
EE 508
 Lecture 6

Filter Concepts/Terminology
Approximation Problem



Root characterization in s-plane
 (for complex-conjugate roots)

For low Q,     θ

 

is large
For high Q,    θ

 

is small

1-1 relationship between angle θ

 

and Q of root
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Root characterization in s-plane
 (for complex-conjugate roots)

for θ=90o,  Q=1/√2 
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Filter Concepts and Terminology

•
 

Frequency scaling
•

 
Frequency Normalization

•
 

Impedance scaling
•

 
Transformations
–

 

LP to BP
–

 

LP to HP
–

 

LP to BR



Frequency Scaling and  normalization
Frequency normalization:

0
n

ss
ω

=

Frequency scaling: 0 ns sω=

Purpose:

ω0

 

independent approximations

ω0

 

independent synthesis

Simplifies analytical expressions for T(s)

Simplifies component values in synthesis

Use single table of normalized filter circuits for given normalized 
approximating function

Note:   The normalization subscript “n”

 

is often dropped



Frequency normalization/scaling example
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Normalized transfer function:
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Frequency normalization/scaling example
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Synthesis of normalized function
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Frequency normalization/scaling example
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Frequency scaling by ω0 (of transfer function)
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Frequency scaling by ω0   (of energy storage elements in circuit)
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Frequency normalization/scaling example
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Frequency scaling / normalization does not change the shape of the transfer 
function, it only scales the frequency axis linearly

The frequency scaled circuit can be obtained from the normalized

 

circuit simply 
by scaling the frequency dependent impedances (up or down) by the scaling 
factor

This makes the use of filter design tables for the design of lowpass

 

filters practical 
whereby the circuits  in the table all have a normalized band edge of 1 rad/sec.



Frequency normalization/scaling
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Example:  Table for passive ladder Butterworth filter with 3dB band edge of 1 rad/sec



Frequency normalization/scaling
The frequency scaled circuit can be obtained from the normalized

 

circuit simply 
by scaling the frequency dependent impedances (up or down) by the scaling 
factor

Component denormalization

 

by factor of ω0

Component values of energy storage elements are scaled down by a

 

factor of ω0

Other 
Components

o

o

Unchanged

Normalized 

Component

Denormalized 

Component



Desgin
 

Strategy

Theorem:  A circuit with transfer function T(s) can be 
obtained from a circuit with normalized transfer function 
Tn

 

(sn

 

)  by denormalizing
 

all frequency dependent 
components.  



Example:   Design a V-V passive 3rd-order Lowpass

 

Butterworth filter with a 
band-edge of 1K Rad/Sec and equal source and load terminations.

VIN

VOUT

RS L1 L3

C2 RL

VIN

VOUT

1 L3=1H

1

L1=1H

C2=2F

Denormalized

 

filter

Normalized filter

Filter architecture

VIN

VOUT

1 L3=159uH

1

L1=159uH

C2=318uF

( ) 1T s =
s+1

( ) 1000T s =
s+1000



Example:   Design a V-V passive 3rd-order Lowpass

 

Butterworth filter with a 
band-edge of 1K Rad/Sec and equal source and load terminations.

Is this solution practical?

Some component values are too big and some are too small !

VIN

VOUT

1 L3=159uH

1

L1=159uH

C2=318uF ( ) 1000T s =
s+1000



Filter Concepts and Terminology

•
 

Frequency scaling
•

 
Frequency Normalization

•
 

Impedance scaling
•

 
Transformations
–

 

LP to BP
–

 

LP to HP
–

 

LP to BR



Impedance Scaling
Impedance scaling of a circuit is achieved by multiplying 
ALL impedances in the circuit by a constant 

for transresistance gain

for dimensionless gain

for transconductance gain



Impedance Scaling
Theorem:  If all impedances in a circuit are scaled by a 
constant θ, then 

a) All dimensionless transfer functions are unchanged
b) All transresistance transfer functions are scaled by θ
c) All transconductance

 

transfer functions are scaled by θ-1



Impedance Scaling
Example:

( ) 1T s  = 
s+1

Impedances scaled by θ=105

( ) 1T s  = 
s+1

T(s) is dimensionless

Note second circuit much more practical than the first



Example:   Design a V-V passive 3rd-order Lowpass

 

Butterworth filter with a 
band-edge of 1K Rad/Sec and equal source and load terminations.

Is this solution practical?

Some component values are too big and some are too small !

VIN

VOUT

1 L3=159uH

1

L1=159uH

C2=318uF

Impedance scale by θ=1000

VIN

VOUT

1K L3=159mH

1K

L1=159mH

C2=318nF

Component values more practical

( ) 1000T s =
s+1000

( ) 1000T s =
s+1000



Typical approach to lowpass
 

filter design

1.

 

Obtain normalized approximating function

2.

 

Synthesize circuit to realize normalized approximating function

3.

 

Denormalize

 

circuit obtained in step 2

4.

 

Impedance scale to obtain acceptable component values



Example:  Design a 2nd

 

order lowpass
 

Butterworth filter with 
3dB passband

 
attenuation, a dc gain of 5, and a 3dB 

bandedge
 

of 4KHz

Note:  We have not discussed the Butterworth approximation yet so some 
details here will be based upon concepts that will be developed later
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Example:  Design a 2nd

 

order lowpass
 

Butterworth filter with 
3dB passband

 
attenuation, a dc gain of 5, and a 3dB 

bandedge
 

of 4KHz
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8 design variables and only two constraints (ignoring the gain right now)



Example:  Design a 2nd

 

order lowpass
 

Butterworth filter with 
3dB passband

 
attenuation, a dc gain of 5, and a 3dB 

bandedge
 

of 4KHz
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If C1

 

=C2

 

=C  and R1

 

=R2

 

=R0 =R, this reduces to
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A Popular Second-Order Lowpass Filter
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Example:  Design a 2nd

 

order lowpass
 

Butterworth filter with 
3dB passband

 
attenuation, a dc gain of 5, and a 3dB 

bandedge
 

of 4KHz
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Normalizing by the factor ω0

 

, we obtain
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A Popular Second-Order Lowpass Filter
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Setting R=C=1 obtain the following normalized circuit



Example:  Design a 2nd

 

order lowpass
 

Butterworth filter with 
3dB passband

 
attenuation, a dc gain of 5, and a 3dB 

bandedge
 

of 4KHz
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Now we can do frequency scaling 

Must now set 1
2

Q =



Example:  Design a 2nd

 

order lowpass
 

Butterworth filter with 
3dB passband

 
attenuation, a dc gain of 5, and a 3dB 

bandedge
 

of 4KHz
Denormalized

 

circuit with bandedge

 

of 4 KHz

This has the right transfer function (but unity gain)

Can now do impedance scaling to get more practical component values

A good impedance scaling factor may be θ=1000



Example:  Design a 2nd

 

order lowpass
 

Butterworth filter with 
3dB passband

 
attenuation, a dc gain of 5, and a 3dB 

bandedge
 

of 4KHz
Denormalized

 

circuit with bandedge

 

of 4 KHz

This has the right transfer function (but unity gain)

To finish the design, preceed

 

or follow this circuit with an amplifier 
with a gain of 5 to meet the dc gain requirements
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