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Parasitic Capacitances on Floating Nodes 
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Parasitic capacitances ideally have no affect on filter when on a non-floating 

node but directly affect transfer function when they appear on a floating node 

Parasitic capacitances are invariably large, nonlinear, and highly process 

dependent in integrated filters.  Thus, it is difficult to build accurate integrated 

filters if floating nodes are present 

Generally avoid floating nodes, if possible, in integrated filters 

Floating Node

Not Floationg Node

Review from last time 
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Sallen-Key Type (Dependent Sources) 

Infinite Gain Amplifiers 

Integrator Based Structures 

Which type of Biquad is really used? 
Floating NodeNot Floationg Node

Review from last time 



Filter Design/Synthesis Considerations 

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

VOUTVIN Tm(s)

Biquad

  1 2 mT s T T T

I1(s)

Integrator

I2(s)

Integrator

I3(s)

Integrator

I4(s)

Integrator

Ik(s)

Integrator

VIN

VOUTIk-1(s)

Integrator

a2a1

T1(s)

Biquad

T2(s)

Biquad

Tk(s)

Biquad

αF

XOUT
XIN

α1
α2 αk

α0


Cascaded Biquads 

Leapfrog 

Multiple-loop Feedback – One type shown  

Observation: All filters are comprised of summers, biquads and integrators 

And biquads usually made with summers and integrators 

Integrated filter design generally focused on design of integrators, summers, and 

amplifiers (Op Amps) 

Will now focus on the design of integrators, summers, 

and op amps 

Review from last time 



Basic Filter Building Blocks 
(particularly for integrated filters) 

• Integrators 

 

• Summers 

 

• Operational Amplifiers 



Integrator Characteristics of Interest 
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Unity Gain Frequency = 1 

Properties of an ideal integrator: 

Gain decreases with 1/ω 

Phase is a constant -90o 

 0I Ij  = 1

How important is it that an integrator have all 3 of these properties? 



Integrator Characteristics of Interest 
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How important is it that an integrator have all 3 of these properties? 

Consider a filter example: 

In many (most) applications it is critical that an integrator be very nearly ideal 

 (in the frequency range of interest) 

 0I Ij  = 1

Band edges proportional to I0 

Phase critical to make Q expression valid 





Some integrator structures 
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Are there other integrator structures? 

Inverting Active RC Integrator 
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Some integrator structures 

Are there other integrator structures? 
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Some integrator structures 

Are there other integrator structures? 
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•  Thus output impedance is ∞ so provides current output 
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Some integrator structures 
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There are many different ways to build an inverting integrator 

There are other useful integrator structures (some will be introduced later) 



 Integrator Functionality 
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Summing Integrator 

Fully Differential Integrator 

Noninverting Integrator 

Lossy  Integrator 

Basic Active RC Inverting Integrator 

Many different types of functionality from basic inverting integrator 

Same modifications exist for other integrator architectures 



Integrator-Based Filter Design 
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Any of these different types of integrators can be used to build integrator-based filters 
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Are new integrators still being invented? 











Example – OTA-C Tow Thomas Biquad 
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Noninverting Inverting

Lossy Noninverting Lossy Inverting

Summing (Multiple-Input) Inverting/Noninverting

Summing (Multiple-Input) Lossy Inverting/Noninverting 
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Basic Integrator Functionality 



Basic Integrator Functionality 
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• An inverting/noninverting integrator pair define a family of integrators 

• All integrator functional types can usually be obtained from the 

inverting/noninverting integrator pair 

• Suffices to focus primarily on the design of the inverting/noninverting 

integrator pair since properties of class primarily determined by 

properties of integrator pair 

 



Example – Basic Op-Amp Feedback Integrator 
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Example – Basic Op-Amp Feedback Integrator 
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Example – Basic Op-Amp Feedback Integrator 
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Lossy Summing Inverting Integrator 
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Example – Basic Op-Amp Feedback Integrator 
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Balanced Differential  Inverting Integrator 

C

R

C

R

IN
+V

IN
-V

OUT
+V

OUT
-V

+

-

+

-

INdiffV OUTdiffV
Axis of 

Symmetry

OUT IN

1
V V

CRs

  

OUT IN

1
V V

CRs

  

OUTdiff INdiff

1
V V

CRs
 



Example – Basic Op-Amp Feedback Integrator 
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Integrator Types 
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Will consider first the Voltage Mode type of integrators 



Voltage Mode Integrators 

• Active RC     (Feedback-based) 

• MOSFET-C   (Feedback-based) 

• OTA-C 

• TA-C 

• Switched Capacitor 

• Switched Resistor 

Sometimes termed “current mode” 

Will discuss later 



Active RC Voltage Mode Integrator 
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• Limited to low frequencies because of Op Amp limitations 

• No good resistors for monolithic implementations 
Area for passive resistors is too large at low frequencies 

Some recent work by Haibo Fei shows promise for some audio frequency applications 

• Capacitor area too large at low frequencies for monolithic implementatins 

• Active devices are highly temperature dependent, proc. dependent, and nonlinear 

• No practical tuning or trimming scheme for integrated applications with passive resistors 

 



MOSFET-C Voltage Mode Integrator 

• Limited to low frequencies because of Op Amp limitations 

• Area for RMOS is manageable ! 

• Active devices are highly temperature dependent, process dependent 

• Potential for tuning with VC 

• Highly Nonlinear (can be partially compensated with cross-coupled input 
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A Solution without a Problem 



MOSFET-C Voltage Mode Integrator 

• Improved Linearity  

• Some challenges for implementing VC 
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Still A Solution without a Problem 
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OTA-C Voltage Mode Integrator 

• Requires only two components 

• Inverting and Noninverting structures of same complexity 

• Good high-frequency performance 

• Small area 

• Linearity is limited (no feedback in integrator) 

• Susceptible to process and temperature variations 

• Tuning control can be readily added  

 

Widely used in high frequency applications  

Noninverting Inverting 

V O U T

V IN

C

gm


m

O U T IN

g
V V

sC

VOUT
VIN

C

gm

 
m

O U T IN

g
V V

sC



OTA-C Voltage Mode Integrator 

Programmable Integrator 
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OTA-C Voltage Mode Integrator 

Lossy  Integrator 
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End of Lecture 25 


