

R2

R3

V1

I1

Negative Resistor

2

1 3

R
-
R R

L

RS

Lossy 

Inductor 

L

RS

-RS

Lossless 

Inductor 

2
S

1 3

R
R = 

R R

If select components so 

that  

One application of NIC 



Impedance Converters 

Z1 Z2

Z5

V1

I1

ZIN
Z3

Z4

One Port

1 3 5
IN

2 4

Z Z Z
Z = 

Z Z

This circuit is often called a Gyrator 



Gyrator Analysis 

Z1 Z2

Z5

V1

I1

ZIN
Z3

Z4

One Port

IY
IX V1VX VY

1 3 5
IN

2 4

Z Z Z
Z = 

Z Z

X 1 3I =VG

X 1 1 3 4V =V +VG /G

 Y 1 X 1I = V -V G

 
 
 

3
1

4

G
=V 1+

G

 
 
 

3
1 1

4

G
=V

G
G

Y 1 Y 2V =V +I /G
  
   

  

3 1
1

4 2

G
=V 1

G

G

G

 1 1 Y 5I = V -V G
  
   

  

3 1
1 5

4 2

G
=V

G

G
G

G



Gyrator Applications 

Z1 Z2

Z5

V1

I1

ZIN
Z3

Z4

One Port

1 3 5
IN

2 4

Z Z Z
Z = 

Z Z

If Z1=Z3=Z4= Z5=R and Z2=1/sC   2

INZ = R C s This is an inductor of value L=R2C 

If Z2=R2, Z3=R3, Z4=R4, Z5=R5 and Z1=1/sC  
3 5

IN

2 4

R R
Z = 

sCR R

This is a capacitor of value  2 4
EQ

3 5

R R
C = C

R R
(can scale capacitance up or down) 

If Z2=Z4= Z5=R and Z1=Z3=1/sC   3 2 2

INZ = R C s This is a “super” capacitor of value  3 2R C



Impedance Converters 

Z1

Z2

Z3

V1

I1

ZIN

One Port

  
     

1
1 1 1 3

1 2

Z
I = V - V G

Z Z

1
 
 
 

2
IN 3

1

Z
Z = Z +

Z

If Z3=R3, Z2=R2 and Z1=1/sC 

 IN 3 2 3Z = R s CR R

LEQ

R3

EQ 2 3L = CR R



Shelving Equalizers 

• Widely used in audio applications 
• User-programmable filter response 



Shelving Equalizers 



Shelving Equalizers 



Shelving Equalizers 

• The expressions for fL and fH for the previous two circuits show a small 
movement with the potentiometer position in contrast to the fixed point 
location depicted in this figure 
 

• The OTA-C filters discussed earlier in the course can be designed to have fixed 
values for fL and fH when cut or boost is used. 





End of Lecture 43 



Conventional Wisdom –  Benefits 

and Consequences of Annealing 

Understanding of Engineering Principles 

by Randy Geiger 

Iowa State University 

EE 508 

Lecture 44 



Summary of Recent Published 

Filter Architectures thanks to 

Yongjie Jiang 











Conventional Wisdom: 

Conventional wisdom is the collective 

understanding of fundamental engineering 

concepts and principles that evolves over 

time through interactions of practicing 

engineers around the world 



Conventional Wisdom: 

 
• Guides engineers in daily practice of the Profession 

 

• Widely use to enhance productivity 

 

• Heavily emphasized in universities  around the world when 

  educating next-generation engineers 

 

• Often viewed as a fundamental concept  or principle 

 

• Validity of conventional wisdom seldom 

 questioned  

 

 

 



Are Conventional Wisdom and Fundamental 

Concepts and Principles Always Aligned? 

Aristotle 300BC 

Much of Society till  

1200AD to 1600AD and later 

http://www.christiananswers.net/q-aig/aig-c034.html 

Sometimes the differences can be rather significant ! 

http://greenfunkdan.blogspot.com/2008/11/csiro-warns-of-climate-change-doomsday.html 

Pythagoras 520BC 



Conventional wisdom, when not correctly representing 

fundamental principles, can provide conflicting 

perceptions or irresolvable paradoxes 

http://upload.wikimedia.org/wikipedia/commons/2/2f/Flat_earth.png


Are Conventional Wisdom and Fundamental Concepts 

always aligned in the Microelectronics Field ? 



Introduction:  This is “CW” who reflects the 

Conventional Wisdom that has evolved. 

CW will share his views with us, on occasion,  throughout this presentation  
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Are Conventional Wisdom and Fundamental Concepts always 

aligned in the Microelectronics Field ? 

Conventional Wisdom 

Records of 

• Conventional Wisdom 

• Fundamental Concepts 

• Occasional Oversight of Error 

• Key information embedded in  

     tremendous volume of materials (noise) 



Do Conventional Wisdom and Fundamental 

Concepts Differ In the Microelectronics Field ? 

The process is good but not perfect ! 

Reliability ? 



What Happens When Fundamental 

Concepts and Conventional Wisdom Differ? 

• Confusion Arises 

• Progress is Slowed 

• Principles are not correctly understood 

• Errors Occur 

• Time is Wasted 



Are Conventional Wisdom and Fundamental Concepts 

always aligned in the Microelectronics Field ? 

Will consider 4 basic examples in this discussion 
• Op Amp 

• Positive Feedback Compensation 

• Current Mode Filters 

• Current Dividers 



What is an operational amplifier ? 

The operational amplifier is one of the most 

fundamental and useful components in the 

microelectronics field and  is integral to the 

concept of feedback ! 

A firm understanding of feedback and its 

relation to the operational amplifier is central 

to the education of essentially all electrical 

engineers around the world today 



What is an Operational Amplifier? 

 

Consider one of the most popular textbooks on 

the subject used in the world today 

Lets see what the experts say ! 



First Edition  1982 

Sixth Edition Dec 2009 

A classic textbook that has helped educate two 

generations of engineers 



In all editions, concept of the op amp has remained unchanged 





What is an Operational Amplifier? 

Textbook Definition: 

• Voltage Amplifier with Very Large Gain 

−Very High Input Impedance 

−Very Low Output Impedance 

 

• Differential Input and Single-Ended Output 

This represents the Conventional Wisdom ! 

Does this correctly reflect what an operational amplifier really is? 
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Sedra/Smith 

View of Op Amp 

Operational Amplifier Evolution in Time Perspective 



Consider some history leading up to the present concept of the 

operational amplifier 

H.S. Black sketch of basic concept of feedback on Aug 6, 1927 

Black did not use the term operational amplifier but rather focused on basic 

concepts of feedback involving the use of high-gain amplifiers 



First Edition  1967 First Edition  1972 

A classic textbook sequence that has helped 

educate the previous two generations of engineers 

By Millman 

Vacuum Tube and 

Semiconductor 

Electronics 

First Edition  1958 



Millman view of an operational amplifier in 1967 

Operational Amplifier refers to the entire feedback circuit 

Concept of a “Base Amplifier” as the high-gain amplifier block 

Note Base Amplifier is modeled as a voltage amplifier with single-ended 

input and output 



Millman view of an operational amplifier in 1972 

This fundamentally agrees with that in use today by most authors 

Major change in the concept from his own earlier works 

This book was published several years after the first integrated op amps 

were introduced by industry 



Seminal source for “Operational Amplifier” notation:  

Seminal source introduced a fundamentally different definition than what is used today 

 

Consistent with the earlier use of the term by Millman 



Transactions of the American Institute of Electrical Engineers, Jan. 1934 

Seminal Publication of Feedback Concepts: 

Uses a differential input high-gain voltage amplifier  (voltage series feedback) 

Subsequent examples of feedback by Black relaxed the differential input 

requirement 

APCAS 2010 29 
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View of Op Amp 

Operational Amplifier Evolution in Time Perspective 
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Millman and Ragazzini 

View of Op Amp 

Do we have it right now? 



Why are Operational  

Amplifiers Used? 

A

F
Xout A 1

A
Xin 1 Aβ β


   



Op Amp is Enabling Element Used to Build Feedback Networks ! 

Input and Output Variables intentionally designated as “X” instead of “V” 

A

β

XOUT
XIN



V1 AVV1

R0 VOUT

RL

Op Amp

RIN

VIN

R1

R2

VOUT
VIN

V1

R1

R2

AV

One of the Most Basic Op Amp 

Applications 

 OUT 2

VF

 IN 1

R
A

R
 
V

V

Model of Op Amp/Amplifier including AV, RIN, RO and RL 

If it is assumed that AV is large,  

This result is not dependent upon RIN, R0 or RL 



The Four Basic Types of Amplifiers: 

Voltage Transconductance

Transresistance Current



VOUTVIN

V1

R1

R2

AV

VOUT
VIN

R1

R2

AI

VOUTVIN

V1

R1

R2

GM

IOUT

 Four Feedback Circuits with Same β Network 

 OUT 2

 IN 1

R

R
 

V

V

VOUT
VIN

I1

R1

R2

RT

All have same closed-loop gain and all are independent of RIN, ROUT and RL  if gain is large 



Concept well  known 

APCAS 2010 
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Hex Inverters in 74C04 much less costly than 6 op amps at the time! 



What is an Operational Amplifier? 

Textbook Definition: 

• Voltage Amplifier with Very Large Gain 

−Very High Input Impedance 

−Very Low Output Impedance 

 

 
This represents the Conventional Wisdom ! 

Do we have it right now? 

Voltage Amplifier? 

 

High Input Impedance? 

Low Output Impedance? 

 

Differential Input? 

Single-Ended Output? 

 
Large Gain? Large Gain !!! 



Are Conventional Wisdom and Fundamental Concepts 

always aligned in the Microelectronics Field ? 

Will consider 4 basic examples in this discussion 
• Op Amp 

• Positive Feedback Compensation 

• Current Mode Filters 

• Current Dividers 



Can positive feedback compensation be 

used to improve amplifier performance 

Positive feedback can be easily applied in 

differential structures with little circuit 

overhead 

Significant gain enhancement in the op amp 

may be possible if positive feedback is used 



Compensation of two-stage amplifiers 
 

VDD

VSS

M1 M2

M3 M4 M5

CL

VIN

VOUT

M6M7

IT

VB2
VB3

VIN

CC

  
1 2

V 0
1 2

p p -s+z
A  = A

z s+p s+p

 
 
 

Miller Effect on CC provides dominant pole on first stage 

To illustrate concept consider basic two-stage op amp with internal compensation 

Compensation requires a large ratio of p2/p1 be established  



Two-stage amplifier with LHP Zero 

Compensation 















605

5

51
1

o

m
C

oo

gg

g
C

gg
p

L

m

C

g
p 5

2 

p2 
p1 

X X 

z1 

Im 

Re 

To make p1 sufficiently dominant requires a large value for CC 



Positive Feedback on First-Stage for gain enhancement and pole control 

Q

2 

Q7 

Q1 

Q3 Q

4 

Vi- Vi+ 

Vout 

VDD 

Vb1 

Q6 Q5 Vb2 

Vb2 

 
m1

MILLER o2 o4 o6 m4

1/2 g
A(s)

sC [g g g g ]


   

MILLER
C

o1 o5 o6 m4

1

MILLER

g +g +g -g
p -

C

Can reduce size of CMILLER and enhance dc gain by appropriate choice of gm4 

Can actually move p1 into RHP if gm4 is too big 



Positive Feedback on First-Stage for gain enhancement and pole control 

Q

2 

Q7 

Q1 

Q3 Q

4 

Vi- Vi+ 

Vout 

VDD 

Vb1 

Q6 Q5 Vb2 

Vb2 

 
m1

MILLER o2 o4 o6 m4

1/2 g
A(s)

sC [g g g g ]


   

MILLER
C

 
m1

DC

o1 o5 o6 m4

1/2 g
A -

g +g +g -g

Dc gain actually goes to ∞ when gm1 = g02 + g04 + g06 ! 



This technique is not practical since Op Amp 

pole can move into RHP making it unstable! 

Several authors have discussed this approach in the literature but place a 

major emphasis on limiting the amount of positive feedback used so that 

under PVT variations, op amp remains stable 

o1 o5 o6 m4

1

MILLER

g +g +g -g
p -

C



Is an unstable op amp really bad?   

Will a circuit that embeds an op 

amp be unstable if the op amp is 

unstable?  



Example:  Filter Structure with Feedback Amplifier 

• Very popular filter structure 

• One of the best 2nd-order BP filters 

• Widely used by Bell System in 70’s 

Bridged-T Feedback  
(Termed SAB, STAR, Friend/Delyannis Biquad) 

C C

R2

R1

VOUT

VIN

K

K is a small positive gain 

want high input impedance on “K” amplifier 



Example:  Filter Structure with Feedback Amplifier 

C C

R2

R1

VOUT

VIN

K

VOUT
VIN

RB
RA

C C

R2

R1

VOUT

VIN

RB

RA

Filter is unstable ! 

Stable Amplifier 

? 



Example:  Filter Structure with Feedback Amplifier 

Bridged-T Biquad 

(with feed-forward) 

C C

R2

R1

VOUT

VIN

K

Filter is stable ! 

RB
RA

VIN VOUT

Unstable Amplifier 

C C

R2

R1

VOUT

VIN

RB

RA

Amplifier  

Unstable ! 

Friend/Deliyannis Biquad 

? 



Very Popular Bandpass Filter 
Friend-Deliyannis Biquad 

C C

R2

R1

VOUT

VIN

RB

RA

One of the best bandpass filters !! 

Embedded finite gain amplifier is unstable!! 

Stability of embedded amplifier is not necessary  (or even desired) 



• Filter structure unstable with stable finite 

gain amplifier 

• Filter structure stable with unstable finite 

gain amplifier 

• Stability of feedback network not 

determined by stability of amplifier! 

APCCAS 2010 49 

C C

R2

R1

VOUT

VIN

RB

RA



Is an unstable op amp really bad?   

Will a circuit that embeds an op 

amp be unstable if the op amp is 

unstable?  Not necessarily ! 



Example:  Voltage Amplifier with Unstable Op Amp 

o-A
A(s)= p > 0

s
+1

-p

VOUT
VIN

R2
R1



Example:  Voltage Amplifier with Unstable Op Amp 

o-A
A(s)= p > 0

s
+1

-p

βA(s)1

A(s)
(s)AFB
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1

RR

R
β




VOUT
VIN

R2
R1



Example:  Voltage Amplifier with Unstable Op Amp 

p > 0
 

o
FB

o

A pA(s)
A (s) = =

1+βA(s) s+p βA -1

For  bAo > 1, Feedback Amplifier is Stable  !!! 

pf=p(1-bA0) 

VOUT
VIN

R2
R1



Example:  Voltage Amplifier with Unstable Op Amp 

pf=p(1-bA0) 

p
1)0-p(βA 

Im

Re

Feedback pole FAR in LHP ! 

VOUT
VIN

RB
RA

How does this compare to the feedback pole of a stable op amp with a pole 

In the LHP at –p? 



Example:  Voltage Amplifier with Unstable Op Amp 

p
)0-p(1-βA

Im

Re

Feedback pole FAR in LHP ! 

 Fp =p 1 - Aβ

p > 0 
 Fp =p 1 + Aβ

p
)0-p(1+βA

Im

Re

Feedback pole FAR in LHP ! 

VOUT
VIN

R2
R1

Can show that some improvements in feedback performance can be 

realized if the open-loop pole is at the orgin or modestly  in the RHP! 

p < 0 



Example:  Voltage Amplifier with Unstable Op Amp 

APCCAS 2010 56 

p
)0-p(1-βA

Im

Re

VOUT
VIN

R2
R1

p
)0-p(1+βA

Im

Re

Stability of open-loop amplifier is not a factor in determining the stability of  

the feedback structure in practical structures when |p| is small! 

This is contrary to the Conventional Wisdom ! 

It can actually be shown that the performance of the feedback amplifier can 

be improved  if the open-loop pole is moved modestly into the  RHP 



Is an unstable op amp really bad?   

Will a circuit that embeds an op 

amp be unstable if the op amp is 

unstable?  Not necessarily ! 

No, and it can actually improve 

performance of FB circuit! 



Are Conventional Wisdom and Fundamental Concepts 

always aligned in the Microelectronics Field ? 

Will consider 4 basic examples in this discussion 
• Op Amp 

• Positive Feedback Compensation 

• Current Mode Filters 

• Current Dividers 



What are the advantages of current-

mode signal processing ?   



EVERYBODY knows that Current-Mode 

circuits operate at lower supply voltages, are 

faster, are smaller, consume less power, and 

take less area than their voltage-mode 

counterparts !   

And I’ve heard there are even some 

more benefits but with all of these, who 

really cares? 



Have considered Current Mode Filters in Lecture 31 and 32 

 

Showed by example that an Active RC Current-Mode Filter was identical to a 

Voltage-Mode Counterpart 

Will now look at more general Current-Mode Architectures 



Questions about the Conventional Wisdom 

• Why does a current-mode circuit work better at 

high frequencies?  

• Why is a current-mode circuit better suited for 

low frequencies? 

• Why do some “voltage”-mode circuits have 

specs that are as good as the current-mode 

circuits?  



• Why are most of the papers on current-mode 

circuits coming from academia? 

• Why haven’t current-mode circuits replaced 

“voltage”-mode circuits in industrial applications? 

Questions about the Conventional Wisdom 



Questions about the Conventional Wisdom 

What is a current-mode circuit? 

• Everybody seems to know what it is 

 

• Few have tried to define it 

 

• Is a current-mode circuit not a voltage-

mode circuit? 



Questions about the Conventional Wisdom 

“Several analog CMOS continuous-time filters for high frequency 

applications have been reported in the literature… Most of these 

filters were designed to process voltage signals.  It results in high 

voltage power supply and large power dissipation.  To overcome 

these drawbacks of the voltage-mode filters, the current-mode 

filters circuits , which process current signals have been 

developed” 

  

A 3V-50MHz Analog CMOS Current-Mode High Frequency 

Filter with a Negative Resistance Load,  pp. 260…,,IEEE Great 

Lakes Symposium March 1996. 

 

What is a current-mode circuit? 



• Are current-mode circuits really better than their 
“voltage-mode” counterparts? 

 

• What is a current-mode circuit? 

– Must have a simple answer since so many 
authors use the term 

 

• Do all agree on the definition of a current-mode 
circuit? 

Questions about the Conventional Wisdom 



Questions about the Conventional Wisdom 

•  A current-mode circuit is a circuit that processes   

   current signals 

•  A current-mode circuit is one in which the defined  

   state variables are currents 

Conventional Wisdom Definition: 

IIN

IOUT

R1
RL

R2

Is this a current-mode circuit? 

Example: 

Is this a voltage-mode circuit? 

VIN

VOUT

R1

R2

RL



A current-mode circuit is a circuit that 

processes current signals 

Conventional Wisdom Definition: 

IIN

IOUT

R1
RL

R2

Is this a current-mode circuit? 
Example: 

Is this a voltage-mode circuit? 

VIN

VOUT

R1

R2

RL

• One is obtained from the other by a Norton to Thevenin Transformation 

• The poles and the BW of the two circuits are identical ! 



Current-Mode Filters 

Concept of Current-Mode Filters is Somewhat Recent:  

     

Key paper that generated interest in current-mode filters  (ISCAS 1989): 

This paper is one of the most significant contributions that has ever come from ISCAS 



Current-Mode Filters 
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Current-Mode Filters 

Proc. ICASP May 2010: 

The Conventional Wisdom: 

IEEE Trans. On Consumer Electronics, Feb 2009  



Current-Mode Filters 

1 Introduction 

Current-mode circuits have been proven to offer advantages over their 

voltage-mode counterparts [1, 2]. They possess wider bandwidth, greater 

linearity and wider dynamic range. Since the dynamic range of the 

analogue circuits using low-voltage power supplies will be low, this 

problem can be solved by employing current-mode operation. 

Proc. IEE Dec 2006: 

1. INTRODUCTION 

It is well known that current-mode circuits have been receiving 

significant attention owing to its advantage over the voltage-mode 

counterpart, particularly for higher frequency of operation and 

simpler filtering structure [1]. 

The Conventional Wisdom: 

Proc. SICE-ICASE, Oct. 2006  



Current-Mode Filters 

JSC April 1998: 

The Conventional Wisdom: 

CAS  June  1992  
  

“Current-mode signal processing is a very attractive approach due to the 

simplicity in implementing operations such as … and the potential to 

operate at higher signal bandwidths than their voltage mode analogues” 

…  “Some voltage-mode filter architectures using transconductance 

amplifiers and capacitors (TAC) have the drawback that  …” 

  

 

“… current-mode functions exhibit higher frequency potential, simpler 

architectures, and lower supply voltage capabilities than their voltage-

mode counterparts.”  

 



Current-Mode Filters 

ISCAS 1993: 

The Conventional Wisdom: 

“In this paper we propose a fully balanced high frequency current-

mode integrator for low voltage high frequency filters.  Our use of the 

term current mode comes from the use of current amplifiers as the 

basic building block for signal processing circuits.  This fully 

differential integrator offers significant improvement even over 

recently introduced circuit with respect to accuracy, high frequency 

response, linearity and power supply requirements.  Furthermore, it is 

well suited to standard digital based CMOS processes.” 

 



Current-Mode Filters 

The Conventional Wisdom: 

Two key publications where benefits of the current-mode circuits are often 

referenced: 

“To make greatest use of the available transistor bandwidth fT , and operate at low 

voltage supply levels, it has become apparent that analogue signal processing 

can greatly benefit from processing current signals rather than voltage signals.  

Besides this, it is well known by electronic circuit designers that the mathematical 

operations of adding, subtracting or multiplying signals represented by currents 

are simpler to perform than when they are represented by voltages. This also 

means that the resulting circuits are simpler and require less silicon area.” 

All current-mode frequency selective circuits  GW Roberts, AS 

Sedra - Electronics Letters,  June 1989 -  pp. 759-761 Cited by 161    
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Current-Mode Filters 

The Conventional Wisdom: 

Two key publications where benefits of the current-mode circuits are often 

referenced: 

“The use of current rather than voltage as the active parameter can result in higher 

usable gain, accuracy and bandwidth due to reduced voltage excursion at sensitive 

nodes. A current-mode approach is not just restricted to current processing, but 

also offers certain important advantages when interfaced to voltage-mode circuits.” 

Recent developments in current conveyors and current-mode 

circuits  B Wilson - Circuits, Devices and Systems, IEE 

Proceedings G, pp. 63-77, Apr. 1990 Cited by 203 
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Current-Mode Filters 

 

– Current-Mode circuits operate at higher-

frequencies than voltage-mode counterparts 

– Current-Mode circuits operate at lower supply 

voltages and lower power levels than voltage-

mode counterparts 

– Current-Mode circuits are simpler than 

voltage-mode counterparts 

– Current-Mode circuits offer better linearity 

than voltage-mode counterparts 

The Conventional Wisdom: 

This represents four really significant benefits of 

current-mode circuits! 

Review from Earlier Lecture 



Current-Mode Filters 

As with voltage-mode filters, most integrated current-

mode filters are built with integrators and lossy 

integrators  

0I

s

IOUTIIN IOUTIIN 0

0

I

s+αI

Integrator
Lossy 

Integrator

Review from Earlier Lecture 



Some Current-Mode Integrators 

Active RC 

OUT IN
-1

I = I
RCs

 
 
 

OUT IN
1

I = I
RCs

 
 
 

Inverting Noninverting 

• Summing inputs really easy to obtain 

• Loss is easy to add 

• Some argue that since only interested in currents, can operate at lower voltages 

IIN
C

R

IOUT

R

IOUT

R1 R1

C
IIN



Some Current-Mode Integrators 
OTA-C 

m
OUT IN

-g
I = I

Cs

 
 
 

m
OUT IN

g
I = I

Cs

 
 
 

Inverting 
Noninverting 

C
IIN IOUT C

IIN IOUT

C gm

IOUT

IIN

C
gm

IOUT

IIN

Alternate representation 



Some Current-Mode Integrators 

OTA-C 

Inverting Noninverting 

• Summing inputs really easy to obtain 

• Loss is easy to add 

• Many argue that since only interested in currents, can operate at lower voltages 

  and higher frequencies 

C gm

IOUT

IIN
C

gm

IOUT

IIN



Some Current-Mode Integrators 

TA-C 

m
OUT IN

-g
I = I

Cs

 
 
 

m
OUT IN

g
I = I

Cs

 
 
 

Inverting Noninverting 

• Summing inputs really easy to obtain 

• Loss is easy to add 

• Many argue that since only interested in currents, can operate at lower voltages 

  and higher frequencies 

CIIN
IOUT

IB1

M
IB1 IB2

C
IIN

IOUT



Comparison of Current Mode and Voltage Mode Integrators 

R

C

VIN
VOUT

CIIN
IOUT

IB1

VIN

IB1

C

VOUT

C
gm

IOUT

IIN

C

gm
VOUTVIN

RC

IIN IOUT

ACTIVE 

RC

OTA-C

TA-C

Current Mode Voltage Mode

• Current Mode and Voltage Mode Inverting integrators have  same device counts 

• Same is true of noninverting and lossy structures  
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Two-Integrator-Loop Biquad 

0

0

I

s+αI
 0I

sXIN
XOUT

XOUT1

One of  the most widely used architectures for 

implementing integrated filters 

Review from Earlier Lecture 



Current-Mode Two Integrator Loop 

RARQ R

IOUT

IIN
C

RA

C R RL

• Straightforward implementation of the two-integrator loop 

 

• Simple structure 

CM Lossy Integrator CM Integrator CM Amplifier 

Active RC Current-Mode  implementation 

Review from Earlier Lecture 



Current-Mode Two Integrator Loop 

RARQ R

IOUT

IIN
C

RA

C R RL

An Observation: 

RARQ R

IOUT

IIN
C

RA

C R RL

RARQ R

IOUT

IIN
C

RA

C R RL

VM Integrator 



Current-Mode Two Integrator Loop 
An Observation: 

RARQ R

IOUT

IIN
C

RA

C R RL

This circuit is identical to another one with two voltage-mode integrators and 

a voltage-mode amplifier ! 

VM Integrator VM Amplifier 

VM Integrator 

RARQ R

IOUT

IIN
C

RA

C R RL

VM Integrator VM Amplifier 



RA

RQ R

IOUT

IIN
C

RA

C R RL

Current-Mode Two Integrator Loop 
An Observation: 

VM Integrator VM Amplifier 

VM Integrator 

VOUT 

IIN R

VIN

IIN



RA

RQ R

IOUT

IIN
C

RA

C R RL

Current-Mode Two Integrator Loop 
An Observation: 

VM Integrator VM Amplifier 

VM Integrator 

VOUT 

RA

RQ R C
RA

C RR

VIN
VOUT



RA

RQ R C
RA

C RR

VIN
VOUT

Current-Mode Two Integrator Loop 
An Observation: 

This circuit was well-known in the 60’s 

VM Integrator 

VM Amplifier VM Integrator 

RQ

C CR RA

RA

R

RVIN
VOUT

Voltage-Mode Two-Integrator Loop 



Current-Mode Two Integrator Loop 

RQ

C CR RA

RA

R

RVIN
VOUT

RARQ R

IOUT

IIN
C

RA

C R RL

Current-mode and voltage-mode circuits have same component count 

Current-mode and voltage-mode circuits are identical ! 

Current-mode and voltage-mode properties are identical ! 

Current-mode circuit offers NO benefits over voltage-mode counterpart 

Active RC Current-Mode  implementation 

Review from Earlier Lecture 



Observation 

• Many papers have appeared that tout the 
performance advantages of current-mode circuits 

 

• In all of the current-mode papers that this 
instructor has seen, no attempt is made to 
provide a quantitative comparison of the key 
performance features of current-mode circuits 
with voltage-mode counterparts 

 

• All justifications of the advantages of the current-
mode circuits this instructor has seen are based 
upon qualitative statements 

Review from Earlier Lecture 



Observations (cont.) 

• It appears easy to get papers published that have the 
term “current-mode” in the title 

• Over 900 papers have been published in IEEE forums 
alone ! 

• Some of the “current-mode” filters published perform 
better than other “voltage-mode” filters that have been 
published 

• We are still waiting for even one author to quantitatively 
show that current-mode filters offer even one of the 
claimed four advantages over their voltage-mode 
counterparts 

Will return to a discussion of Current-Mode filters later 

Review from Earlier Lecture 
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Two-Integrator-Loop Biquad 

0

0

I

s+αI
 0I

sXIN
XOUT

XOUT1

• For notational convenience, the input signal can be suppressed and output 

will not be designated 

• This forms the “dead network” 

• Poles for dead network are identical to original network as are key 

sensitivities 

 

0

0

I

s+αI
0I

s

Two Integrator Loop Biquad 
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Two-Integrator-Loop Biquad 

Consider  a current-mode implementation: 

0

0

I

s+αI
0I

s

C gm

C

m

Q

g
gm

OTA-C implementation 

Numerous current-mode filter papers use this basic structure 
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Two-Integrator-Loop Biquad 

Consider the corresponding voltage-mode implementation: 

0

0

I

s+αI
0I

s


C

gm

C

gm

m

Q

g
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Two-Integrator-Loop Biquad 

C
gm

C
gm

m

Q

g

C gm

C

m

Q

g
gm

An Observation: 

Current-mode 
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Two-Integrator-Loop Biquad 

C
gm

C
gm

m

Q
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C
gm

C
gm

m

Q

g
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Two-Integrator-Loop Biquad 

C
gm

C
gm

m

Q

g

C
gm

C
gm

m

Q
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VM Integrator 
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Two-Integrator-Loop Biquad 

C
gm

C
gm

m

Q

g

C
gm

C
gm

m

Q

g

VM Integrator 

VM Integrator 

VM Integrator 
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Two-Integrator-Loop Biquad 

C

gm

C

gm

m

Q

g

C
gm

C
gm

m

Q

g

This circuit was well-known in the 80’s 

VM Integrator 
VM Integrator 
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Two-Integrator-Loop Biquad 

Current-mode 
C

gm
C

gm

m

Q

g

Voltage-mode C

gm

C

gm

m

Q

g

OTA-C implementation 

Current-mode and voltage-mode circuits have same component count 

Current-mode and voltage-mode circuits are identical ! 

Current-mode and voltage-mode properties are identical ! 

Current-mode circuit offers NO benefits over voltage-mode counterpart 
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Leap-Frog Filter 

k-1

1

sC k

1

sL k+1

1

sC

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck

gm

gm

Ck+1

gm

OTA-C implementation 

Consider  a current-mode implementation: 

Numerous current-mode filter papers use this basic structure 
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Leap-Frog Filter 

gm

CB

gm

gm
CB

gm

gm

CB

gm

gm
CB

gm

k-1

1

sC k

1

sL k+1

1

sC

Consider  a voltage-mode implementation: 
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Leap-Frog Filter 

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck

gm

gm

Ck+1

gm

Consider lower OTA in stage k-2, capacitor in stage k-1 and upper OTA in stage k 

gm
Ck-1

gm

gm
Ck-1

gm

An Observation: 
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gm

Ck

gm

Leap-Frog Filter 

Current-mode 

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck

gm

gm

Ck+1

gm

Consider upper OTA in stage k-1, capacitor in stage k and lower OTA in stage k+1 

gm

Ck

gm
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Leap-Frog Filter 

Current-mode 

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck

gm

gm

Ck+1

gm

Consider lower OTA in stage k, capacitor in stage k+1 and upper OTA in stage k+2 

gm
Ck+1

gm

gm
Ck+1

gm



110 

Leap-Frog Filter 

Current-mode 

gm

Ck-2

gm

gm

Ck-1

gm

gm

Ck
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Ck+1

gm
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Ck-2

gm
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Ck-1
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Ck

gm

gm
Ck+1
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Ck-2
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Ck-1
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Ck

gm
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Ck+1
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Voltage-mode 
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Leap-Frog Filter 

1

1

sL 2

1

sC 3

1

sL
XIN

XOUT

aIN

aOUT

Terminated Leap-Frog Filter (3-rd order lowpass) 

Current-mode implementation 
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IOUT

IIN
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Leap-Frog Filter 

Current-mode implementation 

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

Consider schematic view: 
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Leap-Frog Filter 

Current-mode implementation 

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

gm

C1

gmX

gm

C2
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gm

gm

IOUT
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Re-group elements: 
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Leap-Frog Filter 

Current-mode implementation 
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I/O Source Transformation 
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Leap-Frog Filter 

Current-mode implementation 

gm
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gmX
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gmY

C3
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VOUTVIN

gm
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gmX

gm
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gmA

Redraw as: 
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Leap-Frog Filter 

Current-mode implementation 

gm

C1

gmX

gm
C2

gm

gmY

C3

gm

VOUT
VIN

gmA

gm

C1

gmX

gm
C2

gm

gmY

C3

gm

VOUT
VIN

gmA

Change notation: 

This is a voltage-mode implementation of the Leap-Frog Circuit ! 
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Leap-Frog Filter 

gm

C1

gmX

gm

C2

gm

gmY

C3

gm

gm

IOUT

IIN

gm

C1

gmX

gm
C2

gm

gmY

C3

gm

VOUT
VIN

gmA

Current-mode and voltage-mode circuits have same component count 

Current-mode and voltage-mode circuits are identical ! 

Current-mode and voltage-mode properties are identical ! 

Current-mode circuit offers NO benefits over voltage-mode counterpart 

Current-mode 

Voltage-mode 



Questions about the Conventional Wisdom 

What is a current-mode circuit? 

• Everybody seems to know what it is 

 

• Few have tried to define it 

 

• Is a current-mode circuit not a voltage-

mode circuit? 



Question?  

 
Is the following circuit a voltage mode-circuit 

or a current-mode circuit? 



Question?  

 
Is the following circuit a voltage mode-circuit 

or a current-mode circuit? 

ID 

Current Mode ! 



Question?  

 
Is the following circuit a voltage mode-circuit 

or a current-mode circuit? 

+ 

- 

VDS 

Voltage Mode ! 



Observations: 

• Voltage-Mode or Current-Mode Operation of 
a Given Circuit is not Obvious 

• All electronic devices have a voltage-current 
relationship between the port variables that 
characterizes the device 

• The “solution” of all circuits is identical 
independent of whether voltages or currents 
are used as the state variables 

• The poles of any circuit are independent of 
whether the variables identified for analysis 
are currents or voltages or a mixture of the 
two 



Observation 
• Conventional wisdom suggests numerous  performance 

advantages of current-mode circuits 

 

• Some of the “current-mode” filters published perform 
better than other “voltage-mode” filters that have been 
published  

 

• Few, if any, papers provide a quantitative comparison of 
the key performance features of current-mode circuits 
with voltage-mode counterparts 

 

• It appears easy to get papers published that have the 
term “current-mode” in the title 

 

 

 

 

 

 

 



Observations (cont.) 

 

• Over 900 current-mode papers have been published in 
IEEE forums alone ! 

 

• Most, if not all, current-mode circuits are IDENTICAL to a 
voltage-mode counterpart 

 

• We are still waiting for even one author to quantitatively 
show that current-mode filters offer even one of the 
claimed four advantages over their voltage-mode 
counterparts 



Are Conventional Wisdom and Fundamental Concepts 

always aligned in the Microelectronics Field ? 

Will consider 4 basic examples in this discussion 
• Op Amp 

• Positive Feedback Compensation 

• Current Mode Filters 

• Current Dividers 



I’ve heard of some amazing claims 

about a clever current divider circuit 

that has been receiving lots of 

attention!   

It even received the outstanding 

paper award at ISSCC a few years 

ago! 



• Background 

• Objective 

• Concept of Current Divider 

• Characterization of Inherently Linear 

Current Divider 

• Inherent Current Division in Symmetric 

Circuits 

• Conclusionhs 

 

 

Current Dividers 



Current Dividers 

Motivation:  Circuits that do accurate current 

division in the presence of varying loading 

conditions could be among the most useful 

building blocks that are available  



Background Introduction 

Bult and Geelen, ISSCC  Feb1992, JSC Dec 1992 “An Inherently Linear and 
Compact MOST-only Current Division Technique” 

• Examples that were given did not have zero impedance on VA and VB nodes 

• Experimentally reported THD from -80dB to -85dB 

• Experimentally measured Dynamic Range in excess of 100dB 

• All digital standard CMOS process 

Current divider with “Inherent Linearity”  



Background Introduction 

Bult and Geelen, ISSCC  Feb1992, JSC Dec 1992 “An Inherently Linear and 
Compact MOST-only Current Division Technique” 

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

Current divider with “Inherent Linearity”  

2

1

)/(

)/(

LW

LW


Current Division Factor 

Very Simple and Compact 

Elegant ! 



Background Introduction 

Conventional Wisdom:  current division factor independent of  

– IIN 

– VA and VB  

– Device operation region (weak, moderate, or strong 

inversion; triode or saturation region) 

– body effect, mobility degradation 

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

Inherently Linear Current Divider 



Background Introduction 

only weakly dependent upon second-order effects   

 
THD better than -85dB in audio range 

Dynamic Range better than 100dB 

Experimentally verified 

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

Inherently Linear Current Divider 

Very impressive linearity properties ! 



Influential Concept  

 
– Outstanding paper of ISSCC 1992 

– Cited 180 times Google Scholar 

– Reported applications include 

• Volume controller 

• Data converter 

• Tunable filters 

• Variable gain amplifier 

• Accurate current generator 

• Sensors 

• Other circuits 

– Numerous reported works 
experimentally verify the high 
linearity 

 

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

Inherently Linear Current Divider 



An example application of the concept and 

the circuit 

40 Google Scholar Citations (Dec. 15, 2010) 



An example application of the concept and 

the circuit 

VA and VB not even at zero impedance nodes ! 

VB 

VA VA 

VB 



An example application of the concept and 

the circuit 

VG

M5

M1

M2

M3

M4

M6

M8

M7

M9

M13

M11

M12

M1

IIN



But   
I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

Inherently Linear Current Divider 

We have been unable to achieve linearity that is even 

close to that reported in different but closely related 

applications of this circuit 

(e.g.  -40dB or less linearity in contrast to -85dB or better performance) 



Outline 

• Background 

• Objective 

• Concept of Current Divider 

• Characterization of Inherently Linear 

Current Divider 

• Inherent Current Division in Symmetric 

Circuits 

• Conclusionhs 

 

 



Purpose of this work  

   Clarify and quantify the potential and limitations of the “inherently 

linear current divider” 

 

  ( Do not question the reported experimental results attributed to this circuit) 
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Current Dividers 

• Background 

• Objective 

• Concept of Current Divider 

• Characterization of Inherently Linear 

Current Divider 

• Inherent Current Division in Symmetric 

Circuits 

• Conclusionhs 

 

 



Concept of Current Divider 

   What is a current divider ? 
• Although the term is widely used, formal 

definitions seldom if ever given 

• Consider a node with three incident 

branches in a circuit 

• If the current in one of the three branches 

is proportional to that in another branch, 

we will define this circuit to be a current 

divider 

 

 

 

 

IIN

I1 I2

Ckt1 Ckt2

IIN

I1 I2

General 

Current 

Divider 

I1 I2

IIN

I1 I2

General 

Current 

Divider 

(a)

(b) (c)

Basic 

Current 

Divider

IN1 θII 



Observations That Will Become Relevant 

IN1 I
2

1
I 

I=f(V) I=f(V)

IIN

I2I1 VA

VB

Independent of VA, VB, IIN,, f  

Inherent property of symmetric network 

Current Divider ! 

Concept that has probably been known for well over 100 years 



Observations that Will Become Relevant 

IN1 I
3

1
I 

Independent of VA, VB, IIN,, f 

I=f(V) I=f(V)

IIN

I2I1 VA

VB

I=f(V)

I3

Inherent property of symmetric network 



Observations that Will Become Relevant 

IN1 I
3

1
I 

Independent of VA, VB, IIN,, f 

Inherent property of symmetric network 

IIN

I2I1 VA

VB

I1=f(VA,VB)

I3

I2=f(VA,VB)

I3=f(VA,VB)

3-way symmetric network

Concept that has probably been known for well over 100 years 



Consider the Inherently Linear Current 

Divider with Linearity Challenges 

Conventional Wisdom:  current division factor independent of  

– IIN 

– VA and VB  

– Device operation region (weak, intermediate, or strong 

inversion; triode or saturation region of operation) 

– body effect, mobility degradation 

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG



Current Dividers 

• Background 

• Objective 

• Concept of Current Divider 

• Characterization of Inherently Linear 

Current Divider 

• Inherent Current Division in Symmetric 

Circuits 

• Conclusionhs 

 

 



Assumptions 

– Square-law model 

– Identical Vth 

– No Body or Output 

Conductance Effects  

     -  {Iin, VGA,VBA}      

independent variables 

     

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

η1=μCOX(W1/L1)  

η2=μCOX(W2/L2) 



From a straightforward but tedious analysis  
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If M1 in the triode region and M2 in the triode region  
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Oddly, the driving point voltage is dependent upon the driving point current ! 
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If M1 in the triode region and M2 in the saturation region  

From a straightforward but tedious analysis  

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

Oddly, the driving point voltage is dependent upon the driving point current ! 



From a straightforward but tedious analysis 

using the basic square-law model  

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

If VGA and VGB do not depend upon IIN, then 

-   the circuit performs as a linear current divider with  

an offset 

- the current divider ratio does not change as M1 and  

  M2 change from the triode region to the  saturation region 

 

But, if these conditions are not satisfied, will the circuit still   

perform as a linear current divider ? 



Some things ignored in previous analysis 

• Device model errors (not exactly square-law) 

• Threshold voltages mismatches 

• Finite output impedance of transistors  

• Body effect 

• Finite output impedance of the current source 



More Accurate Analysis 

• Analytical study is unwieldy with highly 

complicated model 

• Computer simulation  helpful for predicting 

linearity  



Linearity Metrics  

 
– Static linearity defined as deviation from fit line 

 

 

 
 

 

 

– Dynamic linearity defined as the THD performance with 

continuous sinusoid excitation 
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Simulation Environments 

• Different operation regions (M1, M2) 
– Triode, Triode (“TT”) 

– Triode, Saturation (“TS”) 

• Different bias level 
– Large VEB 

– Small VEB 

• Different size devices (width, length) 

• Different process  
– TSMC 0.18um  

– TSMC 0.35um 

• VAS, VBS, VGS fixed 

• Ideal current source excitation 

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG



Static Linearity Simulation 
Static Nonlinearity Vs Iin (TSMC035 Ideal CS)
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Dynamic Linearity Simulation 
THD Vs Ix1/Id1 (TSMC035 um Id CS)
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Observations about Linearity  

• Static nonlinearity in the few percent range 

• Dynamic linearity is quite limited with even 
moderate input current levels 

– limited to about 30~40 dB level if reasonable 
input current swings occur 

• Including effects of output impedance of 
current source and circuit dependence of 
VAS and VBS will further degrade 
performance 

 



Observations about inherently 

linear current divider 
I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

• Performance as a current divider is somewhat questionable 

 

• Not inherently linear (appears to be strongly dependent upon model) 



Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the 

linearity?  

Consider again the Huang circuit (in which all transistors are identical) 

Even the assumption that the voltages VA and VB must be zero-impedance 

sources was not required to obtain the good performance (79 dB range) ! 

For proper operation, it is critical that currents divide equally at each of  

The current division nodes ! 



Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the 

linearity?  

M1

M2

M3

M4

M5
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M8

M9

M10

M11

M12

M13

IIN

VG VG

VGVG

VG
VG

I1I2

C1C2C3C4

Redraw the Huang Circuit and Consider the right-most 

Current Divider node 



Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the linearity?  

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

IIN

VG VG

VGVG

VG
VG

I1I2

C1C2C3C4

I=f(V) I=f(V)

IIN

I2I1 VA

VB

• Circuit in blue is completely 

symmetric on C1 and is the 

    well-known current divider 

•  it is not dependent upon any 

specific properties of the 

transistors ! 

• This was the right-most node 

where the “inherently linear” 

current divider was used ! 



Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the linearity?  

M1

M2

M3

M4
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IIN

VG VG

VGVG

VG
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I1I2

C1C2C3C4

•  Observe that M1,M2,M3,M4 can  

be modeled as a single 

transistor 

that is of the same size as M1 

 

•  Call this M14 

 

•  Consider now the next closest 

current-divider node 



Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the linearity?  

I=f(V) I=f(V)

IIN

I2I1 VA

VB

• Circuit in green is completely 

symmetric about C2 and is the 

    well-known current divider 

•  it is not dependent upon any 

specific properties of the 

transistors ! 
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Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the linearity?  

M5
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VG
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M14

•  Observe that M6,M7,M5,M14 

can be modeled as a single 

transistor that is of the same 

size as M1 

 

•  Call this M15 

 

•  Consider now the next closest 

current-divider node 



Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the linearity?  

I=f(V) I=f(V)

IIN

I2I1 VA

VB

• Circuit in brown is completely 

symmetric on C3 and is the 

    well-known current divider 

•  it is not dependent upon any 

specific properties of the 

transistors ! 
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Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the linearity?  

M8
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VG
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I1I2

C3C4

M15

•  Observe that M9,M10,M8,M15 

can be modeled as a single 

transistor that is of the same 

size as M1 

 

•  Call this M16 

 

•  Consider now the next closest 

current-divider node 



Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the linearity?  

I=f(V) I=f(V)

IIN

I2I1 VA

VB

• Circuit shown is completely 

symmetric on C3 and is the 

    well-known current divider 

•  it is not dependent upon any 

specific properties of the 

transistors ! M11

M12

M13

IIN

VG VG

I1I2

C4

M16



Question:   How was the excellent linearity obtained in the author’s own 

work and that reported in the literature if it is difficult to verify the linearity?  

Current divider properties of the Huang DAC (ADC) were all dependent upon 

the general current division property of symmetric networks and had nothing to 

do with the current division in two transistors !   

Current divider properties of the experimentally reported work of the original 

author  were all dependent upon the general current division property of 

symmetric networks and had nothing to do with the current division in two 

transistors !   



How was the very good performance of the 

“inherently linear” current divider obtained? 

I2

I1VA

Vin
Iin

VB

M1

M2

IG
I1

Vgg

Iin

VB

M1 M1

I2

Vgg

About 12 months ago one of our Ph.D. students looked at all SCI citations that 

referenced the “inherently linear” current divider and the performance in all cases 

was a special case of the general symmetric circuit 

Symmetric Circuit 

I1=I2 



Current Dividers  

• Background 

• Objective 

• Concept of Current Divider 

• Characterization of Inherently Linear 

Current Divider 

• Inherent Current Division in Symmetric 

Circuits 

• Conclusionhs 

 

 



Good linearity properties of “inherently linear” current divider for 

those we found in the literature are due to well-known symmetry 

properties of circuits, not due to unique properties of the two-

transistor  current-divider structure 

IIN

I2I1

VIN

VA

I1=f(VA,VIN)

I2=f(VA,VIN)

 symmetric network

I2

I1

VG

VA

Vin
Iin

VB

M1

M2

IG

special 

cases 



Conclusion 
 

• The linearity properties are not apparent with existing device models 

• Based upon existing models, operation as a current divider in 
question and linearity can be orders of magnitude worse than 
previously reported 

• Good linearity properties of all applications found in literature survey 
for this circuit are due to well-known symmetry properties, not 
inherent characteristics of the two-transistor structure  

• Experimental evidence appears to be lacking to support the 
inherently linearity properties of the current divider 

• Is it possible that the circuit performs as an inherently linear current 
divider that has not yet been experimentally verified? 

• Is it possible that there are major errors in existing device models 
used in circuit simulators that cause dramatic linearity errors in the 
simple 2-transistor current divider ? 

 

 

 



Are Conventional Wisdom and Fundamental Concepts 

always aligned in the Microelectronics Field ? 

Just considered conventional wisdom in 4 basic examples 

• Op Amp 

• Positive Feedback Compensation 

• Current Mode Filters 

• Current Dividers 



Are Conventional Wisdom and Fundamental Concepts 

always aligned in the Microelectronics Field ? 

Four examples involving some of the most basic concepts in the 

microelectronics field were identified where the alignment of conventional 

wisdom and fundamental concepts are weak 

Many more examples exist where alignment is weak 



Are Conventional Wisdom and Fundamental Concepts 

always aligned in the Microelectronics Field ? 

Conventional Wisdom is VERY USEFUL for enhancing productivity and 

identifying practical approaches to engineering design and problem solving  

Conventional Wisdom, however, should not be viewed as a basic principle or 

fundamental concept 

Keep an OPEN MIND when using Conventional Wisdom  to recognize both the 

benefits and limitations and recognize that even some of the most reputable 

sources and reputable engineers/scholars do not always distinguish between 

conventional wisdom and fundamental concepts  



Thank you  

for your attention ! 



End of Lecture 44 
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