Filter Design Process
Filter design field has received considerable attention by engineers for about 8 decades

- Passive RLC
- Vacuum Tube Op Amp RC
- Active Filters (Integrated op amps, R,C)
- Digital Implementation (ADC,DAC,DSP)
- Integrated Filters (SC)
- Integrated Filters (Continuous-time and SC)
Filter: Amplifier or system that has a frequency-dependent gain

- Filters are ideally linear devices
- Characteristics usually expressed as either desired frequency response or time domain response
- Transfer functions filters with finite number of lumped elements are rational fractions with real coefficients
- Transfer functions of any realizable filter (finite elements) have no discontinuities in either the magnitude or phase response
Review from Last Time

\[T(s) = \frac{\sum_{i=1}^{m} a_i s^i}{\sum_{i=1}^{n} b_i s^i} = \frac{N(s)}{D(s)} \]

\[H(z) = \frac{\sum_{i=1}^{m} a_i z^i}{\sum_{i=1}^{n} b_i z^i} = \frac{N(z)}{D(z)} \]
Review from Last Time

Any circuit that has a transfer function that does not enter the forbidden region is an acceptable solution from a performance viewpoint.
• Minor changes in specifications can have significant impact on cost and effort for implementing a filter

• Work closely with the filter user to determine what filter specifications are really needed
Is there a systematic way to design filters?

Observations:

• All filter circuits with a finite number of lumped elements have a transfer function that is a rational fraction in s
• All digital filters have a transfer function that is a rational fraction in z
• Most (ideally all) of the characteristics of a filter are determined by the transfer function
Is there a systematic way to design filters?

(Consider continuous-time first)

Filter Design Strategy: Use the transfer function as an intermediate step between the Specifications and Circuit Implementation
Is there a systematic way to design filters?

(Consider continuous-time first)

Specifications

Transfer Function

T(s)

Circuit

Energy Storage Elements Create Frequency Dependence of T(s)

Filter Design Strategy: Use the transfer function as an intermediate step between the Specifications and Circuit Implementation
Is there a systematic way to design filters?
(Consider discrete-time domain)

Filter Design Strategy: Use the transfer function as an intermediate step between the Specifications and Circuit Implementation

Delay Element Creates Frequency Dependence of $H(z)$
Filter Design Strategy: Use the transfer function as an intermediate step between the Specifications and Circuit Implementation.

Establish Specifications
- possibly \(T_D(s) \) or \(H_D(z) \)
- magnitude and phase characteristics or restrictions
- time domain requirements

Approximation
- obtain acceptable transfer functions \(T_A(s) \) or \(H_A(z) \)
- possibly acceptable realizable time-domain responses

Synthesis
- build circuit or implement algorithm that has response close to \(T_A(s) \) or \(H_A(z) \)
- actually realize \(T_R(s) \) or \(H_R(z) \)

Filter
Filter Design Process

Establish Specifications
- possibly $T_D(s)$ or $H_D(z)$
- magnitude and phase characteristics or restrictions
- time domain requirements

Approximation
- obtain acceptable transfer functions $T_A(s)$ or $H_A(z)$
- possibly acceptable realizable time-domain responses

Synthesis
- build circuit or implement algorithm that has response close to $T_A(s)$ or $H_A(z)$
- actually realize $T_R(s)$ or $H_R(z)$

Filter

Must understand the real performance requirements

Obtain an acceptable approximating function

Design (synthesize) a practical circuit or system that has a transfer function close to the acceptable transfer function
Filter Design Process

Establish Specifications
- possibly \(T_D(s) \) or \(H_D(z) \)
- magnitude and phase characteristics or restrictions
- time domain requirements

Approximation
- obtain acceptable transfer functions \(T_A(s) \) or \(H_A(z) \)
- possibly acceptable realizable time-domain responses

Synthesis
- build circuit or implement algorithm that has response close to \(T_A(s) \) or \(H_A(z) \)
- actually realize \(T_R(s) \) or \(H_R(z) \)

Filter

Must understand the real performance requirements
- Many acceptable specifications for a given application
- Some much better than others
- But often difficult to obtain even one that is useful

Obtain an acceptable approximating function
- Many acceptable approximating functions for a given specification
- Some much better than others
- But often difficult to obtain even one!

Design (synthesize) a practical circuit or system that has a transfer function close to the acceptable transfer function
- Many acceptable circuits for a given approximating function
- Some much better than others
- But often difficult to obtain even one!

Important to make good decisions at each step in the filter design process because poor decisions will not be absolved in subsequent steps
Filter Design Process

Establish Specifications
- possibly $T_D(s)$ or $H_D(z)$
- magnitude and phase characteristics or restrictions
- time domain requirements

Approximation
- obtain acceptable transfer functions $T_A(s)$ or $H_A(z)$
- possibly acceptable realizable time-domain responses

Synthesis
- build circuit or implement algorithm that has response close to $T_A(s)$ or $H_A(z)$
- actually realize $T_R(s)$ or $H_R(z)$

Filter

- Order of approximating function directly affects cost of implementation

- Number of energy storage elements in circuit is equal to the order of $T(s)$ (neglecting energy storage element loops)

- High Q poles and zeros adversely affect cost (because component tolerances become tight)

- Cost of implementation (synthesis) is essentially independent of the quality of the approximation if the order is fixed

- Major effort over several decades was focused on the approximation problem
Some realizations are much better than others

- Cost
- Sensitivity
- Tunability
- Parasitic Effects
- Linearity
- Area
- **Major effort over several decades focused on synthesis problem**
Example:
Design a filter that approximates the ideal lowpass filter

\[|T_{LP}(j\omega)| \]

Desired filter response

\[T_{A1} = \frac{1}{s+1} \]

One approximating function
Example:
Design a filter that approximates the ideal lowpass filter

\[|T_{LP}(j\omega)| \]

Desired filter response

Some additional approximating functions

\[T_{A1} = \frac{1}{s+1} \]
\[T_{A2} = \frac{1}{s^2 + 0.5s + 1} \]
\[T_{B2} = \frac{1}{s^2 + s + 1} \]
\[T_{C2} = \frac{1}{s^2 + 1.5s + 1} \]
Example:
Design a filter that approximates the ideal lowpass filter

\[|T_{LP}(j\omega)| \]

Desired filter response

\[T_{A1} = \frac{1}{s+1} \]

A circuit that realizes \(T_{A1} \)

But not practical because \(C \) is too large!
Example:
Design a filter that approximates the ideal lowpass filter

\[|T_{LP}(j\omega)| \]

Desired filter response

\[T_{A1} = \frac{1}{s+1} \]

A circuit that realize \(T_{A1} \)

More practical (C must not be electrolytic)!
Example:
Design a filter that approximates the ideal lowpass filter

\[|T_{LP}(j\omega)| \]

Desired filter response

\[T_{A1} = \frac{1}{s+1} \]

Some additional circuits that realize \(T_{A1} \)
Time Domain and Frequency Domain Characterization

Filters always operate in the time domain

\[X_{\text{IN}}(t) \xrightarrow{\text{Filter}} X_{\text{OUT}}(t) \]

Filters often characterized/designed in the frequency domain

\[X_{\text{IN}}(s) \xrightarrow{T(s)} X_{\text{OUT}}(s) \]

\[T(s) = \frac{X_{\text{OUT}}(s)}{X_{\text{IN}}(s)} \]

\[T(s) = \sum_{i=0}^{m} a_i s^i \]

\[T(s) = \frac{\mathcal{L}(X_{\text{OUT}}(t))}{\mathcal{L}(X_{\text{IN}}(t))} \]

\[m \leq n \]
Time Domain and Frequency Domain Characterization

Example:

Frequency Domain

\[
\begin{align*}
I_R &= \frac{V_{IN} - V_{OUT}}{R} \\
I_R \cdot \frac{1}{sC} &= V_{OUT}
\end{align*}
\]

\[
T(s) = \frac{V_{OUT}(s)}{V_{IN}(s)} = \frac{1}{1+RCs} = \frac{1}{1+b_1s}
\]

Time Domain

\[
\begin{align*}
i_R &= \frac{V_{IN} - V_{OUT}}{R} \\
i_R &= C \frac{dV_{OUT}}{dt}
\end{align*}
\]

\[
\begin{align*}
\frac{dV_{OUT}}{dt} &= \left(\frac{1}{RC}\right) V_{IN} - \left(\frac{1}{RC}\right) V_{OUT} \\
\frac{dV_{OUT}}{dt} &= \left(\frac{1}{b_1}\right) V_{IN} - \left(\frac{1}{b_1}\right) V_{OUT}
\end{align*}
\]

Taking the Laplace transform of the differential equation, we obtain

\[
\mathcal{L}\left(\frac{dV_{OUT}}{dt}\right) = \left(\frac{1}{b_1}\right) \mathcal{L}(V_{IN}) - \left(\frac{1}{b_1}\right) \mathcal{L}(V_{OUT})
\]

\[
sV_{OUT} = \left(\frac{1}{b_1}\right) V_{IN} - \left(\frac{1}{b_1}\right) V_{OUT}
\]

\[
T(s) = \frac{V_{OUT}}{V_{IN}} = \frac{1}{1+b_1s}
\]
Time Domain and Frequency Domain Characterization

Generalizing from the previous example:

\[
\begin{align*}
&\text{Time Domain} \\
&\mathcal{X}_\text{IN}(t) \quad \text{Filter} \quad \mathcal{X}_\text{OUT}(t)
\end{align*}
\]

Elements in filter are \{R’s, C’s, L’s, indep sources, dep sources\}

Assume n energy storage elements and no energy storage element loops in the circuit

The relationship between \(\mathcal{X}_\text{OUT}(t)\) and \(\mathcal{X}_\text{IN}(t)\) can always be expressed by a single time-domain differential equation as

\[
\sum_{k=0}^{n-1} \alpha_k \frac{d^k \mathcal{V}_\text{IN}}{dt^k} - \sum_{k=0}^{n-1} \beta_k \frac{d^k \mathcal{V}_\text{OUT}}{dt^k} = 0
\]

where the \(\alpha_k\) and \(\beta_k\) are constants dependent on the values of the circuit elements

Taking the Laplace transform of this differential equation, we obtain

\[
s^n \mathcal{V}_\text{OUT} = \sum_{k=1}^{m} \alpha_k s^k \mathcal{V}_\text{IN} - \sum_{k=1}^{n} \beta_k s^k \mathcal{V}_\text{OUT}
\]
Time Domain and Frequency Domain Characterization

Generalizing from the previous example:

Time Domain

\[x_{IN}(t) \xrightarrow{\text{Filter}} x_{OUT}(t) \]

\[s^n V_{OUT} = \sum_{k=0}^{m} \alpha_k s^k V_{IN} - \sum_{k=1}^{n-1} \beta_k s^k V_{OUT} \]

If we define \(\beta_n = 1 \), this can be rewritten as

\[\left(\sum_{k=0}^{n} \beta_k s^k \right) V_{OUT} = \sum_{k=0}^{m} \alpha_k s^k V_{IN} \]

Thus, the transfer function can be written as

\[T(s) = \frac{V_{OUT}}{V_{IN}} = \frac{\sum_{k=0}^{m} \alpha_k s^k}{\sum_{k=0}^{n} \beta_k s^k} \]
Time Domain and Frequency Domain Characterization

Time Domain

\[\mathcal{X}_{IN}(t) \xrightarrow{\text{Filter}} \mathcal{X}_{OUT}(t) \]

Frequency Domain

\[X_{IN}(s) \xrightarrow{T(s)} X_{OUT}(s) \]

\[
\frac{d^n \mathcal{V}_{OUT}}{dt^n} = \sum_{k=0}^{m} \alpha_k \frac{d^k \mathcal{V}_{IN}}{dt^k} - \sum_{k=0}^{n-1} \beta_k \frac{d^k \mathcal{V}_{OUT}}{dt^k}
\]

\[
T(s) = \frac{\sum_{k=0}^{m} \alpha_k s^k}{\sum_{k=0}^{n} \beta_k s^k}
\]

How do the \(\alpha_k \) and \(\beta_k \) parameters relate to the \(a_k \) and \(b_k \) parameters?

If we normalize the frequency-domain solution so that \(b_n=1 \), then

\(\alpha_k = a_k \) and \(\beta_k = b_k \) for all \(k \)
Time Domain and Frequency Domain Characterization

Time Domain

\[x_{IN}(t) \xrightarrow{\text{Filter}} x_{OUT}(t) \]

Frequency Domain

\[X_{IN}(s) \xrightarrow{T(s)} X_{OUT}(s) \]

\[\frac{d^n v_{OUT}}{dt^n} = \sum_{k=0}^{m} \alpha_k \frac{d^k v_{IN}}{dt^k} - \sum_{k=0}^{n-1} \beta_k \frac{d^k v_{OUT}}{dt^k} \]

\[T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i} \]

Thus, the time-domain characterization of a filter which can be expressed as a single differential equation can be obtained directly from the transfer function \(T(s) \) obtained from a frequency-domain analysis of the circuit.

This differential equation does not contain any initial condition information.
Time Domain and Frequency Domain Characterization

Time Domain

\[x_{\text{IN}}(kT) \xrightarrow{\text{Filter}} x_{\text{OUT}}(kT) \]

Frequency Domain

\[x_{\text{IN}}(z) \xrightarrow{H(z)} x_{\text{OUT}}(z) \]

\[\nu_{\text{OUT}}(nT) = \sum_{k=0}^{m} \alpha_k \nu_{\text{IN}}((n-k)T) - \sum_{k=1}^{n-1} \beta_k \nu_{\text{OUT}}((n-k)T) \]

If we define \(\beta_n = 1 \), this can be rewritten as

\[H(z) = \frac{\sum_{k=0}^{m} \alpha_k z^k}{\sum_{k=0}^{n} \beta_k z^k} \]

How do the \(\alpha_k \) and \(\beta_k \) parameters relate to the \(a_k \) and \(b_k \) parameters?

If we normalize the frequency-domain solution so that \(b_n = 1 \), then

\(\alpha_k = a_k \) and \(\beta_k = b_k \) for all \(k \)
Time Domain and Frequency Domain Characterization

Time Domain

\[x_{\text{IN}}(kT) \rightarrow \text{Filter} \rightarrow x_{\text{OUT}}(kT) \]

Frequency Domain

\[x_{\text{IN}}(z) \rightarrow H(z) \rightarrow x_{\text{OUT}}(z) \]

Thus, the time-domain characterization of a filter which can be expressed as a single difference equation can be obtained directly from the transfer function \(H(s) \) obtained from a frequency-domain analysis of the circuit.

\[v_{\text{OUT}}(nT) = \sum_{k=0}^{m} \alpha_k v_{\text{IN}}((n-k)T) - \sum_{k=1}^{n-1} \beta_k v_{\text{OUT}}((n-k)T) \]

\[H(z) = \frac{\sum_{i=0}^{m} a_i z^i}{\sum_{i=0}^{n} b_i z^i} \]

This difference equation does not contain any initial condition information.
Filter Concepts and Terminology

A polynomial is said to be “integer monic” if the coefficient of the highest-order term is 1.

- If $D(s)$ is integer monic, then $N(s)$ and $D(s)$ are unique.

- If $D(s)$ is integer monic, then the a_k and b_k terms are unique.

- The roots of $N(s)$ are termed the zeros of the transfer function.

- The roots of $D(s)$ are termed the poles of the transfer function.

- If $N(s)$ and $D(s)$ are of orders m and n respectively, then there are m zeros and n poles in $T(s)$.

$$T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i} = \frac{N(s)}{D(s)}$$
Filter Concepts and Terminology

- A polynomial is said to be “integer monic” if the coefficient of the highest-order term is 1

- If $D(z)$ is integer monic, then $N(z)$ and $D(z)$ are unique

- If $D(z)$ is integer monic, then the a_k and b_k terms are unique

- The roots of $N(z)$ are termed the zeros of the transfer function

- The roots of $D(z)$ are termed the poles of the transfer function

- If $N(z)$ and $D(z)$ are of orders m and n respectively, then there are m zeros and n poles in $H(z)$
Filter Concepts and Terminology

\[
T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i} = \frac{N(s)}{D(s)}
\]

\[
H(z) = \frac{\sum_{i=0}^{m} a_i z^i}{\sum_{i=0}^{n} b_i z^i} = \frac{N(z)}{D(z)}
\]

- Key Theorem: The continuous-time filter is stable iff all poles lie in the open left half of the s-plane.

- Key Theorem: The discrete-time filter is stable iff all poles lie in the open unit circle.

- The zeros of \(T(s)\) need not lie in the left half plane to maintain stability.

- The zeros of \(H(z)\) need not lie in the open unit circle to maintain stability.
Filter Concepts and Terminology

\[T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i} = \frac{N(s)}{D(s)} \]

\[H(z) = \frac{\sum_{i=0}^{m} a_i z^i}{\sum_{i=0}^{n} b_i z^i} = \frac{N(z)}{D(z)} \]

- Filter stability is of concern at the approximation stage of the filter design process.

- Filter stability is required but not of concern at the synthesis stage for any useful filter (this concept is often misrepresented in the industry).

- Oscillators can be viewed as “unstable” filters.
End of Lecture 2