
EE 508

Lecture 5

• Dead Networks

• Root Characterizations

• Scaling, Normalization and Transformations

• Degrees of Freedom and Systematic Design



Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Dead Networks

XIN XOUT T s
XOUT T s

The “dead network” of any linear circuit is obtained by setting ALL 

independent sources to zero.

• Replace independent current sources with opens

• Replace independent voltage sources with shorts

• Dependent sources remain intact

 
 

 

N s
T s  = 

D s  D s

D(s) is characteristic of the dead network and is independent of where 

the excitation is applied or where the response is measured

D(s) is the same for ALL transfer functions of a given “dead network”
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Note:  This has a different dead network!
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 D s

This is an important observation.  Why is it true? 

D(s) is the same for ALL transfer functions of a given “dead network”

Plausibility argument:
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Consider a network with only admittance 

elements and independent current sources

At node k, can write the equation
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XOUT
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D(s) is the same for ALL transfer functions of a given “dead network”

Plausibility argument:
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Doing this at each node results in the set of equations

Y V = I
In matrix form

The nodal voltages are given by

-1V=Y I
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D(s) is the same for ALL transfer functions of a given “dead network”

Plausibility argument:
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The nodal voltage Vk in this solution is given by

the ratio of two determinates where the one in 

the numerator is obtained by replacing the kth 

column with the excitation vector and the one in 

the denominator is the determinate of the 

indefinite admittance matrix Y
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Note the denominator is the same for all nodal 

voltages and is independent of the excitations –

that is, it is dependent only upon the dead network
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D(s) is the same for ALL transfer functions of a given “dead network”

Plausibility argument:
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Note the denominator is the same for all nodal 

voltages and is independent of the excitations –

that is, it is dependent only upon the dead network

Thus all branch voltages and all branch currents have 

the same denominator and this (after multiplying through by the 

correct power of s to make Vk a rational fraction) is the characteristic 

polynomial D(s)

This concept can be extended to include 

independent voltage sources as well as dependent 

sources



Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Root characterization in s-plane
(for complex-conjugate roots)

For low Q,     θ is large

For high Q,    θ is small

1-1 relationship between angle θ and Q of root
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Root characterization in s-plane
(for complex-conjugate roots)

for θ=45o,  Q=1/√2 
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Filter Concepts and Terminology

• 2-nd order polynomial characterization

• Biquadratic Factorization

• Op Amp Modeling

• Stability and Instability

• Roll-off characteristics

• Distortion

• Dead Networks

• Root Characterization

• Scaling, normalization, and transformation



Scaling, Normalization and 

Transformations

• Frequency scaling

• Frequency Normalization

• Impedance scaling

• Transformations
– LP to BP

– LP to HP

– LP to BR



Scaling, Normalization and 

Transformations
Frequency normalization:

0
n

s
s




Frequency scaling: 0 ns s

Purpose:

ω0 independent approximations

ω0 independent synthesis

Simplifies analytical expressions for T(s)

Simplifies component values in synthesis

Use single table of normalized filter circuits for given normalized 

approximating function

Note:   The normalization subscript “n” is often dropped



Frequency normalization/scaling example
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Frequency normalization/scaling example
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Frequency normalization/scaling example
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Frequency scaling transfer function by ω0
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Frequency scaling circuit by ω0 (actually magnitude of ω0)   (scale all energy storage elements in circuit)

n 0C = C /ω
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ω

s ω
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

Frequency scaled transfer function is that of the frequency scaled circuit !



Frequency normalization/scaling example
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Frequency scaling / normalization does not change the shape of the transfer 

function, it only scales the frequency axis linearly

The frequency scaled circuit can be obtained from the normalized circuit simply 

by scaling the frequency dependent impedances (up or down) by the scaling 

factor

This makes the use of filter design tables for the design of lowpass filters practical 

whereby the circuits  in the table all have a normalized band edge of 1 rad/sec.





Frequency normalization/scaling
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Example:  Table for passive LC ladder Butterworth filter with 3dB band edge of 1 rad/sec 

and resistive source/load terminations



Frequency normalization/scaling
The frequency scaled circuit can be obtained from the normalized circuit simply 

by scaling the frequency dependent impedances (up or down) by the scaling 

factor

Component denormalization by factor of ω0

Component values of energy storage elements are scaled down by a factor of ω0

R

C

L

Other 

Components

R

C/ωo

L/ωo

Unchanged

Normalized 

Component

Denormalized 

Component



Desgin Strategy

Theorem:  A circuit with transfer function T(s) can be 

obtained from a circuit with normalized transfer function 

Tn(sn)  by denormalizing all frequency dependent 

components.  

C

L

C/ωo

L/ωo



Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

3-db band-edge of 1K rad/sec and equal source and load terminations.

VIN

VOUT

RS L1 L3

C2
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1

L1=1H

C2=2F

Denormalized filter

Normalized filter

Filter architecture
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(from the BW approximation which will be discussed later:)



Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

band-edge of 1K Rad/Sec and equal source and load terminations.

Is this solution practical?

Some component values are too big and some are too small !
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Filter Concepts and Terminology

• Frequency scaling

• Frequency Normalization

• Impedance scaling

• Transformations
– LP to BP

– LP to HP

– LP to BR



Impedance Scaling

Impedance scaling of a circuit is achieved by multiplying 

ALL impedances in the circuit by a constant 

C

L

C/θ

Lθ

R θR

A

θA  for transresistance gain

A    for dimensionless gain

A/θ for transconductance gain



Impedance Scaling

Theorem:  If all impedances in a circuit are scaled by a 

constant θ, then 

a) All dimensionless transfer functions are unchanged

b) All transresistance transfer functions are scaled by θ

c) All transconductance transfer functions are scaled by θ-1



Impedance Scaling
Example:
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10uF

 
1

T s  = 
s+1

Impedances scaled by θ=105

 
1

T s  = 
s+1

T(s) is dimensionless

Note second circuit much more practical than the first



Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

band-edge of 1K Rad/Sec and equal source and load terminations.

Is this solution practical?

Some component values are too big and some are too small !
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C2=2mF

Impedance scale by θ=1000
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Component values more practical
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Transformations

–LP to BP

–LP to HP

–LP to BR

It can be  shown the standard HP, BP, and BR approximations can be 

obtained by a frequency transformation of a standard LP approximating 

function

Will address the LP approximation first, and then provide details about the 

frequency transformations



Typical approach to filter design

1. Transform requirements to a low-pass filter problem

2. Obtain normalized low-pass approximating function

3. Synthesize circuit to realize normalized approximating function

4. Denormalize circuit obtained in step 3

5. Impedance scale to obtain acceptable component values

6. Transform to desired filter type (LP, BP, BR)



Degrees of Freedom
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Circuit has two design variables:   {R,C}

Circuit has one key controllable performance characteristic:
0

1
ω

RC

If ω0 is specified for a design, circuit has 

2 design variables

1 constraint

1 Degree of Freedom

Performance/Cost strongly affected by how degrees of freedom in a 

design are used !



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz

Note:  We have not discussed the Butterworth approximation yet so some 

details here will be based upon concepts that will be developed later

BWn 2

1
T  = •5

s + 2s+1

 
 
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R1RQ

R3

R3R2

C1 C2

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

ω0=1

1
0.707

2
Q  



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB band 

edge of 4KHz

R0

R1RQ

R3

R3R2

C1 C2

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

  2 0 1 2

2

Q 1 2 1 1 2
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R R C C
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1 1
s +s +

R C R R C C

 
 
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0

1 2 1 2

1
ω = 

R R C C
Q 1

21 2

R C
Q=

CR R

7 design variables and only two constraints (ignoring the gain right now)

Circuit has 5 Degrees of Freedom!



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB band 

edge of 4KHz
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A Popular Second-Order Lowpass Filter
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If C1=C2 =C  and R1=R2=R0 =R, this reduces to

R

RRQ

R3

R3R
C C

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

How many degrees of freedom remain? 2



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz
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QR
Q=

R

Normalizing by the factor ω0, we obtain
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C C

VOLP
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A Popular Second-Order Lowpass Filter
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Setting R=R3=1 obtain the following normalized circuit

Lets now use up the two degrees of freedom in the circuit:



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz

0

1 1
ω = 

RC C
 Q

Q

R
Q= R

R
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1RQ

C C

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

1
111

Setting R=R3=1 obtain the following circuit

The two constraints become

This leaves 2 unknowns, RQ and C and two constraints (i.e. no remaining 

degrees of freedom)



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz

 n
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1
s +s +1
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1
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A Popular Second-Order Lowpass Filter
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1

1

1

1
1

0nω = 1

Now we can do frequency scaling C

L

C/ωo

L/ωo

C=1 1/(2π●4K) = 39.8uF

To satisfy the 2 constraints, must now set 

1

2
NQ

QR Q C 1



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz

1

1.707

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

39.8uF

1 1
139.8uF

Denormalized circuit with bandedge of 4 KHz

This has the right transfer function (but unity gain)

Can now do impedance scaling to get more practical component values

C

L

C/θ

θL

R θR

A good impedance scaling factor may be θ=1000

C 39.8nF

R 1K



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz

1K

1K707

VOLP

VIN

39.8nF

1K

1K
1K39.8nF

Denormalized circuit with bandedge of 4 KHz

This has the right transfer function (but unity gain)

To finish the design, preceed or follow this circuit with an amplifier 

with a gain of 5 to meet the dc gain requirements



Filter Concepts and Terminology

• Frequency scaling

• Frequency Normalization

• Impedance scaling

• Transformations
– LP to BP

– LP to HP

– LP to BR

It can be  shown the standard HP, BP, and BR approximations can be 

obtained by a frequency transformation of a standard LP approximating 

function

Will address the LP approximation first, and then provide details about the 

frequency transformations


