
EE 508 

Lecture 23 

Sensitivity Functions 
• Transfer Function  Sensitivity 

• Examples 



Corollary 3:  If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if pk is any 

pole and zh is any zero, then 

1
1

k

i

k
p

R
i=1

S =   1
2

k

i

k
p

C
i=1

S =  

1
1

h

i

k
z

R
i=1

S =   1
2

h

i

k
z

C
i=1

S =  
and 

Review from last time 



Corollary 4:  If all op amps in an RC 

active filter are ideal and there are k1 

resistors and k2 capacitors and if ZIN is any 

input impedance of the network, then 
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Bilinear Property of Electrical Networks 

Theorem:  Let x be any component or Op Amp time constant 

(1st order Op Amp model) of any linear active network 

employing a finite number of amplifiers and lumped passive 

components.   Any transfer function of the network can be 

expressed in the form 
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0 1

N s +xN s
T s =

D s +xD s

where N0, N1, D0, and D1 are polynomials in s that are not dependent upon x 

A function that can be expressed as given above  is said to be a bilinear 

function in the variable x and this is termed a bilateral property of electrical 

networks. 

The bilinear relationship is  useful for 

1. Checking for possible errors in an analysis 

2. Pole sensitivity analysis 

Review from last time 



Root Sensitivities 
Consider expressing T(s) as a bilinear fraction in x 
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Theorem:  If zi is any simple zero and/or pi is any 

simple pole of T(s), then 
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and 

Note:  Do not need to find expressions for the poles or the 

zeros to fine the pole and zero sensitivities ! 

Review from last time 



Root Sensitivities 
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Observation:   Although the sensitivity expression is 

readily obtainable, direction information about the pole 

movement is obscured because the derivative is 

multiplied by the quantity pi which is often complex.  

Usually will use either                or   

 

 

 

                                                    which preserve 

direction information when working with pole or zero 

sensitivity analysis. 
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Review from last time 
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C 
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write in bilinear form 

evaluate at τ=0 
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C 
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C 
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Example:   Determine           for the  +KRC Lowpass Filter for equal  R, equal C 
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For equal R, equal C 
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Transfer Function Sensitivities 
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Transfer Function Sensitivities 
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If T(s) is expressed as 

then 
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If T(s) is expressed as 
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Band-edge Sensitivities 

The band edge of a filter is often of interest.  A closed-form expression for 

the band-edge of a filter may not be attainable and often the band-edges 

are distinct from the ω0 of the poles.  But the sensitivity of the band-edges 

to a parameter x is often of interest. 
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Band-edge Sensitivities 

 T jω

ωC ω

Theorem:  The sensitivity of the band-edge of a filter is given by the expression 
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Band-edge Sensitivities 
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Band-edge Sensitivities 
 T jω

ωC ω

  T jω

ω
   

 
   

  



T jω
T jω T jω x x

ωω x ω

x

 

 



 




T jω

ω x
T jωx

ω

 

 

 

 




  
 

  




T jω x

x T jωω ω

T jωx xω

ω T jω

 

 

 

 




  
  

  




T jω x

x T jωω x

T jωx ω ω

ω T jω

 

 


T jω
ω x
x T jω

ω

S
S

S

 

 
 CC

C

T jω

x
ω=ωω

x T jω

ω
ω=ω

S
S

S



Sensitivity Comparisons 

  Consider 5 second-order lowpass  filters  

      (all can realize same T(s) within a gain factor) 
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Passive RLC 
+KRC 

Bridged-T Feedback  Two-Integrator Loop  



Sensitivity Comparisons 

  Consider 5 second-order lowpass  filters  

      (all can realize same T(s) within a gain factor) 
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b)   + KRC (a Sallen and Key filter) 
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Case b1 : Equal R, Equal C 
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Case b2 : Equal R, K=1 
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c)   Bridged T Feedback 
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d)   2 integrator loop 
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d)    - KRC   (a Sallen and Key filter) 
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How do these five circuits compare? 

a) From a passive sensitivity viewpoint? 

- If Q is small 

 

- If Q is large 

b) From an active sensitivity viewpoint? 

- If Q is small 

 

- If Q is large 

 

- If τω0 is large 



Comparison:  Calculate all ω0 and Q sensitivities 
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Case b1 : +KRC  Equal R, Equal C 
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Case b2 : +KRC  Equal R, K=1 
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c)   Bridged T Feedback 

0

1 2 1 2

1
ω  =    

R R C C

1

1 22 1 2

1 3 1 3

Q =    
R RC R R

+ +
C R R R

  
   

  

For R1=R2=R3=R 

1

3

1

2

C
Q =    

C

0

1

3Q
ω  =    

RC



d)   2 integrator loop 
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d) -KRC passive sensitivities 

For R1=R2=R3=R4=R, C1=C2=C 05+K
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Passive Sensitivity Comparisons 

0ω
xS Q

xS

Passive RLC 

+KRC 

Bridged-T Feedback  

Two-Integrator Loop  

Equal R, Equal C   (K=3-1/Q)  

Equal R,   K=1      (C1=4Q2C2)  

1
2

 1,1/2 

0,1/2 

0,1/2 0,1/2, 2Q2 

Q, 2Q, 3Q  

0,1/2 

0,1/2 1,1/2, 0 

1/3,1/2, 1/6 

Substantial Differences Between (or in)  Architectures 
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Where we are at with sensitivity analysis: 

Considered a group of  five second-order filters 

• Closed form expressions were obtained for ω0 and Q 

• Tedious but straightforward calculations provided passive 

sensitivities directly from the closed form expressions  

Passive Sensitivity Analysis 

Active  Sensitivity Analysis 

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain 

If we consider higher-order filters 

Passive Sensitivity Analysis 

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain for many useful structures 

Active  Sensitivity Analysis 

• Closed form expressions for ω0 and Q are very difficult or 

impossible to obtain 

??? 

Need some better method for obtaining sensitivities when closed-form 

expressions are difficult or impractical to obtain or manipulate !! 



Relationship between pole sensitivities 

and 0 and Q sensitivities 

p
Im

Re

p = -α+jβ 

D2(s)=(s+α-jβ)(s+α+jβ) 

D2(s)=(s-p)(s-p*) 

D2(s)=s2+s(2α)+(α2+β2) 



Relationship between active pole sensitivities and 

0 and Q sensitivities 
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(from bilinear form of T(s)) 

Claim:   These theorems, with straightforward modification, also apply to 

other parameters (R, C, L, K, …)  where, D0(s) and D1(s) will change since 

the parameter is different  







c)    Bridged-T structure 





d)    Two integrator loop architecture 



d)    Two integrator loop architecture 



e) -KRC 





Active Sensitivity Comparisons 
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Are these passive sensitivities acceptable?   
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Active Sensitivity Comparisons 
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Are these active sensitivities acceptable?   



Are these sensitivities acceptable?   

0

0ω0

x

Δω Δx
S

ω x
In integrated circuits,  R/R  and  C/C  due to process variations can be K  

30% or larger due to process variations 

Even if sensitivity  is around ½ or 1, variability is often orders of magnitude too large 

Passive Sensitivities: 

Active Sensitivities: 

All are proportional to τω0 

Some architectures much more sensitive than others 

Can reduce τω0 by making GB large but this is at the expense of increased power 

    and even if power is not of concern, process presents fundamental limits on how  

    large GB can be made 

Many applications require Δω0/ω0<.001 or smaller and similar requirements on ΔQ/Q 



End of Lecture 23 


