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Lecture 16 

Filter Transformations 

Lowpass to Bandpass 

Lowpass to Highpass 

Lowpass to Band-reject 



Theorem:   If the perimeter variations and contact resistance are neglected, 

the standard deviation  of the local random variations of a resistor of area A is 

given by the expression 
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Theorem:   If the perimeter variations are neglected, the standard deviation  of 

the local random variations of a capacitor of area A is given by the expression 
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Theorem:   If the perimeter variations are neglected, the variance of the local 

random variations of the normalized threshold voltage of a rectangular MOS 

transistor of dimensions W and L  is given by the expression 
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Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized  COX of a rectangular MOS transistor of 

dimensions W and L  is given by the expression 

WL

ACOX

C

C

OXN

OX

2
2 

WL

A2

2

N

R





 

Theorem:   If the perimeter variations are neglected, the variance  of the local 

random variations of the normalized mobility  of a rectangular MOS transistor 

of dimensions W and L  is given by the expression 

where the parameters AX are all constants characteristic of the process 

(i.e. model parameters) 

• The effects of edge roughness on the variance of resistors, capacitors, and 

transistors can readily be included but for most layouts is dominated by the 

area dependent variations 

• There is some correlation between the model parameters of MOS transistors but 

they are often ignored to simplify calculations 
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Statistical Modeling of dimensionless 

parameters - example 
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Determine the yield if the nominal gain is 10   1%
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The gain yield is essentially 100% 

Could substantially decrease area or increase 

gain accuracy if desired 

Assume common centroid layout 

area of R1 is 100u2  Aρ=.01µm  
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Statistical Modeling of dimensionless 

parameters - example 

 

Determine the yield if the nominal gain is 10   1%

2

1

R
K = 1+

R

Aρ=.025µm  

Assume a common centroid layout of R1 and R2 has been used and 

the area of R1 is 10u2 and both resistors have the same resistance 

density and R2 is comprised of K-1 copies of R1  . Neglect variable 

edge effects in the layout 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Statistical Modeling of dimensionless 

parameters - example 

Determine the standard deviation of the voltage gain K 
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Determine the yield if the nominal gain is 10   

.0079 .0075

N

K

K

1
 1-

10
 

1%

 
N

K
 N 1,  0.0075

K

Review from Last Time 



VIN

VOUT

R2

R1

Statistical Modeling of dimensionless 

parameters - example 

2

1

R
K = 1+

R

Determine the yield if the nominal gain is 10   1%

 
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K
 N 1,  0.0075
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9.9  < K < 10.1
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 N(0,1)Y = 2F 1.33 -1 = 2*.9082-1  = 0.8164

Dramatic drop from 100% yield to about 82% yield! 
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Filter Transformations 

Lowpass to Bandpass      (LP to BP) 

Lowpass to Highpass       (LP to HP) 

Lowpass to Band-reject   (LP to BR) 

 

Approach will be to take advantage of the results obtained for the 

standard LP approximations  

 

Will focus on flat passband and zero-gain stop-band transformations 

 

Will focus on transformations that map passband to passband and 

stopband to stopband 



 Filter Transformations 

 

 

If the imaginary axis in the s-plane is mapped to the imaginary axis in the s-plane 

with a variable mapping function, the basic shape of the function T(s) will be 

preserved in the function F(T(s)) but the frequency axis may be warped and/or 

folded in the magnitude domain 

Claim:   

Preserving basic shape, in this context, constitutes maintaining features in the 

magnitude response of F(T(s)) that are in T(s) including, but not limited to,  the 

peak amplitude, number of ripples, peaks of ripples,  
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 MT s s  f s

    MT s T f s



Example:  Shape Preservation   
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Example:  Shape Preservation   
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Flat Passband/Stopband Filters 
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Filter Transformations 

Lowpass to Bandpass      (LP to BP) 

Lowpass to Highpass       (LP to HP) 

Lowpass to Band-reject   (LP to BR) 

 
•   Approach will be to take advantage of the results obtained for the 

standard LP approximations  

 

•   Will focus on flat passband and zero-gain stop-band 

transformations 

 

•   Will focus on transformations that map passband to passband and 

stopband to stopband 

 



LP to BP Filter Transformations 
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Will consider rational fraction mappings 

• Not all rational fraction mappings will map Im axis to the Im axis 

• Not all rational fraction mappings will map passband to passband and 

     stopband to stopband 

• Consider only that subset of those mappings with these properties 



 

 LP to BP Transformation 

 

 
Mapping Strategy:  Consider first a mapping to a normalized BP approximation 
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 LP to BP Transformation 

 

 
Mapping Strategy:  Consider first a mapping to a normalized BP approximation 
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Thus, must consider both positive and negative frequencies.  Since          is a 

function of ω2, the magnitude response on the negative ω axis will be a 

mirror image of that on the positive ω axis  

A mapping from s → f(s) will map the entire imaginary axis in the frequency domain 

 T jω



 

Standard LP to BP Transformation 

 

 

Normalized LP to Normalized BP mapping Strategy: 

map s=j0 to s= j1 

map s=j1 to s=jωBN 

map s= –j1 to s= jωAN 

TLPN(f(s)) map ω=0 to ω=1 

map  ω=1 to ω=ωBN 

map ω= –1 to ω=ωAN 

TLPN(s) TBPN(s)
TLPN(f(s))

Variable Mapping Strategy to Preserve Shape of LP function: 
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s-domain ω-domain 
consider: 

This mapping will introduce 3 constraints 



Standard LP to BP Transformation 

 

 
Mapping Strategy: 

Consider variable mapping  
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map s=0 to s= j1 

map s=j1 to s=jωBN 

map s= –j1 to s= jωAN 

map ω=0 to ω=1 

map  ω=1 to ω=ωBN 

map ω= –1 to ω=ωAN 
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With this mapping, there are  5 D.O.F and 3 mathematical constraints and the 

additional constraints that the Im axis maps to the Im axis and maps PB to PB 

and SB to SB 

Will now show that the following mapping will meet these constraints 
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This is the lowest-order mapping that will meet these constraints and it doubles 

the order of the approximation 
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Standard LP to BP Transformation 

 

 

Verification of mapping Strategy: 
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Must still show that the Im axis maps to the Im axis and maps PB to PB and 

SB to SB 

map s=0 to s= j1 

map s=j1 to s=jωBN 

map s= –j1 to s= jωAN 

map ω=0 to ω=1 

map  ω=1 to ω=ωBN 

map ω= –1 to ω=ωAN 

s-domain ω-domain 

TLPN(f(s)) 



 

Standard LP to BP Transformation 

 

 

Verification of mapping Strategy: 
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The mapping                              is termed the standard LP to BP transformation 
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map s=j1 to s=jωBN 

map s= –j1 to s= jωAN 
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solving for s, obtain 

this has no real part so the imaginary axis maps to the imaginary axis 

Can readily show this mapping maps PB to PB and SB to SB 



 

Standard LP to BP Transformation 
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The standard LP to BP transformation 

Question:   Is this mapping dimensionally consistent ? 
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If we add a subscript to the LP variable for notational convenience, can express this mapping as 

•  The dimensions of BWN must be set so that this is dimensionally consistent 

•  The dimensions of the constant “1” in the numerator must be set so that this 

is dimensionally consistent 



 

Standard LP to BP Transformation 
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Standard LP to BP Transformation 

 

 

Frequency and s-domain Mappings 

(subscript variable in LP approximation for notational convenience) 
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solving for s or ω 

Exercise:  Resolve the dimensional consistency in the last equation 



 

Standard LP to BP Transformation 
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Denormalized Mapping 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain  Mappings - Denormalized 

(subscript variable in LP approximation for notational convenience) 
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Exercise:  Resolve the dimensional consistency in the last equation 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain  Mappings - Denormalized 

(subscript variable in LP approximation for notational convenience) 

All three approaches give same approximation 
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Which is most practical to use? Often none of them ! 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain  Mappings - Denormalized 

(subscript variable in LP approximation for notational convenience) 
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Often most practical to synthesize directly from the TBPN and then do the 

frequency scaling of components at the circuit level rather than at the 

approximation level 



 

Standard LP to BP Transformation 

 

 

Frequency and s-domain Mappings 

(subscript variable in LP approximation for notational convenience) 
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solving for s  

Poles and Zeros of the BP approximations 

Since this relationship maps the complex plane to the complex plane, it also 

maps the poles and zeros of the LP approximation to the poles and zeros of 

the BP approximation 
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Standard LP to BP Transformation 

 

 

Pole Mappings 
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Claim:  With a variable mapping transform, the variable mapping naturally 

defines the mapping of the poles of the transformed function 

Exercise:  Resolve the dimensional consistency in the last equation 



 

Standard LP to BP Transformation 

 

 

Pole Mappings 
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Image of the cc pole pair is the two pairs of poles 



 

Standard LP to BP Transformation 

 

 

Pole Mappings 

Can show that the upper hp pole maps to one upper hp pole and one lower hp pole 

as shown.  Corresponding mapping of the lower hp pole is also shown 
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Standard LP to BP Transformation 

 

 

Pole Mappings 
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multipliity 6

Note doubling of poles, addition of zeros, and likely Q enhancement 



End of Lecture 16 


