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Statistical Characterization of 

Filter Characteristics 
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Effects of manufacturing variations on components 

 A rigorous statistical analysis can be used to analytically predict how 

components vary and how component variations impact circuit 

performance 

 

 Montecarlo simulations are often used to simulate effects of component 

variations  

 

 

 

 Often key statistical information is not readily available from the foundry 

 

• Requires minimal statistical knowledge to use MC simulations 

• Simulation times may be prohibitively long to get useful results 

• Gives little insight into specific source of problems 

• Must be sure to correctly include correlations in setup 

Review from last lecture 
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Modeling process variations in semiconductor processes  

xRPROC, xRWAFER, xRDIE, xRLVAR often assumed to be Gausian with zero mean 

Magnitude of  xRLGRAD is usually assumed Gaussian with zero mean, direction 

is uniform from 0o to 360o 
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LVAR Strongly dependent upon area and layout 
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Relative size between σLVAR and σ|GRAD| dependent upon A, P, and process 

Review from last lecture 
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Drawn and Actual Features for MOS Transistor 

Effects of layout on local random variations  

Variations also occur vertically in both oxide thickness and doping 

levels/profiles and often these will dominate the lateral effects 

Review from last lecture 
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Modeling process variations in semiconductor processes  

• Statistics associated with matching/sensitive dimensionless parameters 

such as voltage or current gains, component ratios, pole Q, …  (almost 

always closely placed) dominated by xRLGRAD and xRLVAR   (because locally xRPROC, 

xRWAFER, xRDIE are all correlated and equal) 

 

• Statistics associated with value of dimensioned parameters (poles, GB, 

SR,R,C,transresistance gains, transconductance gains, … dominated by 

xRPROC) 

• Special layout techniques using common centroid approaches can be 

used to eliminate (or dramatically reduce) linear gradient effects so, if 

employed, matching/sensitive parameters dominated by xRLVAR  but 

occasionally common centroid layouts become impractical or areas 

become too large so that gradients become nonlinear and in these cases 

gradient effects will still limit performance 

• Gradients are dominantly linear if spacing is not too large 

• Higher-order gradient effects can be eliminated with layout approaches that 

cancel higher “moments” but area and effort may not be attractive 

Review from last lecture 



Statistical Modeling of dimensioned 

parameters - example 

Determine the standard deviation of the pole frequency (or band edge) of 

the first-order passive filter. 

Assume the process variables are zero mean with standard deviations given by  
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Review from last lecture 



Since R and C are random variables, the pole p is also a random variable  

1
p = 

RC

Theorem:  The sum of uncorrelated Gaussian random variables is a 

multivariate Gaussian random variable 

Theorem:  If X1 … Xm are uncorrelated random variables with standard  

deviations σ1, σ2, … σm, and a1,a2, … am are constants, then the standard  

 

deviation of the random variable                     is given by the expression                    
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Review from last lecture 



Since R and C are random variables, the pole p is also a random variable  

1
p = 

RC

  NOM NOM

1
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R CRAN RANR C 

Unfortunately the pdf  p which is the reciprocal of the product of Gaussian 

variables is very difficult to obtain 

Observe can express p as 
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Review from last lecture 
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But RRAN<<RNOM and CRAN<<CNOM 

It thus follows from a truncated power series expansion of the two-variable fraction 

that  
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These operations were used to linearize p in terms of the random variables ! 

Note that p is the sum of two Gaussian random variables that are assumed to be 

uncorrelated so p is also Gaussian 
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It thus follows from the theorem that 
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But the nominal value of the pole is    
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Observe: 
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But RRAN and CRAN are approximately RPROC and CPROC  
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1.  Determine the 3σ range in the pole location  

2.  Determine the percent of the process lots that will have a pole with   

     mean that is within  10% of the nominal value 

3.  What can the designer do to tighten the band edge of this filter? 
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1.  Determine the 3σ range in the pole location  

The 3σ range is simply    0.34 1.66
NOM

p
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So, if the nominal pole location is 10KHz, the average value of the pole 

location from lot to lot will vary between 3.4KHz and 16.6KHz  
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2.  Determine the percent of the process lots that will have a pole with   

     mean that is within  10% of the nominal value 

Observe a 10% window is   
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Recall                                          For a kσ 

  

window the probability of being inside that 

window is the area under the pdf curve 

between 1– kσ and 1+kσ 
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Observe 
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2.  Determine the percent of the process lots that will have a pole with   

     mean that is within  10% of the nominal value 

Observe a 10% window is   
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For a Gaussian variable, this area is given by 

    1prob N(0,1) N(0,1)θ = 2F k  -1 = 2F 0.45 
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Offset Voltage Distribution 
Pdf of zero-mean Gaussian distribution 

Percent between: ±σ 68.3% 

±2σ 95.5% 

±3σ 99.73% 
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2.  Determine the percent of the process lots that will have a pole with   

     mean that is within  10% of the nominal value 

  1prob N(0,1)θ = 2F 0.45 

x

f(x)

-1 1
-.45 .45

1 0.347probθ = 2 .6736  

Thus, approximately 35% of the wafer lots will 

have a pole within 10% of the nominal value 
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3.  What can the designer do to tighten the band edge of this filter? 



Statistical Modeling of Dimensionless Parameters 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 

 

Determine the yield if the nominal gain is 10   1%

2
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Aρ=.01µm  

Assume a common centroid layout of R1 and R2 has been used and 

the area of R1 is 100u2 and both resistors have the same resistance 

density and R2 is comprised of K-1 copies of R1  . Neglect variable 

edge effects in the layout 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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But R2RPROC and R1RPROC are correlated  

R2RGRAD and R1RGRAD are correlated  

And, since a common centroid layout is 

used,  
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R2RLVAR and R1RLVAR are uncorrelated  
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Since R2N=(KN-1)R1N 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Theorem:   If the perimeter variations and contact resistance are neglected, 

the standard deviation  of the local random variations of a resistor of area A is 

given by the expression 
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Theorem:   If the perimeter variations are neglected, the standard deviation  of 

the local random variations of a capacitor of area A is given by the expression 
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Theorem:   If the perimeter variations are neglected, the variance of the local 

random variations of the normalized threshold voltage of a rectangular MOS 

transistor of dimensions W and L  is given by the expression 
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Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized  COX of a rectangular MOS transistor of 

dimensions W and L  is given by the expression 
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Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized mobility  of a rectangular MOS transistor 

of dimensions W and L  is given by the expression 

where the parameters AX are all constants characteristic of the process 

(i.e. model parameters) 

• The effects of edge roughness on the variance of resistors, capacitors, and 

transistors can readily be included but for most layouts is dominated by the 

area dependent variations 

• There is some correlation between the model parameters of MOS transistors but 

they are often ignored to simplify calculations 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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  Aρ=.01u  AR1=100u2 
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• Note the standard deviation of the normalized gain is much smaller 

than the standard deviation of the process variations 

• The standard deviation can be improved by increasing area but a 4X 

increase in area is needed for a 2X reduction in sigma 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Determine the yield if the nominal gain is 10   
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Statistical Modeling of dimensionless 

parameters - example 
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Determine the yield if the nominal gain is 10   1%
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The gain yield is essentially 100% 

Could substantially decrease area or increase 

gain accuracy if desired 
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Statistical Modeling of dimensionless 

parameters - example 

 

Determine the yield if the nominal gain is 10   1%
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Aρ=.025µm  

Assume a common centroid layout of R1 and R2 has been used and 

the area of R1 is 10u2 and both resistors have the same resistance 

density and R2 is comprised of K-1 copies of R1  . Neglect variable 

edge effects in the layout 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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  Aρ=.025u  AR1=10u2 

0.2
PROC

NOM

R

R

 

   1 .0079 1
10

K N N N N

.025
 K K K K   

.0079

N

K

NK

1
 1-

K




VIN

VOUT

R2

R1

Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Determine the yield if the nominal gain is 10   
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Statistical Modeling of dimensionless 

parameters - example 
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Determine the yield if the nominal gain is 10   1%
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 N(0,1)Y = 2F 1.33 -1 = 2*.9082-1  = 0.8164

Dramatic drop from 100% yield to about 82% yield! 



End of Lecture 15 


