EE 508
Lecture 31

Switched Current Filters



Review from last time

Current-Mode Filters
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Basic Concepts of Benefits of Current-Mode Filters:

 Large voltage swings difficult to maintain in integrated processes because
of linearity concerns

 Large voltage swings slow a circuit down because of time required to
charge capacitors

* Voltage swings can be very small when currents change

« Current swings are not inherently limited in integrated circuits (only voltage
swings)

» With low voltage swings, current-mode circuits should dissipate little power
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Steady growth in research in the area since 1990 and publication
rate is growing with time !!
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Current-Mode Filters

The Conventional Wisdom:

— Current-Mode circuits operate at higher-
frequencies than voltage-mode counterparts

— Current-Mode circuits operate at lower supply
voltages and lower power levels than voltage-
mode counterparts

— Current-Mode circuits are simpler than
voltage-mode counterparts

— Current-Mode circuits offer better linearity

than voltage-mode counterparts

This represents four really significant benefits of
current-mode circuits!
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Some Current-Mode Integrators

OTA-C

IIN

™
—> / —>

—C lout —C lout
7
7 7
| = g_m|
oY cs M lOUT:(-g—mjllN
Cs
Noninverting Inverting

« Summing inputs really easy to obtain

*Loss is easy to add

« Same component count as voltage-mode integrators

* Many argue that since only interested in currents, can operate at lower voltages
and higher frequencies



Current-Mode Two Integrator
Loop

CM Lossy Integrator CM Integrator CM Amplifier

« Straightforward implementation of the two-integrator loop

« Simple structure
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Current-Mode Two Integrator Loop
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This circuit is identical to another one with two voltage-mode integrators and
a voltage-mode amplifier !
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Observation

 Many papers have appeared that tout the
performance advantages of current-mode
circuits

* In all of the current-mode papers that this
Instructor has seen, no attempt is made to
provide a guantitative comparison of the
key performance features of current-mode
circuits with voltage-mode counterparts

 All justifications of the advantages of the
current-mode circuits this instructor has
seen are based upon qualitative
statements
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Observations (cont.)

« It appears easy to get papers published that have the
term “current-mode” in the title

. Olver 900 papers have been published in IEEE forums
alone !

« Some of the “current-mode” filters published perform
better than other “voltage-mode” filters that have been
published

« We are still waiting for even one author to quantitatively
show that current-mode filters offer even one of the
claimed four advantages over their voltage-mode
counterparts

WIll return to a discussion of Current-Mode filters later
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Switched-Current Filters

Basic idea introduced by Hughes and Bird at ISCAS 1989

switched currents-a new technique for analog sampled-data signal processing

1B Hughes, MC Bird... - Circuits and Systemns, 19859 ., 2002 - jeeexplore.ieee. org k

MTRODUCTION The enormous complexity available in state-of-the-art CMOS processing has |

nade possible the integration of complete systems, including bath digital and analog signal processing

unctions, within the same chip Through the last decade, the switched capacitor technigue ... 1
I

—ited by 151 - Related aricles

Technique introduced directly in the z-domain
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Switched-Current Filters
Basic idea introduced by Hughes and Bird at ISCAS 1989
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If ®@, is a periodic signal and if |, is also
appropriately clocked, the input/output
currents of this circuit can be represented

with the difference equation
louT (nT) = Al (nT-T)
This switched mirror becomes a delay element

“Gain” A is that of a current mirror

A can be accurately controlled
Circuit is small and very fast

Concept can be extended to implement arbitrary
difference equation

Difference equation characterizes filter H(z)
Need only current mirrors and switches

Truly a “current-mode” circuit
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Switched-Current Filters
Basic idea introduced by Hughes and Bird at ISCAS 1989

lour (NT) = Al (nT-T)
Y/ Cp is parasitic gate capacitance on M,
I|N¢ Very low power dissipation

l lour Potential to operate at very low voltages

Potential for accuracy of a SC circuit at both
P1 low and high frequencies but without the Op
M EMZ Amp and large C ratios
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O
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Neither capacitor or resistor values needed to
do filtering!

7 A completely new approach to designing filters
that offers potential for overcoming most of the
problems plaguing filter designers for decades
!

Before developing Switch-Current concept, need to review background
information in s to z domain transformations



s-domain to z-domain transformations

X||\|—> T (S) —>£OUT

XN H(Z) XouT

For a given T(s) would like to obtain a function H(z) or for a given H(z) would like
to obtain a T(s) such that preserves the magnitude and phase response

Mathematically, would like to obtain the relationship:

T(s)l,= H(z)

s=jw z=e¥T



s-domain to z-domain transformations

N T (S) _>§OUT

X|N_> H(Z) _>SOUT
want: T(s) o™ H(z) o
equivalently, want:
T(s)= H(z) _.

But if this were to happen, T(s) would not be a rational fraction in s with real coefft.

Thus, it is impossible to obtain this mapping between T(s) and H(z)



s-domain to z-domain transformations

N T (S) _>§OUT

goal: T(S)= H(Z)z:eST

If can’t achieve this goal, would like to map imaginary axis to unit circle and map
stable filters to stable filters

consider: 7 —e@S!
Case 1: _ o sT_N 1 i
z=¢e =) —(sT
" <3 (e"
2= ~(sT) =1+sT
= 1!
S = z-1 Termed the Forward Euler transformation



s-domain to z-domain transformations

X|N_> T (S) _)SOUT

z-1

S = ? Forward Euler transformation

« Doesn’t map imaginary axis in s-plane to unit circle in z-plane

* Doesn’t guarantee stable filter will map to stable filter

» But mapping may give stable filter with good frequency
response



s-domain to z-domain transformations

XN | T (S) _)SOUT

consider: 7z =g@S'
Case2: z=¢T- _1ST: _ 11
DY 1C1
i=0 -
1
Z =
1-sT
1)z-1 .
S = ? 7 Termed the Backward Euler transformation



s-domain to z-domain transformations

N T(S) _>SOUT

1)z-1
S=| — |—
(Tj Z Backward Euler transformation

« Doesn’t map imaginary axis in s-plane to unit circle in z-plane

» Does guarantee stable filter will map to stable filter




s-domain to z-domain transformations

N T(S) _>§OUT

consider: 7=

= 1( TY T
]
s ~|Ss— :
Case 3: s_e?l Zi!( 2) s
Z=e = 0

solving for s, obtain
<= g. z-1
- T 7z+1 Termed the Bilinear z transformation




s-domain to z-domain transformations

N T(S) _>SOUT

o= E. z-1
T 741 Bilinear z transformation

« Maps imaginary axis in s-plane to unit circle in z-plane
(preserves shape, distorts frequency axis)

» Does guarantee stable filter will map to stable filter

* Bilinear z transformation is widely used



s-domain to z-domain transformations
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R —

XIN

T (S) JOUT

H (Z) 4>>(OUT

consider:

Forward Euler

Backward Euler

Bilinear z
transform

ST

Three Popular Transformations

1-z7
S = —
Tz
1-z+1
=




s-domain to z-domain transformations

Three Popular Transformations

Xin T(S) Xout
z-1 _1-z"
S= —— Forward Euler S= T 1
T Z
Xin Xout
H(2) z-1 1-z*
S= T_ Backward Euler S= T
VA
1
8220 z-1 Bilinear z S=§O 1-z
T 7241 transform T 1+z7

Transformations of standard approximations in s-domain are the
corresponding transformations in the z-domain

Transformations are not unigue

Transformations cause warping of the imaginary axis and may
cause change in basic shape

Transformations do not necessarily guarantee stability

These transformations preserve order



Z-domain integrators

X|N4> T(S) JOUT
|
o hE) e T(s) =2 H(2)

z-1 _1-zt
S= —— Forward Euler S= 1
T Tz
z-1 1-z*
S= — Backward Euler S=
Tz T
-1
S:g. z-1 Bilinear z S:g. 1-z
T z+1 transform T 1+z?

Corresponding difference equations:
Vour (NT+T) =TIV, (NT) + Vgyr (nT)

ouT

Vour (NT+T) =1, TV, (NT+T)+V,y; (NT)

V

O

or (NT+T) = %(\/,N (NT+T)+ V, (nT))+Vy; (nT)

Some z-domain integrators

& Forward Euler
Z-1

) lo T2 Backward Euler
z-1

E(Z—Hj Bilinear z

2\ z1

Forward Euler
Backward Euler

Bilinear z



Zz-domain lossy integrators

X
XiN T (S) ouT
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Three Popular Transformations H(Z) =
-z Forward Eul S= L-27
S pumm T orwar uler TZ.]_
_z1 _ 1z
S= — Backward Euler S=
Tz T
S_E. z-1 Bilinear z S:E. 1'2-_11
T z+1 transform T 1+z

Corresponding difference equations:

Vour (NT+T) =TIV, (NT) +[1—aT] Vg (NT)
(L+aT) Voyr (NTHT) =1, TV, (NT+T)+Vy; (NT)

Some z-domain lossy integrators

Tl Forward Euler
Z-1+aT

lo T2 Backward Euler
z(1+aT)-1
Tl, z+1

Bilinear z

Forward Euler
Backward Euler

(1+ a—sz Vour (NT+T) = %(V,N (NT+T)+V, (nT))+[1—a—2T} Vour (NT)  Bilinear z



Zz-domain lossy integrators

X|N4> T (S) JOUT

Some z-domain lossy integrators

I
T(s) = Functional
+
Xin H(Z) Xout STa Form
Ty & Forward Euler
z-1+aT z-H
__bTz Gz Backward Euler
H(z) = {z(1+aT)-1 zZH -1
Thy z+1 G(Z—Hj Bilinear z
L))
2 2
Corresponding difference equations:
Vour (NT+T) =GV, (nT)+HVyy; (nT) Forward Euler
HVour (NTH+T) =GV, (NT+T)+Vg; (nT) Backward Euler

Vour (NT+T) =G(V, (NT+T)+V,y (nT))+HV,y, (nT)  Bilinear z



Switched-Current Integrator

Consider this circuit
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* Clocks complimentary, nonoverlapping
®1 « Phase not critical
P2 < T > Assume inputs change only during phase @,

ar (n+1)T (may be outputs from other like stages)



Switched-Current Integrator

T
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Consider @, closed, @, open (nT-T <t < nT-T/2)
L (t) = Biy (NT-T) + iy, (1)

Since current does not change during this interval

il(nT-T) = B, (nT'T) e (nT'T)



Switched-Current Integrator

VDD
0
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Consider @, closed, @, open (nT-T/2<t<nT)

i, (t) =i, (nT-T) \

o (1) =5 (1) + iy (1)

our (T) = Al (t)

i, (NT-T) =Bi, (NT-T) + iy, (NT-T)  (romfistphase)
1), . B. .

(Kj.w (0) * (0= Ziour (TTT) + iy (0T-T)




Switched-Current Integrator

VDD
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Consider @, closed, @, open (nT-T/2<t<nT)
1). . B. .
(XJ'OUT (0) * (0= Ziour (7TT) + iy (0T-T)

Evaluating at t=nT, we have

(%jiow (nT) + i,Nl(nT): %iOUT (nT'T) * I (nT_T)

Taking z-transform, obtain

or() = (22 | 2 a2



Switched-Current Integrator

Yoo Recall lossy integrators:

T A

({) : :B A -1

[« | Gz
i ixs I—Q Il— M, '[ M T st Forward Euler
el bi [ H(z) = G . Backward Euler
Iin2 " :“__ﬁl y 2 1 1 ouT 1-Hz 1

i CPI ' ] ] G(l -Hz'lj Bilinear z

For H=1 becomes lossless
Azt A
lour (2) = (mj IINZ(Z)_(mjllNl(Z)

If 1,,;=0, becomes Forward Euler integrator
If 1,=0, becomes Backward Euler integrator
If 11= - l,n2, DECOMES Bilinear Integrator



Switched-Current Integrator
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« Summing inputs can be provided by summing currents on N, or N, or both
« Multiple outputs can be provided by adding outputs to upper mirror
« Amount of loss determined by mirror gain B



Switched-Current Integrator

Sensitivity Analysis Voo
Cel
\ T i« B oA
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Consider Forward Euler
Az* Tl
I Z e — I Z H Z) = I
@) = [ al) (2) = 1o
A 1-B
l,= = —=«a
T T
-B
Sh=1 Sp=—
- B
A 1-B

For low loss integrator (e.g. ideal integrator), the sensitivity of a is very large!



Switched-Current Integrator

Sensitivity Analysis Voo
CP7<
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e | e,
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e v i lour
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Consider Bilinear z

lour (2) :A(%j In(2) H(z) = TZIO Z( a'l?j:_l(aT_ j

2 21-B
T(1+B) T1+4B

lp — S%=
Sa=1 >~ (1-B)(1+B)
For low loss integrator (e.g. ideal integrator), the sensitivity of a is very large!

What about the sensitivity to the gain of the lower current mirror?



Switched-Current Integrator

VDD
Define A, to be the gain of Cel
theellgsverlrr?irrgr S (D |1v| O a T wWB A
N i3 fjl (Pz‘ = \Y lE Ms
Sensitivity to A,?  — —
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s
Consider @, closed, @, open (nT-T/2<t<nT)
. . \
i, (t) =A, i,(nT-T)
o (1) =5 (1) + iy (1) \
our (T) = Al (t)
i, (NT-T) =Bi, (NT-T) + iy, (NT-T)  (romfistphase)

1

KjiOUT (t) + iINl(t)_ a B

X lour (NT-T) + Al (NT-T)



Switched-Current Integrator

VDD
Define A; to be the gain of | Cel
the lower mirror (D i/.lgjl A B '[ A
I g | ST T
Sensitivity to A;? | | —
TN: “1 01 +i2 lout
Sl VoG
1: CPT :

&

A B
lour (NT-T) + Ajiy, (NT-T)

1),
(Kj lout (nT) N (nT)
Taking z-transform, obtain

o (2) = (200 el g )

Consider Forward Euler BA BA

T 1-BA, M 1-BA,
Sensitivity to A, Is also large for low-loss or lossless integrator







