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Filter Concepts and Terminology

« 2-nd order polynomial characterization
* Biguadratic Factorization
 Op Amp Modeling
« Stability and Instability
* Roll-off characteristics
 Distortion
== Dead Networks
* Root Characterization
« Scaling, normalization, and transformation




Dead Networks

6 5 D(s)

The “dead network” of any linear circuit is obtained by setting ALL
independent sources to zero.

* Replace independent current sources with opens

» Replace independent voltage sources with shorts
« Dependent sources remain intact

D(s) is characteristic of the dead network and is independent of where
the excitation is applied or where the response is measured

D(s) is the same for ALL transfer functions of a given “dead network”
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Dead Networks

Example:
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Note: This has a different dead network!



D(s) is the same for ALL transfer functions of a given “dead network”

XOUT

? D(s) ——

This is an important observation. Why is it true?

Plausibility argument: V,
Consider a network with only admittance ‘
elements and independent current sources v V,
k1

At node k, can write the equation

Zn:Yki (Vk'Vi) — Ik

i=k




D(s) is the same for ALL transfer functions of a given “dead network”

J» D(s) ——

Doing this at each node results in the set of equations

Plausibility argument:

- 4 TV |
Y, Y, o Y, vl |1
Yo Yo e Y,, 2 2
[ — .
Yo Yo o Yo | |
Vv, L

In matrix form
YeV=]|

The nodal voltages are given by

V=Y"el



D(s) is the same for ALL transfer functions of a given “dead network”

XOUT

J» D(s) ——

V=Y"el

The nodal voltage V, in this solution is given by
the ratio of two determinates where the one in
the numerator is obtained by replacing the kth
column with the excitation vector and the one in
the denominator is the determinate of the

indefinite admittance matrix Y

Plausibility argument:

Note the denominator is the same for all nodal
voltages and is independent of the excitations —
that is, it is dependent only upon the dead network

Yll Y12 Il Yln
Y21 Y22 '|2' Y2n
Y, Y, .l.oY.
Yy Yo, . Y,
Y, Yy oo Y,
Y, Y, o Y,




D(s) is the same for ALL transfer functions of a given “dead network”

J» D(s) ——

Plausibility argument:

Note the denominator is the same for all nodal
voltages and is independent of the excitations —
that is, it is dependent only upon the dead network

Thus all branch voltages and all branch currents have

the same denominator and this (after multiplying through by the Yar Yo b Y

correct power of s to make V, a rational fraction) IS the characteristic Y, Y, e Y.,

polynomial D(s) Yy Yo e Y,,

This concept can be extended to include

independent voltage sources as well as dependent vy v
e -

sources "



Filter Concepts and Terminology

« 2-nd order polynomial characterization
* Biguadratic Factorization
 Op Amp Modeling
« Stability and Instability
* Roll-off characteristics
 Distortion
* Dead Networks
=== Root Characterization
« Scaling, normalization, and transformation




Root characterization in s-plane
(for complex-conjugate roots)

Im

1-1 relationship between angle 6 and Q of root

Forlow Q, ©islarge
For high Q, ©issmall



Root characterization in s-plane
(for complex-conjugate roots)

52+s(goj+wg

for 8=45°, Q=1/y2

for 8=90°, Q=1/2

roots located at




Filter Concepts and Terminology

« 2-nd order polynomial characterization
* Biguadratic Factorization
 Op Amp Modeling
« Stability and Instability
* Roll-off characteristics
 Distortion
* Dead Networks
* Root Characterization
=== Scaling, normalization, and transformation




Scaling, Normalization and
Transformations

==> Freguency scaling
==> Frequency Normalization
* Impedance scaling

 Transformations
— LPto BP
— LPto HP
— LPto BR




Scaling, Normalization and
Transformations

Frequency normalization: Sy = S
g
Frequency scaling: S = wpSp

Purpose:

w, independent approximations

w, independent synthesis

Simplifies analytical expressions for T(S)
Simplifies component values in synthesis

Use single table of normalized filter circuits for given normalized
approximating function

[{oeg )

Note: The normalization subscript “n” is often dropped



Frequency normalization/scaling example
6000

(s)=
s + 6000
Define w,=6000 . _ S Tt
" | |
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S+ g ' >
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Normalized transfer function:
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Frequency normalization/scaling example

1 Tawf
Th(Sh)= | |
n( n) ot K
1 &,
Synthesis of normalized function
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Frequency normalization/scaling example
1 TGwl

Tn(sn):sn +1 K

Frequency scaling transfer function by w, ! o
1 w
T(s)=r—— T(s)=—20_
S S+W
— |+1 0
Wo
Frequency scaling circuit by wj (actually magniude of w;) (Scale all energy storage elements in circuit)
1
—VW——"7—" \/o
V|N @ **1/(1)0
N w
T(s)=_)
S+Wo

Frequency scaled transfer function is that of the frequency scaled circuit !



Frequency normalization/scaling example

1 ‘Tn (jw)? !
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(S) S+ g i

Wo e

Frequency scaling / normalization does not change the shape of the transfer
function, it only scales the frequency axis linearly

The frequency scaled circuit can be obtained from the normalized circuit simply
by scaling the frequency dependent impedances (up or down) by the scaling
factor

This makes the use of filter design tables for the design of lowpass filters practical
whereby the circuits in the table all have a normalized band edge of 1 rad/sec.






Freqguency normalization/scaling

Example: Table for passive LC ladder Butterworth filter with 3dB band edge of 1 rad/sec
and resistive source/load terminations
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Frequency normalization/scaling

The frequency scaled circuit can be obtained from the normalized circuit simply
by scaling the frequency dependent impedances (up or down) by the scaling
factor

Component denormalization by factor of w,

Normalized Denormalized

Component Component
% R R
% C Clw,
% L L/w,

Other
:l> 8% Components Unchanged

Component values of energy storage elements are scaled down by a factor of w,



Desgin Strategy

Theorem: A circuit with transfer function T(s) can be
obtained from a circuit with normalized transfer function
T.(s,,) by denormalizing all frequency dependent
components.

C Clw,
L L/w,



Example: Design a V-V passive 3"-order Lowpass Butterworth filter with a
3-db band-edge of 1K rad/sec and equal source and load terminations.

(from the BW approximation which will be discussed later:)
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Example: Design a V-V passive 3"-order Lowpass Butterworth filter with a
band-edge of 1K Rad/Sec and equal source and load terminations.

1 L,=1mH L,=1mH
AN 6000 6000 Vour
Vin ~ % 1
Co=2mF

10°

T(s)=K
(s) s*+2e10%* +210°s +10°
Is this solution practical?

Some component values are too big and some are too small !



Filter Concepts and Terminology

* Frequency scaling
* Frequency Normalization
==>+ |mpedance scaling

 Transformations
— LPto BP
— LPto HP
— LPto BR




Impedance Scaling

Impedance scaling of a circuit is achieved by multiplying
ALL impedances in the circuit by a constant

R OR
C C/0
L LO
OA for transresistance gain
A A for dimensionless gain

A/B for transconductance gain



Impedance Scaling

Theorem: If all iImpedances in a circuit are scaled by a
constant 6, then

a) All dimensionless transfer functions are unchanged
b) All transresistance transfer functions are scaled by 6
c) All transconductance transfer functions are scaled by 61



Impedance Scaling

Example: 1
VOUT
1
Vin —1 T(S) - g_
T(s) is dimensionless
7
Impedances scaled by 6=10°
100K
VOUT
1
T(S) =
Vin ~~10uF s+1
7

Note second circuit much more practical than the first



Example: Design a V-V passive 3"-order Lowpass Butterworth filter with a
band-edge of 1K Rad/Sec and equal source and load terminations.

1 L;=1mH L=1mH
0 —6(0¢
ViN ~
Co=2mF

VOUT

10°

T(s)=K
() s°+2e10%s? +2e10° +10°

Is this solution practical?

Some component values are too big and some are too small !

Impedance scale by 6=1000 R OR
C C/0
L oL
1K L,=1H Ls=1H
— —6000 Vour
Vin A 1K
C,=2uF

A4

Component values more practical

10°
T(s)=K
() s°+2e10%s? +210° +10°




Transformations

—LP to BP
—LP to HP
—LP to BR

It can be shown the standard HP, BP, and BR approximations can be
obtained by a frequency transformation of a standard LP approximating

function

Will address the LP approximation first, and then provide details about the
frequency transformations



Typical approach to filter design

. Transform requirements to a low-pass filter problem

. Obtain normalized low-pass approximating function

. Synthesize circuit to realize normalized approximating function
. Denormalize circuit obtained in step 3

. Impedance scale to obtain acceptable component values

. Transform to desired filter type (LP, BP, BR)



Degrees of Freedom

——MAM———— /g T (jw)b |
1 |

Vin @ L T(S) Vo 1 0.707

&

Circuit has two design variables: {R,C}

Circuit has one key controllable performance characteristic: wg _1
RC

If W, is specified for a design, circuit has

2 design variables
1 constraint

1 Degree of Freedom

Performance/Cost strongly affected by how degrees of freedom in a
design are used !



Example: Design a 2"d order lowpass Butterworth filter with
3dB passband attenuation, a dc gain of 5, and a 3dB
bandedge of 4KHz

Note: We have not discussed the Butterworth approximation yet so some
details here will be based upon concepts that will be developed later

1
T = 5
o (32 +\/§S+1j 0=-L_0707

A Popular Second-Order Lowpass Filter



Example: Design a 2"d order lowpass Butterworth filter with
3dB passband attenuation, a dc gain of 5, and a 3dB band
edge of 4KHz

AAYAYA
RQ Rl
A Q1 ——————— — = —- L
e, © pl
Vin | Ro 4l R — {0 Ry W
| A J% ANV — | Vorp
+ I I I
L S o T ).LE S
A Popular Second-Order Lowpass Filter
1
T(s) _ R.,R,C.C,
e rasi
S°+S +
R.,C,) R,RCC,

_ 1 R

wo_ = Q &
\/R1R2C1C2 ° JRR, \/CT2
7 design variables and only two constraints (ignoring the gain right now)
Circuit has 5 Degrees of Freedom!




Example: Design a 2"d order lowpass Butterworth filter with
3dB passband attenuation, a dc gain of 5, and a 3dB band
edge of 4KHz

A Popular Second-Order Lowpass Filter

How many degrees of freedom remain? 2



Example: Design a 2"d order lowpass Butterworth filter with
3dB passband attenuation, a dc gain of 5, and a 3dB
bandedge of 4KHz

V|N
1
_ (RC)’
T(s) = 1 _RQ
sz+s£ R 1 J+ L . W= Re Q_?
R, RC (RC)

Normalizing by the factor w,, we obtain
1

Q

Lets now use up the two degrees of freedom in the circuit:

Setting R=R;=1 obtain the following normalized circuit



Example: Design a 2"d order lowpass Butterworth filter with
3dB passband attenuation, a dc gain of 5, and a 3dB
bandedge of 4KHz

Setting R=R;=1 obtain the following circuit

A Popular Second-Order Lowpass Filter

The two constraints become

This leaves 2 unknowns, RQ and C and two constraints i.e. no remaining

degrees of freedom)



Example: Design a 2"d order lowpass Butterworth filter with
3dB passband attenuation, a dc gain of 5, and a 3dB
bandedge of 4KHz

1
T(s,) = ——F—— _ _1
sz+s[éj +1 Wy, = 1 R J2

To satisfy the 2 constraints, must now set R_=Q C=1

VIN

A Popular Second-Order Lowpass Filter

Now we can do frequency scaling C Clw,
L L/w,

C=1— 1/(21e4K) = 39.8uF



Example: Design a 2"d order lowpass Butterworth filter with
3dB passband attenuation, a dc gain of 5, and a 3dB
bandedge of 4KHz

Denormalized circuit with bandedge of 4 KHz

A Popular Second-Order Lowpass Filter

This has the right transfer function (but unity gain)

Can now do impedance scaling to get more practical component values

R R
C C/e
L oL

A good impedance scaling factor may be 6=1000

R 1K
C 39.8nF



Example: Design a 2"d order lowpass Butterworth filter with
3dB passband attenuation, a dc gain of 5, and a 3dB
bandedge of 4KHz

Denormalized circuit with bandedge of 4 KHz

. Vour

This has the right transfer function (but unity gain)

To finish the design, preceed or follow this circuit with an amplifier
with a gain of 5 to meet the dc gain requirements



Filter Concepts and Terminology

* Frequency scaling
* Frequency Normalization
* Impedance scaling

=== Transformations

— LPtoBP
— LPtoHP
— LPtoBR

It can be shown the standard HP, BP, and BR approximations can be
obtained by a frequency transformation of a standard LP approximating

function

Will address the LP approximation first, and then provide details about the
frequency transformations



