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Switched Current Filters 



Current-Mode Filters 
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Basic Concepts of Benefits of Current-Mode Filters: 

• Large voltage swings difficult to maintain in integrated processes because 

of linearity concerns 

• Large voltage swings slow a circuit down because of time required to 

charge capacitors 

• Voltage swings can be very small when currents change 

• Current swings are not inherently limited in integrated circuits (only voltage 

swings) 

• With low voltage swings, current-mode circuits should dissipate little power 

Review from last time 
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Current-Mode Filters 

Steady growth in research in the area since 1990 and publication 

rate is growing with time !! 
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Review from last time 



Current-Mode Filters 

 

– Current-Mode circuits operate at higher-

frequencies than voltage-mode counterparts 

– Current-Mode circuits operate at lower supply 

voltages and lower power levels than voltage-

mode counterparts 

– Current-Mode circuits are simpler than 

voltage-mode counterparts 

– Current-Mode circuits offer better linearity 

than voltage-mode counterparts 

The Conventional Wisdom: 

This represents four really significant benefits of 

current-mode circuits! 

Review from last time 



Some Current-Mode Integrators 
OTA-C 
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Inverting 
Noninverting 

• Summing inputs really easy to obtain 

• Loss is easy to add 

• Same component count as voltage-mode integrators 

• Many argue that since only interested in currents, can operate at lower voltages 

  and higher frequencies 
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Review from last time 



Current-Mode Two Integrator 

Loop 

RARQ R

IOUT

IIN
C

RA

C R RL

• Straightforward implementation of the two-integrator loop 

 

• Simple structure 

CM Lossy Integrator CM Integrator CM Amplifier 

Review from last time 



Current-Mode Two Integrator Loop 
RARQ R

IOUT

IIN
C

RA

C R RL

An Observation: 

RARQ R

IOUT

IIN
C

RA

C R RL

This circuit is identical to another one with two voltage-mode integrators and 

a voltage-mode amplifier ! 

VM Integrator VM Amplifier 

VM Integrator VM Amplifier 

VM Integrator 

Review from last time 



Observation 

• Many papers have appeared that tout the 
performance advantages of current-mode 
circuits 

• In all of the current-mode papers that this 
instructor has seen, no attempt is made to 
provide a quantitative comparison of the 
key performance features of current-mode 
circuits with voltage-mode counterparts 

• All justifications of the advantages of the 
current-mode circuits this instructor has 
seen are based upon qualitative 
statements 

Review from last time 



Observations (cont.) 

• It appears easy to get papers published that have the 
term “current-mode” in the title 

• Over 900 papers have been published in IEEE forums 
alone ! 

• Some of the “current-mode” filters published perform 
better than other “voltage-mode” filters that have been 
published 

• We are still waiting for even one author to quantitatively 
show that current-mode filters offer even one of the 
claimed four advantages over their voltage-mode 
counterparts 

Will return to a discussion of Current-Mode filters later 

Review from last time 



Switched-Current Filters 

Basic idea introduced by Hughes and Bird at ISCAS 1989 

Technique introduced directly in the z-domain 

Review from last time 



Switched-Current Filters 
Basic idea introduced by Hughes and Bird at ISCAS 1989 
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If Φ1 is a periodic signal and if IIN is also 

appropriately clocked,  the input/output 

currents of this circuit can be represented 

with the difference equation 

   OUT INI nT  = AI nT-T

“Gain” A  is that of a current mirror 

A can be accurately controlled 

Circuit is small and very fast 

This switched mirror becomes a delay element 

Concept can be extended to implement arbitrary 

difference equation 

Difference equation characterizes filter H(z) 

Need only current mirrors and switches 

Truly a “current-mode” circuit 

Review from last time 



Switched-Current Filters 
Basic idea introduced by Hughes and Bird at ISCAS 1989 

VDD

IIN

IOUT

φ1

M1 M2

CP1: :A

   OUT INI nT  = AI nT-T

Potential for accuracy of a SC circuit at both 

low and high frequencies but without the Op 

Amp and large C ratios 

Cp is parasitic gate capacitance on M2 

Very low power dissipation 

A completely new approach to designing filters 

that offers potential for overcoming most of the 

problems plaguing filter designers for decades 

! 

Potential to operate at very low voltages 

Neither capacitor or resistor values needed to 

do filtering! 

Before developing Switch-Current concept, need to review background 

information in s to z domain transformations 

Review from last time 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

For a given T(s) would like to obtain a function H(z) or for a given H(z) would like 

to obtain a T(s) such that preserves the magnitude and phase response 

    jωTs=jω z=e
T s H z

Mathematically, would like to obtain the relationship: 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

    jωTs=jω z=e
T s H z

    sTz=e
T s H z

want: 

equivalently, want: 

But if this were to happen, T(s) would not be a rational fraction in s with real coeff. 

Thus, it is impossible to obtain this mapping between T(s) and H(z) 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?
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z -1
s = 

T
Termed the Forward Euler transformation 

If can’t achieve this goal, would like to map imaginary axis to unit circle and map 

stable filters to stable filters 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

z -1
s = 

T
Forward Euler transformation 

• Doesn’t map imaginary axis in s-plane to unit circle in z-plane 

 

• Doesn’t guarantee stable filter will map to stable filter 

 

• But mapping may give stable filter with good frequency 

response 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

consider: sTz e
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Case 2: 

Termed the Backward Euler transformation 
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s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

Backward Euler transformation 

1 z-1
 s = 

T z

 
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• Doesn’t map imaginary axis in s-plane to unit circle in z-plane 

 

• Does guarantee stable filter will map to stable filter 

 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?
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Case 3: 

Termed the Bilinear z transformation 1

2 z-1
 s = 

T z




solving for s, obtain 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

Bilinear z transformation 1

2 z-1
 s = 

T z




• Maps imaginary axis in s-plane to unit circle in z-plane 

(preserves shape, distorts frequency axis) 

 

• Does guarantee stable filter will map to stable filter 

 

• Bilinear z transformation is widely used 

 



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?
consider: 

sTz e

1
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 s= 

Tz
Backward  Euler

Bilinear z 

transform 

z -1
s = 

T
Forward Euler

-1

-1

1 - z
s = 

Tz

-11-z
 s= 

T

-1

-1

2 1-z
 s=

T 1+z


Three Popular Transformations



s-domain to z-domain transformations 

XIN XOUT T s

XIN XOUT H z

?

 

• Transformations of standard approximations in s-domain are the   

corresponding transformations in the z-domain 

 

•  Transformations are not unique 

 

• Transformations cause warping of the imaginary axis and may   

cause change in basic shape  

 

• Transformations do not necessarily guarantee stability 

 

• These transformations preserve order 

1
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Forward Euler
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T

-1
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2 1-z
 s=

T 1+z
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Three Popular Transformations



z-domain integrators 

XIN XOUT T s

XIN XOUT H z

?
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Three Popular Transformations

  0IT s  = 
s

Some z-domain integrators 
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Corresponding difference equations: 



z-domain lossy integrators 

XIN XOUT T s
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Some z-domain lossy integrators 
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Corresponding difference equations: 



z-domain lossy integrators 

XIN XOUT T s

XIN XOUT H z
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  0IT s  = 
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Some z-domain lossy integrators 
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Corresponding difference equations: 

Functional 

Form 



Switched-Current Integrator 

Consider this circuit 

T

nT (n+1)T

φ1

φ2

VDD

IIN2
IOUTφ1

M1 M2

CP

φ2
M3

M4 M5

IB1

IB2 IB3

CP

IIN1

1:

1:

:1

:B :A

• Clocks complimentary, nonoverlapping 

• Phase not critical 

Assume inputs change only during phase Φ2 
           (may be outputs from other like stages) 



Switched-Current Integrator 

     1 3 iN2i t  = Bi nT-T  + i t

Consider Φ1 closed, Φ2 open  (nT-T < t < nT-T/2)  

     1 3 iN2i nT-T  = Bi nT-T  + i nT-T

VDD

iIN2
IOUTφ1

M1 M2

CP

φ2
M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

Since current does not change during this interval 



Switched-Current Integrator 

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT)  

   2 1i t  = i nT-T

     1 3 iN2i nT-T  = Bi nT-T  + i nT-T

     2 3 IN1i t  = i t  + i t

       OUT IN1 OUT IN2

1 B
 i t  + i t = i nT-T  + i nT-T

A A

 
 
 

   OUT 3i t  = Ai t

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

(from first phase) 



Switched-Current Integrator 

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT)  

       OUT IN1 OUT IN2

1 B
 i t  + i t = i nT-T  + i nT-T

A A

 
 
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iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

Evaluating at t=nT, we have 

       OUT IN1 OUT IN2

1 B
 i nT  + i nT = i nT-T  + i nT-T

A A

 
 
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Taking z-transform, obtain 

     1 11 1
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 I z   =  I z - I z

Bz Bz 

   
   
   



Switched-Current Integrator 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

     1 11 1

-1

OUT IN2 IN1

Az A
 I z   =  I z - I z

Bz Bz 
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   
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 

-1

-1

-1

-1

-1

Gz
Forward Euler

1 -Hz

G
H z  =      Backward Euler

1 - Hz

1 + z
G Bilinear z

1 -Hz



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


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  
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Recall lossy integrators: 

If IIN1=0, becomes Forward Euler integrator 

If IN2=0, becomes Backward Euler integrator 

If IN1= - IIN2, becomes Bilinear Integrator 

For H=1 becomes lossless 



Switched-Current Integrator 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

     1 11 1

-1

OUT IN2 IN1

Az A
 I z   =  I z - I z

Bz Bz 

   
   
   

• Summing inputs can be provided by summing currents on N1 or N2 or both 

• Multiple outputs can be provided by adding outputs to upper mirror 

• Amount of loss determined by mirror gain B 



Switched-Current Integrator 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

   11

-1

OUT IN2

Az
 I z   =  I z

Bz

 
 
 

  0TI
H z  = 

z -1+ T

Sensitivity Analysis 

Consider Forward Euler 

0

A
I = 

T

1-B
 = 

T


0I

A = 1S B

-B
=

1-B
S

For low loss integrator (e.g. ideal integrator), the sensitivity of α is very large! 



Switched-Current Integrator 

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

N1N2

Sensitivity Analysis 

Consider Bilinear z 

 
0

2
I = A

T 1+B

2 1-B

T 1+B
 

0I

A = 1S   B

-B
=

1-B 1+B
S

For low loss integrator (e.g. ideal integrator), the sensitivity of α  is very large! 

   1

1

1

-1

OUT IN

z
 I z   = A  I z

Bz

 
 
 

 
10TI z

H z  = 
T T2

z 1+ + -1
2 2

 

 
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 

    
    
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What about the sensitivity to the gain of the lower current mirror? 



Switched-Current Integrator 

Consider Φ2 closed, Φ1 open  (nT-T/2 < t < nT)  

   2 11i t  =  iA nT-T

     1 3 iN2i nT-T  = Bi nT-T  + i nT-T

     2 3 IN1i t  = i t  + i t

       OUT IN1 OU
1

T 1 IN2

A B1
 i t  + i t = i n AT-T  + i nT-T

A A

 
 
 

   OUT 3i t  = Ai t

VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

(from first phase) 

Sensitivity to A1? 

Define A1 to be the gain of 

the lower mirror 



Switched-Current Integrator 
VDD

iIN2
iOUTφ1

M1 M2

CP

φ2

M3

M4 M5

IB1

IB2 IB3

CP

iIN1

1:

1:

:1

:B :A

i1

i3

i2

       OUT IN1 OUT IN2
1

1

B1
 i nT  + i nT = i nT-T  + i

A
A nT-T

A A

 
 
 

Taking z-transform, obtain 

     1 11 1

1

1

-1

OUT IN2 IN1

1

Az A
 I z   =  I z - I z

A

z zA AB B 

   
   
    

1
B

1

A-B
=

1 A-B
S

Consider Forward Euler 

11-B
 

A
= 

T


1

1
A

1

A-B
=

1 A-B
S

Sensitivity to A1? 

Sensitivity to A1 is also large for low-loss or lossless integrator 

Define A1 to be the gain of 

the lower mirror 




