Switched Current Filters
Leapfrog Networks
Switched-Current Filters

Basic idea introduced by Hughes and Bird at ISCAS 1989

\[I_{OUT}(nT) = A I_{IN}(nT-T) \]

Cp is parasitic gate capacitance on M2

Very low power dissipation

Potential to operate at very low voltages

Potential for accuracy of a SC circuit at both low and high frequencies but without the Op Amp and large C ratios

Neither capacitor or resistor values needed to do filtering!

A completely new approach to designing filters that offers potential for overcoming most of the problems plaguing filter designers for decades!

Before developing Switch-Current concept, need to review background information in s to z domain transformations
s-domain to z-domain transformations

Three Popular Transformations

- **Forward Euler**: \(s = \frac{z^{-1}}{T} \)
- **Backward Euler**: \(s = \frac{1 - z^{-1}}{T} \)
- **Bilinear z transform**: \(s = \frac{2}{T} \cdot \frac{z^{-1}}{z + 1} \)

- Transformations of standard approximations in s-domain are the corresponding transformations in the z-domain
- Transformations are not unique
- Transformations cause warping of the imaginary axis and may cause change in basic shape
- Transformations do not necessarily guarantee stability
- These transformations preserve order
z-domain lossy integrators

Three Popular Transformations

- **Forward Euler**
 \[s = \frac{z^{-1}}{T} \]
- **Backward Euler**
 \[s = \frac{1 - z^{-1}}{Tz^{-1}} \]
- **Bilinear z transform**
 \[s = \frac{2 - Tz^{-1}}{T + z^{-1}} \]

Corresponding difference equations:

- **Forward Euler**
 \[
 V_{\text{OUT}}(nT+T) = Tl_0 V_{\text{IN}}(nT) + [1 - \alpha T] V_{\text{OUT}}(nT)
 \]
- **Backward Euler**
 \[
 (1 + \alpha T) V_{\text{OUT}}(nT+T) = l_0 T V_{\text{IN}}(nT+T) + V_{\text{OUT}}(nT)
 \]
- **Bilinear z**
 \[
 \left(1 + \frac{\alpha T}{2}\right) V_{\text{OUT}}(nT+T) = \frac{Tl_0}{2} \left(V_{\text{IN}}(nT+T) + V_{\text{IN}}(nT)\right) + \left[1 - \frac{\alpha T}{2}\right] V_{\text{OUT}}(nT)
 \]
Switched-Current Integrator

Recall lossy integrators:

\[
H(z) = \begin{cases}
\frac{Gz^{-1}}{1 - Hz^{-1}} & \text{Forward Euler} \\
\frac{G}{1 - Hz^{-1}} & \text{Backward Euler} \\
G\left(\frac{1 + z^{-1}}{1 - Hz^{-1}}\right) & \text{Bilinear} \end{cases}
\]

For \(H=1\) becomes lossless

\[
I_{OUT}(z) = \left(\frac{Az^{-1}}{1-Bz^{-1}}\right)I_{IN2}(z) - \left(\frac{A}{1-Bz^{-1}}\right)I_{IN1}(z)
\]

If \(I_{IN1}=0\), becomes Forward Euler integrator
If \(I_{N2}=0\), becomes Backward Euler integrator
If \(I_{N1} = -I_{IN2}\), becomes Bilinear Integrator

Review from last time
Switched-Current Integrator

Sensitivity Analysis

Consider Forward Euler

\[I_{\text{OUT}}(z) = \left(\frac{Az^{-1}}{1-Bz^{-1}} \right) I_{\text{IN2}}(z) \]

\[H(z) = \frac{TI_0}{z^{-1}+\alpha T} \]

\[I_0 = \frac{A}{T} \quad \frac{1-B}{T} = \alpha \]

\[S^\text{I}_0_A = 1 \quad S^\alpha_B = \frac{-TB}{1-B} \]

For low loss integrator (e.g. ideal integrator), the sensitivity of \(\alpha \) is very large!
Switched-Current Integrator

Define A_1 to be the gain of the lower mirror

Sensitivity to A_1?

$$
\left(\frac{1}{A}\right) i_{\text{OUT}}(nT) + i_{\text{IN1}}(nT) = \frac{A_1B}{A} i_{\text{OUT}}(nT-T) + A_1 i_{\text{IN2}}(nT-T)
$$

Taking z-transform, obtain

$$
I_{\text{OUT}}(z) = \left(\frac{A_1Az^{-1}}{1-BA_1z^{-1}}\right) I_{\text{IN2}}(z) - \left(\frac{A}{1-BA_1z^{-1}}\right) I_{\text{IN1}}(z)
$$

Consider Forward Euler

$$
\frac{1-BA_1}{T} = \alpha
$$

$$
S_B^\alpha = \frac{-BA_1}{1-BA_1} \\
S_{A_1}^\alpha = \frac{-BA_1}{1-BA_1}
$$

Sensitivity to A_1 is also large for low-loss or lossless integrator
Switched-Current Integrator

Consider another circuit

Consider Φ_1 closed, Φ_2 open \((nT-T < t < nT-T/2)\)

$$i_1(t) = \frac{1}{A}i_{OUT}(nT-T) + i_{IN}(t)$$

$$i_1(nT-T) = \frac{1}{A}i_{OUT}(nT-T) + i_{IN}(nT-T) \quad (1)$$
Consider \(\Phi_2 \) closed, \(\Phi_1 \) open \((nT-T/2 < t < nT)\)

\[
\begin{align*}
i_{OUT}(t) &= A_i_1(nT-T) \\
i_{OUT}(nT) &= A_i_1(nT-T) \quad (2)
\end{align*}
\]

Combining (1) and (2), obtain

\[
\begin{align*}
i_{OUT}(nT) &= A \cdot \frac{1}{A} i_{OUT}(nT-T) + A_i_{IN}(nT-T)
\end{align*}
\]
Switched-Current Integrator

\[i_{\text{OUT}}(nT) = A \cdot \frac{1}{A} i_{\text{OUT}}(nT-T) + Ai_{\text{IN}}(nT-T) \]

\[i_{\text{OUT}}(nT) = i_{\text{OUT}}(nT-T) + Ai_{\text{IN}}(nT-T) \]

Taking z-transform, obtain

\[i_{\text{OUT}}(z) = \left(\frac{A z^{-1}}{1 - z^{-1}} \right) i_{\text{IN}}(z) \]

Forward Euler Integrator

- Lossless Integrator (no matching required!)
- Matching of \(M_1 \) and \(M_2 \) not required
- Gain \(A \) does not affect coefficient of \(z^{-1} \) in the denominator
Consider Φ_1 closed, Φ_2 open ($nT-T < t < nT-T/2$)

$$i_1(t) = \frac{1}{A} i_{\text{OUT}}(nT-T) + i_{\text{IN}}(t)$$

$$i_1(nT-T) = \frac{1}{A} i_{\text{OUT}}(nT-T) + i_{\text{IN}}(nT-T)$$ (1)
Consider Φ_2 closed, Φ_1 open ($nT - T/2 < t < nT$)

\[
i_{\text{OUT}}(t) = A \left(i_1(nT-T) - \frac{B}{A} i_{\text{OUT}}(t) \right)
\]

\[
i_{\text{OUT}}(nT) = A \left(i_1(nT-T) - \frac{B}{A} i_{\text{OUT}}(nT) \right)
\]

Combining (1) and (2), obtain

\[
i_{\text{OUT}}(nT) = i_{\text{OUT}}(nT-T) - Bi_{\text{OUT}}(nT) + Ai_{\text{IN}}(nT-T)
\]
Switched-Current Integrator

\[i_{\text{OUT}}(nT) = i_{\text{OUT}}(nT-T) - Bi_{\text{OUT}}(nT) + Ai_{\text{IN}}(nT-T) \]

Taking z-transform, obtain

\[I_{\text{OUT}}(z) = \left(\frac{Gz^{-1}}{1-Hz^{-1}} \right) I_{\text{IN}}(z) \]

where

\[G = \frac{A}{1+B} \quad H = \frac{1}{1+B} \]

• Lossy Integrator
• Matching of \(M_1 \) and \(M_2 \) not required
• Gain \(A \) does not affect coefficient of \(z^{-1} \) in the denominator
Switched-Current Integrator

Sensitivity Analysis

\[I_{\text{OUT}}(z) = \left(\frac{Gz^{-1}}{1-Hz^{-1}} \right) I_{\text{IN}}(z) \]

\[G = \frac{A}{1+B} \]

\[H = \frac{1}{1+B} \]

\[H(z) = \frac{TI_0}{z - 1 + \alpha T} \]

It can be shown that

\[\alpha = \frac{1}{T} \left(\frac{B}{B+1} \right) \]

\[S_B^\alpha = \frac{T}{1+B} \]

For small loss, B is small and so is the sensitivity
Switched-Current Integrator

Another structure

\[I_{OUT}(z) = \left(\frac{-G}{1-Hz^{-1}} \right) I_{IN}(z) \]

Backward Euler Lossy Inverting

\[G = \frac{A}{1+B} \quad H = \frac{1}{1+B} \]
Switched-Current Integrator

Another structure

\[I_{OUT}(z) = -G \left(\frac{1-z^{-1}}{1-Hz^{-1}} \right) I_{IN}(z) \]

\[G = \frac{A}{1+B} \quad H = \frac{1}{1+B} \]
Switched-current filters is an entirely different approach to designing filters with potential for overcoming many of the major problems facing the filter designer.

- Other switched-current filter and integrator blocks have been proposed.
- Integrators can be combined to form filter structures.
- Single-ended and fully differential structures are readily formed.
- Design of Switched-Current Filters is straightforward.
- Beyond Hughes, a few others have looked at switched-current filters.
- Hughes demonstrated experimentally modest performance with this technique.
- Hughes was a world-class researcher and filter expert.
- Hughes spent the better part of a decade trying to perfect the switched-current approach but performance remained modest when he retired.
- Limited use of switched-current filters today.
- Idea is really unique and there is bound to be some major useful applications of the basic concepts embodies in the switched-current filters!
Leapfrog Filters

This structure has some very attractive properties and is widely used though the real benefits and limitations of the structure are often not articulated.
Leapfrog Filters

Observation: This structure appears to be dramatically different than anything else ever reported and it is not intuitive why this structure would serve as a filter, much less, have some unique and very attractive properties.

To understand how the structure arose, why it has attractive properties, and to identify limitations, some mathematical background is necessary.
Background Information for Leapfrog Filters

Theorem 1: If the LC network delivers maximum power to the load at a frequency ω, then for any circuit element in the system except for $x = R_L$

$$S_x^{T(j\omega)} = 0$$

This theorem will follow after we prove the following theorem:
Background Information for Leapfrog Filters

Theorem 2: If the LC network delivers maximum power to the load at a frequency \(\omega \), then

\[
S_x^{P_1(\omega)} = 0
\]

where \(P(\omega) \) is the power delivered to the load at input frequency \(\omega \) and where \(x \) is any circuit element in the system except for \(x = R_L \).

Note: There is no guarantee that there will be any frequencies where maximum power is transferred to the load and whether this does occur depends strongly on the LC circuit structure and the load \(R_L \).

Proof of Theorem 2:

First, we will define the input impedance \(Z_{11} \).
Proof of Theorem 2:

Define the port phasors as \(\{V_1', I_1', V_2', I_2'\} \)

\[Z_{11} = \frac{V_1'}{I_1'} \]

(this can be expressed as)

\[Z_{11} = R_1 + jX_1 \]

\(R_1 \) and \(X_1 \) are real functions of \(\omega \) and depend on \(R_L \)

Since the LC network is lossless (dissipates no power) we have

\[P_L = \text{Re} \left(V_1' \cdot I_1'^* \right) \]

\[P_L = \text{Re} \left[\frac{R_1 + jX_1}{R_S + R_1 + jX_1} V_{\text{in}} \right] \cdot \left[\frac{V_{\text{in}}}{R_S + R_1 + jX_1} \right]^* \]

\[P_L = |V_{\text{in}}|^2 \text{Re} \left(\frac{R_1 + jX_1}{(R_S + R_1)^2 + X_1^2} \right) = |V_{\text{in}}|^2 \frac{R_1}{(R_S + R_1)^2 + X_1^2} \]
Proof of Theorem 2:

\[P_L = |V_{in}|^2 \frac{R_1}{(R_S + R_1)^2 + X_1^2} \]

To maximize power delivered to a fixed load at a frequency \(\omega \), must have

\[\frac{\partial P_L}{\partial R_1} = 0 \quad \frac{\partial P_L}{\partial X_1} = 0 \]

\[\frac{\partial P_L}{R_1} = |V_{in}|^2 \left[\frac{\left((R_S + R_1)^2 + X_1^2 \right) - R_1 (2)(R_S + R_1)}{\left((R_S + R_1)^2 + X_1^2 \right)^2} \right] = |V_{in}|^2 \left[\frac{2\left(R_S^2 - R_1^2 \right) + X_1^2}{\left((R_S + R_1)^2 + X_1^2 \right)^2} \right] \]

\[\frac{\partial P_L}{\partial R_1} = 0 \quad \rightarrow \quad 2\left(R_S^2 - R_1^2 \right) + X_1^2 = 0 \quad \rightarrow \quad X_1 = 0 \quad (1) \]

\[\frac{\partial P_L}{X_1} = |V_{in}|^2 \left[\frac{-R_1 \left(2X_1 \right)}{\left((R_S + R_1)^2 + X_1^2 \right)^2} \right] \]

\[\frac{\partial P_L}{\partial X_1} = 0 \quad \rightarrow \quad R_1 = R_S \quad (2) \]
Proof of Theorem 2:

\[X_1 = 0 \quad (1) \]
\[R_1 = R_S \quad (2) \]
\[P_L = \left| V_{in} \right|^2 \frac{R_1}{(R_S + R_1)^2 + X_1^2} \]

Now let \(x \) be any element in the LC network

\[
\frac{\partial P_L}{\partial x} = \frac{\partial P_L}{\partial R_1} \frac{\partial R_1}{\partial x} + \frac{\partial P_L}{\partial X_1} \frac{\partial X_1}{\partial x}
\]
\[
\frac{\partial P_L}{\partial x} = \left| V_{in} \right|^2 \left[\frac{2(R_S^2 - R_1^2) + X_1^2}{((R_S + R_1)^2 + X_1^2)^2} \right] \frac{\partial R_1}{\partial x} + \left| V_{in} \right|^2 \left[-\frac{R_1(2X_1)}{((R_S + R_1)^2 + X_1^2)^2} \right] \frac{\partial X_1}{\partial x}
\]

It thus follows from (1) and (2) that at maximum power transfer, the two coefficients in this expression vanish, thus

\[
\frac{\partial P_L}{\partial x} = \left| V_{in} \right|^2 \left[\frac{0}{((R_S + R_1)^2 + X_1^2)^2} \right] \frac{\partial R_1}{\partial x} + \left| V_{in} \right|^2 \left[\frac{0}{((R_S + R_1)^2 + X_1^2)^2} \right] \frac{\partial X_1}{\partial x} = 0
\]

thus

\[
S_{x,P_L}^P = \frac{\partial P_L}{\partial x} \frac{x}{P_L} = 0
\]
Question: Can we also make the claim that $S_{R_i}^{P(\omega)} = 0$ at any frequency where maximum power is transferred to the load?

Yes! Note that the previous analysis is based upon characterizing R_1 and X which are functions of k reactive components, {x_1, x_k} and R_L.

The following circuit has maximum power transfer at dc and it can be easily analytically shown that the sensitivity of P to L, C, and R_L is 0 at dc.
Proof of Theorem 1: \[S_x^{T(j\omega)} = ? \]

\[
P_L = \text{Re} \left(V_{\text{out}} \cdot \left(\frac{V_{\text{out}}}{R_L} \right)^* \right)
\]

\[
P_L = \text{Re} \left(V_{\text{in}T(j\omega)} \cdot \left(\frac{V_{\text{in}T(j\omega)}}{R_L} \right)^* \right)
\]

\[
P_L = \left(\frac{|V_{\text{in}}|^2}{R_L} \right) \cdot |T(j\omega)|^2
\]

Recall the following two sensitivity relationships

\[
S_x^{kf} = S_x^f \quad \quad S_x^{f^2} = 2 \cdot S_x^f
\]

It thus follows that

\[
S_x^{P_L} = 2 \cdot S_x^{T(j\omega)} \quad \quad S_x^{P_L} = 0 \quad \quad S_x^{T(j\omega)} = 0
\]
Lemma: If maximum power is transferred to the load in the doubly-terminated LC network at a frequency ω, then

$$
\left. \frac{V_2'(j\omega)}{I_2'(j\omega)} \right|_{V_{in}=0} = R_L
$$

This lemma indicates that the impedance of the LC network loaded with R_S facing R_L is equal to R_L at frequencies where maximum-power is transferred to R_L

The proof follows directly by considering the Thevenin-equivalent circuit facing R_L
Implications of Theorem 1

Many passive LC filters such as that shown below exist that have near maximum power transfer in the passband.

If a component in the LC network changes a little, there is little change in the passband gain characteristics (depicted as bandpass).

\[|T(j\omega)| \approx 0 \quad \text{in passband} \]
Implications of Theorem 1

Cascaded Biquad has a response that is the product of the individual second-order transfer functions.

If a component in a biquad changes a little, there is often a large change in the passband gain characteristics (depicted as bandpass).
Implications of Theorem 1

If a component in a biquad changes a little, there is often a large change in the passband gain characteristics (depicted as bandpass)

\[S_{x} |T(j\omega)| \neq 0 \quad \text{in passband} \]
Good doubly-terminated LC networks often much less sensitive to most component values in the passband than are cascaded biquads!

This is a major advantage of the LC networks but can not be applied practically used in most integrated applications or even in pc-board based designs.
Example: Determine at what frequencies maximum-power transfer to the load will occur and what value of R_L is needed for this to happen.

Recall at maximum-power transfer, Z_{11} is real and equal to R_S

$$Z_{11} = \frac{R_L + sL}{s^2LC + sR_LC + 1}$$

$$Z_{11}(j\omega) = \left(\frac{R_L}{(1 - \omega^2LC)^2 + \omega^2R_L^2C}\right) + j\left(\frac{(\omega L - \omega^2R_L^2C - \omega^3L^2C)}{(1 - \omega^2LC)^2 + \omega^2R_L^2C}\right)$$

$$\text{Im}(Z_{11}(j\omega)) = 0 \quad \text{only at} \quad \omega = 0 \text{ and one other positive value of } \omega$$

To get maximum power transfer at $\omega = 0$, must have $R_L = R_S$

Appears not to have maximum power transfer at other frequency where $\text{Im}(Z_{11}(j\omega)) \neq 0$.
Consider again the doubly-terminated circuit that has multiple passband frequencies where maximum power transfer to the load occurs.

Observe that this structure is completely characterized by a set of equations that characterize the network.

All sensitivity properties are inherently determined by this set of equations.

Any circuit that has the same set of equations will have the same sensitivity properties.
Doubly-terminated Ladder Network with Low Passband Sensitivities

For components in the LC Network observe

\[Y_k = \frac{1}{sL_k} \quad Z_k = \frac{1}{sC_k} \]
Doubly-terminated Ladder Network with Low Passband Sensitivities

\[I_1 = (V_0 - V_2)Y_1 \]
\[V_2 = (I_1 - I_3)Z_2 \]
\[I_3 = (V_2 - V_4)Y_3 \]
\[V_4 = (I_3 - I_5)Z_4 \]
\[I_5 = (V_4 - V_6)Y_5 \]
\[V_6 = (I_5 - I_7)Z_6 \]
\[I_7 = (V_6 - V_8)Y_7 \]
\[V_8 = I_7Z_8 \]

Complete set of independent equations that characterize this filter

Solution of this set of equations is tedious

All sensitivity properties of this circuit are inherently embedded in these equations!
Consider now only the set of equations and disassociate them from the circuit from where they came

\[I_1 = (V_0 - V_2)Y_1 \]
\[V_2 = (I_1 - I_3)Z_2 \]
\[I_3 = (V_2 - V_4)Y_3 \]
\[V_4 = (I_3 - I_5)Z_4 \]
\[I_5 = (V_4 - V_6)Y_5 \]
\[V_6 = (I_5 - I_7)Z_6 \]
\[I_7 = (V_6 - V_8)Y_7 \]
\[V_8 = I_7Z_8 \]

Rewrite the equations as

\[V'_1 = (V_0 - V_2)Y_1 \]
\[V_2 = (V'_1 - V'_3)Z_2 \]
\[V'_3 = (V_2 - V_4)Y_3 \]
\[V'_4 = (V'_3 - V'_5)Z_4 \]
\[V'_5 = (V'_4 - V'_6)Y_5 \]
\[V'_6 = (V'_5 - V'_7)Z_6 \]
\[V'_7 = (V'_6 - V'_8)Y_7 \]
\[V'_8 = V'_7Z_8 \]

Make the associations

\[I_1 = V'_1 \]
\[I_3 = V'_3 \]
\[I_5 = V'_5 \]
\[I_7 = V'_7 \]

This association is nothing more than a renaming of variables so all sensitivities WRT Y’s and Z’s will remain unchanged!
Consider now only the set of equations and disassociate them from the circuit from where they came

\[
\begin{align*}
V'_1 &= (V_0 - V_2) Y_1 \\
V_2 &= (V'_1 - V'_3) Z_2 \\
V'_3 &= (V_2 - V_4) Y_3 \\
V_4 &= (V'_3 - V'_5) Z_4 \\
V'_5 &= (V_4 - V_6) Y_5 \\
V_6 &= (V'_5 - V'_7) Z_6 \\
V'_7 &= (V_6 - V_8) Y_7 \\
V_8 &= V'_7 Z_8
\end{align*}
\]

For the LC filter, recall

\[
\begin{align*}
Y_k &= \frac{1}{sL_k} \\
Z_k &= \frac{1}{sC_k}
\end{align*}
\]

And the source and load termination relationships were

\[
\begin{align*}
Y_1 &= \frac{1}{R_1} \\
Z_8 &= R_8
\end{align*}
\]

These can be written as

\[
\begin{align*}
V'_1 &= (V_0 - V_2) \frac{1}{R_1} \\
V_2 &= (V'_1 - V'_3) \frac{1}{sC_2} \\
V'_3 &= (V_2 - V_4) \frac{1}{sL_3} \\
V_4 &= (V'_3 - V'_5) \frac{1}{sC_4} \\
V'_5 &= (V_4 - V_6) \frac{1}{sL_5} \\
V_6 &= (V'_5 - V'_7) \frac{1}{sC_6} \\
V'_7 &= (V_6 - V_8) \frac{1}{sL_7} \\
V_8 &= V'_7 R_8
\end{align*}
\]

Observe that in the new parameter domain the equations all look like integrator functions if the primed and unprimed variables are all voltages!
Consider now only the set of equations and disassociate them from the circuit from where they came:

\[
\begin{align*}
V_1' &= \left(V_0 - V_2 \right) \frac{1}{R_1} \\
V_2 &= \left(V_1 - V_3' \right) \frac{1}{sC_2} \\
V_3' &= \left(V_2 - V_4 \right) \frac{1}{sL_3} \\
V_4 &= \left(V_3 - V_5' \right) \frac{1}{sC_4} \\
V_5' &= \left(V_4 - V_6 \right) \frac{1}{sL_5} \\
V_6 &= \left(V_5 - V_7 \right) \frac{1}{sC_6} \\
V_7' &= \left(V_6 - V_8 \right) \frac{1}{sL_7} \\
V_8 &= V_7 R_8 \\
V_{\text{out}} &= V_8 \\
V_{\text{in}} &= V_1
\end{align*}
\]

Observe that in the new parameter domain the equations all look like integrator functions if the primed and unprimed variables are all voltages!

If any circuit is characterized by these equations, the sensitivities to the integrator gains will be identical to the sensitivities of the original circuit to the Ls and Cs!
Consider now only the set of equations and disassociate them from the circuit from where they came

\[
\begin{align*}
V_1' &= (V_0 - V_2) \frac{1}{R_1} \\
V_2 &= (V_1' - V_3') \frac{1}{sC_2} \\
V_3' &= (V_2 - V_4) \frac{1}{sL_3} \\
V_4 &= (V_3' - V_5') \frac{1}{sC_4} \\
V_5' &= (V_4 - V_6) \frac{1}{sL_5} \\
V_6 &= (V_5' - V_7') \frac{1}{sC_6} \\
V_7' &= (V_6 - V_8) \frac{1}{sL_7} \\
V_8 &= V_7'R_8
\end{align*}
\]

Each equation corresponds to either an integrator or summer with the output voltage output variables and the gain indicated (don’t worry about the units)

\[
V_0 = V_{\text{in}} \quad V_8 = V_{\text{out}}
\]
Consider now only the set of equations and disassociate them from the circuit from where they came

\[
\begin{align*}
V_1' &= (V_0 - V_2) \frac{1}{R_1} & V_5' &= (V_4 - V_6) \frac{1}{sL_5} \\
V_2 &= (V_1' - V_3') \frac{1}{sC_2} & V_6 &= (V_5' - V_7') \frac{1}{sC_6} \\
V_3' &= (V_2 - V_4) \frac{1}{sL_3} & V_7' &= (V_6 - V_8) \frac{1}{sL_7} \\
V_4 &= (V_3' - V_5') \frac{1}{sC_4} & V_8 &= V_7'R_8
\end{align*}
\]

The interconnections that complete each equation can now be added

\[
V_0 \quad + \quad \frac{1}{R_1} \quad V_1' \quad + \quad \frac{1}{sC_2} \quad V_2 \quad + \quad \frac{1}{sL_3} \quad V_3' \quad + \quad \frac{1}{sC_4} \quad V_4 \quad + \quad \frac{1}{sL_5} \quad V_5' \quad + \quad \frac{1}{sC_6} \quad V_6 \quad + \quad \frac{1}{sL_7} \quad V_7' \quad + \quad R_8 \quad V_8
\]
Consider now only the set of equations and disassociate them from the circuit from where they came.
The Leapfrog Configuration

Input summing and weighting can occur at input to the first integrator
The difference between V_8 and V'_7 is only a scale factor that does not affect shape, and the weighting on the V_{in} input also does not affect shape, thus
The Leapfrog Configuration

The terminations on both sides have local feedback around an integrator which can be alternately viewed as a lossy integrator.

Could redraw the structure as a cascade of internal lossless integrators with terminations that are lossy integrators but since there are so many different ways to implement the integrators and summers, we will not attempt to make that association in the block diagram form but in most practical applications a lossy integrator is often used on the input or the output or both.
The Leapfrog Configuration

In the general case, this can be redrawn as shown below

Note the first and last integrators become lossy because of the local feedback
The Leapfrog Configuration

The passive prototype filter from which the leapfrog was designed has all shunt capacitors and all series inductors and is thus lowpass.

The resultant leapfrog filter has the same transfer function and is thus lowpass.