EE 508
Lecture 42

What filter architectures are really
being used today?
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A 0.6-V Zero-1F/Low-IF Receiver With
Integrated Fractional-N Synthesizer
for 2.4-GHz ISM-Band Applications

Ajay Balankutty, Student Member, IEEE. Shih-An Yu, Student Member, IEEE, Yiping Feng, Student Member, IEEE,
and Peter R. Kinget, Senior Member, IEEE
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filter 1s only 2. To reduce the number of OTAs required for im-
plementing the filter, a lower-order filter transfer function would
be preferred. However, biquad-based filters have the drawback
that the filter characteristics are more easily affected by para-
sitics and OTA non-idealities and this sensitivity of the filter
characteristics typically is a function of the Q of the filter poles
[24]. To hake the biquad more tolerant to parasitics and OTA
non-idealities, a Tow—Thomas implementation for the biquad is
used [25]. To further reduce the sensitivity to parasitics, low Q
biquads are preferred. The 6th-order Butterworth filter is chosen
for the channel select filter and is implemented as a cascade of
three bigquads with pole Qs of 0.515, 0.707 and 1.93. The or-
dering of the biquads has a significant impact on the baseband
performance and is discussed in the next section. Even though

System requirements appear to not have played a role in defining the filter type
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Fig. 5. Simulated frequency response for the different complex biguad stages.
The ordering of the biquads is determined by their blocker attenuation. For max-
imal out-of-channel attenuation as early as possible, the biquads are ordered
such that the biguad with ) = 0.517 1s followed by the biquad with Q) = 0.707
and biquad with () = 1.93.
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“Analogue wavelet transform with single
biquad stage per scale

M.A. Gurrola-Navarro and G. Espinosa-Flores-Verdad

ELECTRONICS LETTERS 29th April 2010 Vol. 46 No. 9
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Design of a K-Band Chip Filter With Three Tunable
Transmission Zeros Using a Standard 0.13-pm
CMOS Technology

Chin-Lung Yang, Shin-Yi Shu, and Yi-Chyun Chiang, Member, IEEE

is presented for 24-GHz automotive ultrawideband (UWB) radar
systems. The filier combines a second-order asymmetrically com-
pact resonator filter with a source-load coupling mechanism to
realize three transmission zeros; two zeros are arranged in the
lower stopband, and one zero is located in the upper stopband.
To achieve a compact layout size and a low insertion loss, a semi-
lumped approach, which is accomplished with mixed utilizafion of

high-impedance coplanar waveguide lines and lumped capacitors.

1s used to construct the chip filter. A K-band experimental proto-







Power-Efficient and Cost-Effective 2-D Symmetry
Filter Architectures

Pei-Yu Chen, Student Member, IEEE, Lan-Da Van, Member, IEEE., 1-Hung Khoo, Member, IEEE,
Hari C. Reddy, Fellow, IEEE, and Chin-Teng Lin, Fellow, IEEE

Abstract—This paper presents two-dimensional (2-D) VLSI
_digital filter structures possessing various symmetries in the filter
magnitude response. For this purpose, four Type-1 and four
Type-2 power-efficient and cost-effective 2-D magnitude sym-




Proposed multimode 2-D filter architecture with four symmetries for

Fig. 11.

N = 3.



area size of 718.95 pum X 711.05 pm. The corr%pc:ndin g power
consumption of the proposed multimode 2-D filter is 29.34 mW
on average. In terms of power comparison, the DSM, FRSM,
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Fig. 18. Layout of the proposed multimode symmetry filter for \' = 3
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A Subharmonic Receiver in S1Ge Technology
for 122 GHz Sensor Applications

Klaus Schmalz, Wolfgang Winkler, Johannes Borngriiber, Wojciech Debski, Bernd Heinemann, and
J. Christoph Scheytt, Member, IEEE
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Fig. 1. Topology of the subharmonic receiver.

is fabricated in SiGe:C BiCMOS technology with fr/fmax
of 255 GHz/315 GHz. The receiver was optimized by an
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Fig. 4. Schematic o 5 GHz polyphase filter

R = 67 Q and C = 40 fF 1
1 unsalicided, p-doped gate polysilicon as resistor 1

MIV capacitors with 1 fF/pum?.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS. VOL. 58, NO. 3. MARCH 2011 159

Low-Power and Widely Tunable Linearized
Biquadratic Low-Pass Transconductor-C Filter

Armin Tajalli, Member, IEEE, and Yusuf Leblebici, Fellow, IEEE

Abstract—A gixth-order low-pass transconductor-C filter with a
very wide tuning range ( f. — 100 Hz to 10 MHz) is presented. The
wide tuning range has been achieved without using switchable com-
ponents or programmable building blocks.

10.18-pm CMOSVtechnDngy

the input devices are biased in the subthreshold regime
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Fig. 2. Biquadratic g.»-C filter. (a) Conventional topology. (b) Modified
topology with improved linearity performance.



VDD

Veen | [ |
I |
VBPL| - |
| |

lour- | | louTs

~ e

- I*T I;

Vss )

Fig. 4. Schematic of the folded cascode transconductor used to implement the
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CMOS on-chip active RF tracking filter for
digital TV tuner ICs

Y. Sun, C.J. Jeong, S.K. Han and S.G. Lee

ELECTRONICS LETTERS 17th March 2011 Vol. 47 No. 6

The fabricated tracking filter based on a 0.13 pm CMOS process
shows 48-780 MHz tracking range with 15-60 MHz bandwidth,

27
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a Schematic of unit G, ~cell used in proposed RF tracking filter
b RF tracking filter architecture
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Tunable High-Q N-Path Band-Pass Filters:
Modeling and Verification

Amir Ghaffari, Student Member, IEEE, Eric A. M. Klumperink, Senior Member, IEEE,
Michiel C. M. Soer, Student Member, IEEE, and Bram Nauta, Fellow, IEEE
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Fig. 1. Architecture of an N-path filter [5] (p and q are the mixing functions
and T is the period of the mixing frequency).
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Performance This Work 9] 4]
Process 65nm 0.35um 0.18um
CMOS CMOS CMOS
Active Area 0.07mm? [.9mm? 0.8 lmm?
CDHP:I‘:; i | 2to16mw 63mW 17mW
Frequency 0.1to 240 to 2 to
Tuning Range 1GHz 530MHz 2.06GHz
_3{:; [i‘:]“d 35MHz 41_2; | 130MHz
Voltage Gain -2dB -2dB 0dB
Quity Facor | 3059 | sorionna |34
P.as 2dBm -5dBm -6.6dBm
I1P3 14dBm NA 2.5dBm
Noise Figure 3-5dB 9dB 15dB
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A 400 W Hz-Range Lock-In A/D Frontend Channel
for Infrared Spectroscopic Gas Recognition

Stepan Sutula, Student Member, IEEE, Carles Ferrer, and Francisco Serra-Graells, Member, IEEE
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An Electronically Fine-Tunable
Multi-Input—Single-Output Universal Filter

Indrit Myderrizi, Member, IEEE, Shahram Minaei, Senior Member, IEEE, and Erkan Yuce, Member, IEEE
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Fig. 1. CMOS realization of the proposed VM MISO universal filter.



1.0 ¢

-15.2

—47.6

magnitude (dB)

—-B63.8

L T T e e S
198K M 19M 120M 16

a1 LP respense 1: HP response
a: BP response w: NF response
E .

—31.4

L

frequency (Hz)

Fig. 3. Magnitude frequency responses of the MISO multifunctional filter.

fw

for a

high-C) BP response of the filter. In this case, () = 5, and the
component values are selected as C'; = 0.457 pF, (5 = 2 pF,
Ry = 6.5 k{2, and Ry = 37.2 kf).



A 16-Channel Low-Noise Programmable System for
the Recording of Neural Signals

Carolina Mora Lépez, Dries Braeken, Carmen Bartic, Robert Puers®, Georges Gielen™ and Wolfgang Eberle
Imec, Leuven, Belgium
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Figure 1. Architecture of the 16-channel neural recording system.



The high-pass filtering characteristic in each channel 1s
achieved by the parallel combination of the feedback
capacitors and the feedback MOS-bipolar pseudoresistors
(formed by a NMOS and a PMOS transistors). These voltage-
controlled pseudoresistor elements [?J can achieve very high
resistance values in the order of 10'* Q. providing an area-
efficient way to implement very low frequency filters. The
cutoff frequency can be tuned via a current-mode digital-to-
analog converter (Fig. 3) that changes the gate voltages of the
transistors (1.e. the resistance), in order to accept or reject the
LFP signal frequencies. This circuit consists of a wide-swing
cascode current mirror that copies the selected current to the
transistors Mn and Mp, which are diode-connected and sized
with large W/L. A similar method was previously described by
Ym et al [8].



The fourth-order low-pass filter characteristic 1s
implemented by the cascade of first-order voltage integrators,

consisting of an OTA and a load capacitor. The load capacitor
1s implemented as a capacitor array that allows the selection of
two different frequency ranges: one for the LFP signals and
another for the AP signals. Also, for low-frequency LFP
recordings, the supply current of the amplifiers 1s lowered to

Save POWer.
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Figure 5. Transfer function of one channel, measued for different bandwiths
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The 16-channel neural recording system in Fig.1 has been
implemented and fabricated in a 0.35 pm On Semiconductor
CMOS technology. The capacitors are implemented as metal-
insulator-metal capacitors and the resistors as polysilicon
resistors. The die (Fig. 4) occupies a core area of 4.1 x 3.8
mm” and a total area of 5.6 x 4.5 mm’. The area of one

channel is 0.76 mm?>.
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A High-Performance PLL With a Low-Power Active
Switched-Capacitor Loop Filter

Yu Song, Student Member, IEEE, and Zeljko Ignjatovic, Member, IEEE
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Fig. I. Proposed SC PLL loop filter with complimentary charge pumps, single-ended shown.



A low-power low-noise differential SC loop filter is designed
based on the above analysis, with another filter, as shown in
Fig. 1, sharing the complimentary charge pumps. The input
reference frequency is selected to be 10 MHz. and the loop
bandwidth i1s around 350 kHz. The discrepancy between the



TABLE 1

PLL PERFORMANCE COMPARISON

|1] [3] [4] This Work
Freq. (GHz) 2.4 24 3.6 2.5
‘ ) 0.25pum 0.18um 0.18um 0.18um
Technology — ~yi0g CMOS CMOS CMOS
Loop Filter Passive SC Passive SC Hybrid Active SC
Structure
Reference | MHz 12MHz S0MHz 10MHz
Frequency
Power o
(mW) ! 48.8 (core) 110 (core) 16
Area (mm?) ? 4.8 2.7 (acitve) 0.36
Reference -62dBc -70dBc -45dBc -64dBc
Spur
Phase Noise -126dBc¢/Hz  -125dBc¢/Hz  -155dBce/Hz  -124dBc/Hz
(@2MHz (@3MHz (@20MHz (@3MHz
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Power-Scalable, Complex Bandpass/Low-Pass Filter
With I/Q Imbalance Calibration for a
Multimode GNSS Receiver

Yang Xu, Baoyong Chi, Member, IEEE, Xiaobao Yu, Nan Qi, Patrick Chiang, Member, IEEE, and
Zhihua Wang, Senior Member, IEEE
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Fig. 1. Low-IF/zero-IF multimode GNSS receiver.
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