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Chapter 1

Magnetic Fields and Electric

Current

1.1 Magnetic Field Due to a Current

1.1.1 Vector Path Product

The magnetic field H is a vector field in space determine by the sources of the magnetic field
namely electric current and magnetic materials. We shall examine the relationship between
magnetic and electrical current but first, let us dispose of the issue of units. In SI units, electric
charge is measured in Coulombs (C). An electric current I is the rate of flow of charge in
Coulombs per second which are called Ampère’s (abbreviated as Amp.= C. s−1).

Figure 1.1: Magnetic field of a straight wire.

The magnetic field due to a straight current carrying wire is shown conventionally in Figure
1.1. The magnetic field here has only an azimuthal component Hφ whose strength is propor-
tional to the current I and decreases with distance from the wire according to a relationship
established by Ampère. Note that if a field line is followed round a circle of radius ρ, then the
length of the closed path is 2πρ. Ampère established law which implies a simple rule:

The product of the path length round a circle coaxial with the wire and the

magnetic field is a constant proportional to the current passing through the

circle.

Conveniently, in SI units the proportionality factor is one which means that 2πρHφ = I. Hence
the azimuthal field at a point a distance ρ from the wire is

1



Hφ =
I

2πρ
.

The current density J, is a vector in the direction of the charge flow whose magnitude is
the charge current per unit area (Amp m−2). Thus with a wire of radius a aligned with the
z-direction J = ẑJz = ẑI/(πa2).

Exercise 1: Given that Ampère’s rule hold inside the wire what is the expression
for the azimuthal magnetic field inside a wire of radius a?.

Magnetic field is defined in terms of charge current and not in terms of any other measurable
physical properties of the field since magnetic observables (magnetic force, induced emf, the
output of a magnetic field sensor etc.) all depend on the magnetic flux density vector B which
is quite a different quantity. The magnetic field itself, if not directly observable. It is, in effect,
a mathematical extension into the surrounding space of the electric current. Magnetic field
does not reveal itself directly but is manifest through its relationship with magnetic flux.

1.1.2 Curl

Curl is a differential operator that is said to give the circulation of the field. The field in Figure
1.1 certainly seem to have some circulation. To quantifying it we use the expression for the curl
operator in cylindrical polar co-ordinates.

∇×V =

(

1

ρ

∂Vz
∂φ

−
∂Vφ
∂z

)

ρ̂+

(

∂Vρ
∂z

−
∂Vz
∂ρ

)

φ̂+

(

1

ρ

∂(ρVφ)

∂ρ
−

1

ρ

∂Vρ
∂φ

)

ẑ (1.1)

Exercise 2: Determine ∇ ×H for (a) the region outside the wire radius a in
Figure 1.1 and (b) inside the wire expressing your answer in terms of the current
density J.

Exercise 3: A circulating fluid in a cylinder has a velocity v = ωρ where ω is
a constant angular velocity. What is the curl of v?

1.1.3 Ampère’s Circuital Theorem

The magnetic field vector H in steady state conditions is determined by the charge current
density J. According to the differential form of Ampère’s law,

∇×H = J. (1.2)

There are several ways of finding the magnetic field from the current. A basic starting point
is to integrate the differential form of Ampère’s law and use Stoke’s theorem;

∫

S0

∇× F. dS =

∮

C0

F. dl (1.3)

which relates the integral of the curl of a vector over an open surface S0 to the line integral
around its closed boundary path C0, dl being a line element of the path. Conventionally, the
direction of the line integral is clockwise when viewed in the direction of the normal to the
surface.

2



Integrating both sides of the quasi-static field equation, (1.2) over some chosen surface area
S0 gives

∫

S0

∇×H. dS =

∫

S0

J. dS.

Applying Stoke’s theorem yields Ampère’s circuital theorem:

∮

C0

H. dl = I (1.4)

where I, given by

I =

∫

S0

J · dS, (1.5)

is the current through the surface S0.

The circuital theorem does not provide a general method for finding the magnetic field since
one needs prior knowledge of the field in order to evaluate the line integral. However, in special
cases one can use symmetry arguments.

Magnetic Field due to a Line Current

Consider a filamentary line current orientated in the z-direction and carrying a current I, as the
sole source of the magnetic field. The axial symmetry of the problem means that the azimuthal
magnetic field due to the current is constant on a circle of radius ρ centered at the wire. With
the knowledge that Hφ is constant on a circular path, the line integral in (1.4) becomes the

integral of a constant, H · φ̂ over a path of length 2πρ. Hence the line integral is 2πρHφ nd the
surface integral is I. Hence the circuital theorem gives

H =
I

2πρ
φ̂ (1.6)

for the magnetic field.

 (a) 

a

 (b) 

b

c

 (c) 

a
b

c

Figure 1.2: Cross-section of (a) a wire radius a (b) a cylindrical conducting screen (c) a coaxial
cable consisting of wire core and screen.

Exercise 4: Coaxial cable (a) A wire radius a carries a current I in the positive
z-direction sketch a graph showing the magnitude of the azimuthal magnetic field
as a function of ρ showing the value of Hφ at the surface of the conductor. (b)
Determine the magnetic field due to a screen carrying a current in the negative
z-direction. (c) Combine the effects of the core and screen and sketch a graph
of the field due to the current in the coaxial conductors Figure 1.2 as a function
of ρ and give expressions for the magnetic field in each region.

3



Magnetic Field due to a Current Sheet

A current sheet of negligible thickness in the plane y = 0 carries current I per unit area in
the z-direction. Applying the circuital theorem to a closed rectangular path bounding an area
with dimension axay, in an arbitrary plane y = y0, the line integral is 2axHx and the surface
integral axI. Hence the field is given by

Hx = ∓I/2 (1.7)

where the plus sign applies below the current sheet and the minus sign above the sheet.

Magnetic Field due to a Long Uniformly Wound Solenoid

Figure 1.3: Magnetic field in a long solenoid with a closed rectangular path suitable for appli-
cation of the circuital law.

A uniformly and tightly wound solenoid with n turns per unit length carrying a current I
provides a uniform azimuthal current of current density nI per unit length. The longer it is,
the weaker is the external field. In the limit of an infinitely long solenoid, the external field is
zero and the internal field is parallel to the axis. Applying the circuital law to a rectangular
surface az × aρ in an azimuthal plane shows that the internal field is uniform and given by

Hz = nI. (1.8)

1.2 Magnetic Vector Potential

The general problem of finding the field H due to a current in free space by introducing a
magnetic vector potential conventionally defined such that

B = ∇×A (1.9)

which means that for a nonmagnetic region (B = µ0H),

H =
1

µ0
∇×A,

where µ0 is the permeability of free space. Substituting this result back into (1.2) we find

∇× (∇×A) = µ0J

whence, upon use of the identity ∇ × ∇ × = ∇∇ · −∇2, and adopting the gauge condition
∇ ·A = 0 (Coulomb gauge), we have

∇2A = −µ0J (1.10)

which is a vector Poisson equation. Note that A and J are antiparallel.

4



1.2.1 Line Source

The magnetic vector potential due to a line current source can be found by applying the
divergence theorem. This theorem can be stated as

∫

Ω0

∇.F(r) dr =

∮

S0

F(r) . dS (1.11)

where the arbitrary closed surface S0 encloses the volume Ω0. The theorem will be applied in
two dimensions. First write

∇ = ∇t +
∂

∂z
(1.12)

where ∇t is the tangential gradient. Then the 2D form of (1.11) is

∫

S0

∇t.F(r) dS =

∮

C0

F(r) .n̂ dl (1.13)

where C0 is a closed path and n̂ is unit outward vector normal to the path.

To apply (1.13), note first that (1.10) can be written as

∇.∇A = −µ0J. (1.14)

but since there is unformity in the z-direction,

∇t.∇tA = −µ0J. (1.15)

Integrating this equation over a circle radius ρ, in a z = z0 plane, where z0 is a constant,
with the source passing through its center and applying the 2D divergence theorem gives

2πρ
∂A

∂ρ
= −µ0I (1.16)

where A = ẑ ·A. Hence

A = −
µ0I

2π
ln ρ. (1.17)

Taking the curl of A = ẑA in cylindrical coordinates gives (1.6).

1.2.2 Green’s Function for Two-Dimensional Poisson Problems

Note that the argument used above can be adapted to find the Green’s function for a two-
dimensional Poisson problem. Thus we see that the unbounded domain solution of

∇2g = −δ(ρ− ρ
′) (1.18)

is

g = −
1

2π
ln ρ (1.19)

where ρ = |ρ− ρ
′| =

√

(x− x′)2 + (y − y′)2.
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1.2.3 Unidirectional Current

A current flowing in the z-direction and therefore of the form J(x, y) = ẑJ(x, y) gives rise to a
vector potential A = ẑA which is a solution of

∇2A = −µ0J (1.20)

This is a scalar partial differential equation, a Poisson equation, in two variables. The
common methods for solving this and other partial differential equations are to use the Green’s
function method or transformation techniques.

Green’s function method

In Green’s function method, the solution is expressed in the form

A(ρ) = µ0

∫

S
g(ρ− ρ

′)J(ρ′) dρ′ (1.21)

where the Greens function is given by (1.19) and the current density J(ρ′) varies in an arbitrary
manner over the area S. Is is assumed that there are no nearby boundaries and that the field
vanishes as |ρ| → ∞.

Fourier Transform Method

The partial differential equation can often be reduced to a differential equation in only one
variable by suitable transformation. The Fourier transform is defined, together with its inverse,
by

f̃(u) =

∫ ∞

−∞
f(x)ejux dx (1.22)

f(x) =
1

2π

∫ ∞

−∞
f̃(u)e−jux du (1.23)

Transforming (1.20) in this way gives

(

∂2

∂y2
− u2

)

Ã = −µ0J̃ (1.24)

Thus reducing the derivative with respect to x to an algebraic form.

1.2.4 Current Strip

For the case of a uniform current in a strip, width 2a, carrying current in the z-direction, the
current density is expressed as

J =

{

δ(y)I if −a ≤ x ≤ a
0 otherwise

(1.25)

where I is the current per unit width of the strip.

6



Solution Using the Green’s function method

Finding the solution, using (1.21), is made easier by differentiating A with respect to y to get
Hx and x to get −Hy prior to integration. Thus following the trivial y′ integration

Hx =
1

2π

∫ a

−a

y

(x− x′)2 + y2
dx′ and Hy = −

1

2π

∫ a

−a

x− x′

(x− x′)2 + y2
dx′ (1.26)

Let (x′ − x)/y = w to give

Hx =
1

2π

∫ (a−x)/y

−(a+x)/y

1

w2 + 1
dw and Hy = −

1

2π

∫ (a−x)/y

−(a+x)/y

w

w2 + 1
dw (1.27)

From which we find [1]

Hx = ∓
I0
2π

[

arctan
2ay

x2 + y2 − a2
+ sπ

]

, and Hy =
I0
4π

ln

[

(a− x)2 + y2

(a+ x)2 + y2

]

. (1.28)

where s = 1 if x2 + y2 − a2 < 0 and zero otherwise. The upper sign in the expression for Hx

refers to y > 0 and the lower sign to y < 0

Solution by Fourier Transform Method

A solution of (1.20) is found using the Fourier transform. For a current strip defined with a
current density δ(y)I(x), the Fourier transform of the current density is

J̃(u) = δ(y)

∫ a

−a
I(x)ejux dx. (1.29)

For a conducting strip carrying a uniform current, I(x) is constant for −a ≤ x < a but,
in this case, the Fourier integral form for Ã does not converge. Therefore we seek instead the
derivative of Ã with respect to y which is in fact the x-component of the magnetic field. At
points not at the current source,

(

∂2

∂y2
− u2

)

∂Ã

∂y
= 0. (1.30)

The required solution must vanish as |y| → ∞. Therefore a solution that varies as e−uy will
behave correctly if u and y are either both positive or both negative. However, it is necessary
to consider also what happens when u and y are of opposite sign and in addition ensure that
the solution has odd parity with respect to y. The solution with the correct far-field behavior
and parity has the form

∂Ã

∂y
=

{

F (u)e−|u|y if y > 0

−F (u)e|u|y if y < 0.
(1.31)

It is known from the circuital theorem that there is a discontinuity in the magnetic field at
a current sheet or strip that is equal to the current per unit length. Denote the field just above
the strip as H+

x and that below as H−
x . Taking the negative z-direction as the direction of the

surface normal in Stoke’s theorem, the path of integral following a clockwise path round the
strip is in the positive x-direction above the strip and the negative x-direction below it. Hence

H+
x −H

−
x =

{

−I0 if −a ≤ x ≤ a
0 otherwise

(1.32)
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To satisfy this condition in the Fourier domain,

2F (u) = −I0

∫ a

−a
ejux dx = −

2I0
u

sin(au) (1.33)

Relation (1.32) determines F (u), and, therefore

∂A

∂y
= ∓

I0
2π

∫ ∞

−∞

1

u
sin(au)e−jux−|u||y| du, (1.34)

where the upper sign refers to y > 0 and the lower sign to y < 0. Hence

Hx =
∂A

∂y
= ∓

I0
π

∫ ∞

0

1

u
sin(au) cos(xu)e−u|y| du. (1.35)

In addition, it is found that

Hy = −
∂A

∂x
=
I0
π

∫ ∞

0

1

u
sin(au) sin(xu)e−u|y| du. (1.36)

From Gradshteyn and Ryzhik [1], integrals 3.947 and 3.948, it is found that

Hx = ∓
I0
2π

[

arctan
2ay

x2 + y2 − a2
+ sπ

]

, (1.37)

where s = 1 if x2 + y2 − a2 < 0 and zero otherwise. Also

Hy =
I0
4π

ln

[

(a− x)2 + y2

(a+ x)2 + y2

]

. (1.38)

1.3 Field due to a Circular Current Filament

The magnetic vector potential satisfies

∇2A = −µ0J (1.39)

For a circular filament radius ρ0 in the plane z = z0

J = Iδ(ρ− ρ0)δ(z − z0)φ̂. (1.40)

The solution will be found using a combination of Fourier transform and Green’s function
methods. Define the the 2D Fourier transform of Ã as

Ã(u, v, z) =

∫ ∞

−∞

∫ ∞

−∞
A(r)e−iux−ivy dx dy, (1.41)

its inverse as

A(x, y, z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
A(u, v, z)eiux+ivy du dv (1.42)

For a circular filament the magnetic vector potential can be written A = Aφ̂ and for a
current loop in the plane z = z0, we can write J = Jφ̂δ(z − z0) where J = Iδ(ρ − ρ0). Taking
the 2D Fourier transform of (1.20) gives

(

∂2

∂z2
− κ2

)

Ã(u, v, z) = −µ0J̃(u, v)δ(z − z0). (1.43)
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where κ2 = u2 + v2. The solution will be written as

Ã = µ0J̃g(z − z0) (1.44)

where g(z − z′) is a one dimensional Green’s function satisfying

(

∂2

∂z2
− κ2

)

g(z − z′) = −δ(z − z′). (1.45)

The solution is thus found through the following steps:

• determine the 1D Greens function g(z − z′)

• find the 2D Fourier transform of the current J̃

• evaluate the inverse Fourier transform of Ã = µ0J̃g(z − z0).

Although the result could be computed numerically using a fast Fourier transform algorithm,
the inverse transform, in this case, can be performed analytically.

1.3.1 Evaluation of the Green’s Function

The solution of (1.45) can be written in terms of exponentials e±κ(z−z
′). One can ensure the

solution vanishes as |z − z′| → ∞ by writing

g(z − z′) = F (κ)e−κ|z−z
′| (1.46)

then the unknown function F (κ) is found from the jump in the derivative of g as given by
integrating (1.45) between z′ − ε and z′ + ε and letting ε tend to zero to give

[

∂g

∂z

]

=
∂g

∂z

∣

∣

∣

∣

+

−
∂g

∂z

∣

∣

∣

∣

−

= −1 (1.47)

where the ± sign refer to the approach to z ′ from the positive and negative side. From this
condition we find that F (κ) = 1/2κ and hence

g(z − z′) =
1

2κ
e−κ|z−z

′| (1.48)

1.3.2 Evaluation of the Fourier Transform of the Current

The x- and y−components of Jφ̂ are

Jx = −Iδ(ρ− ρ0)sinφ and Jy = Iδ(ρ− ρ0)cosφ (1.49)

Take the 2D Fourier transform

[

J̃x
J̃y

]

=

∫ ∞

−∞

∫ ∞

−∞

[

Jx(r)
Jy(r)

]

e−iux−ivy dx dy (1.50)

Change to cylindrical co-ordinates by using the substitutions

x = ρ cosφ y = ρ sinφ
u = κ cosβ v = κ sinβ

then
ux+ vy = κρ cos(φ− β) and dx dy = ρ dρ dφ (1.51)
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hence
[

J̃x
J̃y

]

=

∫ ∞

0

∫ 2π

0

[

Jx(r)
Jy(r)

]

e−iκρ cos(φ−β) ρ dρ dφ (1.52)

By making the substitution φ = θ + β, and using

J1(z) =
1

iπ

∫ π

0
e−iz cos θ cos θ dθ (1.53)

we find that
[

J̃x
J̃y

]

= 2πiρ0I

[

− v
κ
u
κ

]

J1(κρ0) (1.54)

Hence

J̃ = 2πiρ0IJ1(κρ0) (1.55)

1.3.3 Solution by Inverse Fourier Transform

Consider the inverse Fourier transform giving the x-component of A :

[

Ax

Ay

]

= µ0Iρ0

∫ ∞

−∞

∫ ∞

−∞

1

2κ
e−κ|z|

[

− iv
κ

iu
κ

]

J1(κρ0)e
iux+ivy du dv (1.56)

Transforming to cylindrical co-ordinates gives

[

Ax

Ay

]

= µ0Iρ0

∫ ∞

0

∫ π

0
J1(κρ0)e

−κ|z−z0|eiκρ cos(φ−β)
[

−i sinβ
i cosβ

]

dκ dβ

= πµ0I

[

− sinφ
cosφ

]

ρ0

∫ ∞

0
J1(κρ0)J1(κρ)e

−κ|z−z0| dκ (1.57)

Hence

A = πµ0Iρ0

∫ ∞

0
J1(κρ0)J1(κρ)e

−κ|z−z0| dκ (1.58)

Exercise 5: Evaluate (1.58) using 6.162 of Gradshteyn and Ryzhik [1]. Write
the solution in terms of elliptical functions using 8.3.27 of Abramowitz and
Stegun [2] and check the results with the text by Van Bladel [27].

Exercise 6: Write the filament solution (1.58) as µ0IG(ρ, z|ρ0, z0) and the
vector potential of a coil as

A(ρ, z) = µ0

∫

Sc

G(ρ, z|ρ0, z0)J(ρ0, z0) dS0 (1.59)

where Sc is the cross-sectional area of the coil and

G(ρ, z|ρ0, z0) = πρ0

∫ ∞

0
J1(κρ0)J1(κρ)e

−κ|z−z0| dκ. (1.60)

Determine the vector potential for a tightly wound coil carry a current I whose
turns density n is unform over a rectangular cross section such that z2 < z0 < z1
and a2 < ρ0 < a1.
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The integral for the coil magnetic vector potential is

A(ρ, z) = µ0nI

∫ z1

z2

∫ a1

a2

πρ0

∫ ∞

0
J1(κρ0)J1(κρ)e

−κ|z−z0| dκ dρ0 dz0 (1.61)

The radial integral will be expressed in terms of a function

J1(r1, r2) =

∫ r1

r2

rJ1(r) dr (1.62)

and the z−integral gives

f(κ, z) =

∫ z1

z2

e−κ|z−z0| dz =







1
κ [e

κz1 − eκz2 ]e−κz z > z1
1
κ [2− e

−κ(z−z2) − e−κ(z1−z)] z1 > z > z2
1
κ [e

−κz1 − e−κz2 ]eκz z2 > z

(1.63)

Thus

A(ρ, z) = µ0πnI

∫ ∞

0

1

κ2
f(κ, z)J1(κa1, κa2)J1(κρ) dκ (1.64)

Exercise 7: Coil Impedance

The impedance of a coil is given by

I2Z = −

∫

Ω
E(r) · J(r) dr. (1.65)

Determine the free space impedance of a coil of rectangular cross-section.

Exercise 8: Magnetic Shell Representation

(a) A coil current source J can be replaced by a magnetic dipole distribution M

which gives the same field. Determine M in the form of a magnetic shell in the
plane of a circular current filament radius ρ0 carrying a current I such that the
current density is expressed as

J = ∇×M (1.66)

(b) Write the vector potential for the problems as µ0∇ × (ẑψ) and determine
the transverse electric scalar potential ψ.

1.3.4 Integral Solution

Assuming A(r) vanishes as |r| → ∞, the free-space (unbounded domain) solution of equation
(1.10) may be written as

A(r) =
µ0
4π

∫

ΩJ

J(r′)

|r− r′|
dr′ (1.67)

where the integration is carried out over the electric current source region. Here we have
simply stated the solution in integral form with a Green’s function kernel, 1

4π|r−r
′| . Next we

shall elaborate in some detail on how this solution is derived.
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1.3.5 Static Green’s function

To find a solution of (1.10) in free space which vanishes as |r| → ∞, note that there is no
coupling between components. Hence each independent component of the equation can be
treated separately as the solution of a scalar problem. The scalar problem can be solved using
the solution for a point source in three-dimensional space and representing the solution for a
distributed source as a superposition of point sources.

A point source with a coordinate r′ is represented by a delta distribution; δ(r − r′). The
position of the field point is given by the vector r. The delta distribution is zero for all field
points (for all r) except where r = r′. When the source and field points coincide, the delta
distribution does not have a finite numerical value (which is why it is called a distribution and
not a function), but it is given the following defining property

U(r) =

∫

Ω
U(r′)δ(r− r′) dr′, (1.68)

where Ω is a region containing the point r′ and U(r) is a function of position in space. Note
that if we choose for example U(r) = 1 everywhere, it can be seen that

∫

Ω
δ(r− r′) dr′ = 1 (1.69)

Thus the delta distribution in three-dimensional space is zero almost everywhere but integration
over it gives the value 1.

Now seek a function G(r, r′) which vanishes as |r| → ∞ and satisfies

∇2G(r, r′) = −δ(r− r′). (1.70)

A solution is deduced using the divergence theorem (1.11). First write∇2G(r, r′) = ∇.∇G(r, r′)
and then apply the divergence theorem to equation (1.70) for a spherical region centered at r′.
This gives

∫

S0

∇G(r, r′) · dS = −1 (1.71)

Spherical symmetry means that ∇G(r, r′) is radially directed, a function of R = |r − r′| and
therefore constant over a surface of fixed radius. Hence

∇G(r, r′) = −
1

4πR2
R̂ (1.72)

where R̂ is a unit vector in the radial direction. The result

G(r, r′) =
1

4π|r− r′|
(1.73)

can be confirmed by differentiation to get (1.72). Having established that (1.73) is the required
solution of (1.70), note the similarity of form between (1.70) and (1.10). Because of this simi-
larity, any vector component of the magnetic vector potential can be written as a superposition
of scalar point source solutions. The full vector potential is a superposition of these vector
component solutions as expressed in equation (1.67).
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Figure 1.4: Circular current filament

1.4 Magnetic Field Due to a Circular Current Filament

Figure 1.4 shows a circular filament carrying a current I. This is a circular coil with one turn.
The magnetic field due to this loop can be deduced from (1.67) and a knowledge of elliptical
integrals. In order to evaluate (1.67) four things are needed: (i) an expression for the elemental
volume dr′ in cylindrical coordinates, (ii) an expression for the current density, (iii) a convenient
expression for the distance R = |r − r′| and (iv) a relationship between the direction of the
source and the direction of the field.

1.4.1 Volume Element

In cylindrical coordinates,

dr′ = ρ′dφ′ dρ′ dz′. (1.74)

1.4.2 Current Density

The current density for the filament will be represented using the delta distribution for a single
scalar variable z, say. Thus δ(z − z′) is defined such that

f(z) =

∫ zb

za

f(z′)δ(z − z′) dz′

where z′ is between za and zb. Using this delta distribution the current density for the loop
with radius a in the plane z′ = 0 is written

J(r′) = Iδ(ρ′ − a)δ(z′)φ̂′ (1.75)

where φ̂′ is the azimuthal unit vector.
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1.4.3 Distance from source point to field point

Note from Figure 1.4 that OP has length a and that from the cosine rule, the square of the
length os PS is a2 + ρ2 − 2aρ cosφ′. Consequently, if R is the length of PQ,

R2 = a2 + ρ2 + z2 − 2aρ cosφ′.

Hence

R =
√

a2 + ρ2 + z2 − 2aρ cosφ′. (1.76)

1.4.4 Field direction

Without loss of generality, the vector potential at a point Q is considered for which the azimuthal
coordinate φ = 0. Note that with φ = 0,

φ̂′ = φ̂ cosφ′ − ρ̂ sinφ′ (1.77)

1.4.5 Vector potential

Combining the expressions (1.74) to (1.77) into the integral (1.67) gives

A(ρ, z) =
µ0I

4π

∫ π

−π

∫ ∞

0

∫ ∞

−∞

φ̂ cosφ′ − ρ̂ sinφ′
√

a2 + ρ2 + z2 − 2aρ cosφ′
δ(ρ′ − a)δ(z′)ρ′dφ′ dρ′ dz′

= φ̂
µ0aI

2π

∫ π

0

cosφ′
√

a2 + ρ2 + z2 − 2aρ cosφ′
dφ′. (1.78)

The radial term vanishes because sinφ′ gives rise to a part of the integrand that is an odd
function about the mid-point φ′ = 0. Being unable to decide between two methods we shall
give them both.

Method 1: Seek to form the standard integral (reference [4] equation 3.674.3)

∫ π

0

cosφ
√

1 + p2 − 2p cosφ
dφ =

2

p
[K(p)− E(p)], p2 < 1, (1.79)

where K(p) and E(p) are complete elliptical integrals of the first and second kinds respectively.
Write

A(ρ, z) = φ̂
µ0I

2π

√

ap

ρ

∫ π

0

cosφ′
√

p(a2 + ρ2 + z2)/aρ− 2p cosφ′
dφ,′

where p is a factor determined from

p(a2 + ρ2 + z2)/aρ = 1 + p2

as

p =
1

2aρ

[

(a2 + ρ2 + z2)−
√

(a+ ρ)2 + z2
√

(a− ρ)2 + z2
]

.

Thus

A(ρ, z) = φ̂
µ0I

π

√

a

p ρ
[K(p)− E(p)]. (1.80)
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Method 2: Following Van Bladel [3] let k2 = 4aρ/[(a+ ρ)2 + z2]. Then

A(ρ, z) = φ̂
µ0kI

4π

(

a

ρ

)1/2 ∫ π

0

cosφ′
√

1− 1
2k
2(1 + cosφ′)

dφ′

= φ̂
µ0kI

4π

(

a

ρ

)1/2 ∫ π

0

2 cos2(φ′/2)− 1
√

1− k2 cos2(φ′/2)
dφ′.

If θ = (π − φ′)/2,

A(ρ, z) = φ̂
µ0kI

2π

(

a

ρ

)1/2 ∫ π/2

0

2 sin2 θ − 1
√

1− k2 sin2 θ
dθ.

Expressing the integral using standard forms

K(k) =

∫ π/2

0
(1− k2 sin2 θ)−1/2dθ (1.81)

and

E(k) =

∫ π/2

0
(1− k2 sin2 θ)1/2dθ (1.82)

gives

A(ρ, z) = φ̂
µ0I

kπ

(

a

ρ

)1/2[(

1−
k2

2

)

K(k)− E(k)

]

. (1.83)

1.5 Magnetic Shell Formulation

1.5.1 Scalar Magnetic Potential

In a non-conducting region the magnetic field is related to a current source by Ampère’s law:

∇×H = J. (1.84)

In regions where the current is zero ∇×H = 0 in which case one can write the magnetic field
as a gradient of a scalar field called the magnetic scalar potential. Thus

H = −∇Φ (1.85)

A vector field that is written in this way is called conservative. The scalar gradient has the
property that its line integral round a closed path is zero:

∮

∇Φ.ds = 0 (1.86)

Therefore the same property applies to the magnetic field.

Of course, the scalar potential does not provide a complete description of the magnetic
field because it does not apply in the current region and if a line integral of the magnetic field
encloses a current it will not be zero as is known from the Circuital Theorem. The forgoing
discussion raises a question. How can the scalar representation be modified to account for the
current?
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1.5.2 Equivalent Magnetic Source

As a first step to finding a complete scalar formulation for the magnetic field, replace the current
source by a magnetic dipole density M giving the same field. Thus let

J =
1

µ0
∇×M. (1.87)

Note that M is not uniquely defined by this relationship and in fact there is considerable
flexibility in its choice as we shall see. Next substitute into Ampère’s law to give

∇×H =
1

µ0
∇×M. (1.88)

From which it is clear that

H =
1

µ0
M−∇Φ, (1.89)

where Φ is a magnetic scalar potential. Take the divergence of (1.89) to give

∇2Φ =
1

µ0
∇.M. (1.90)

Note that H is uniquely defined by Φ alone in regions where M is zero. Inside the magnetic
source region the magnetic field is made up of contributions from both M and ∇Φ. Hence the
gradient of a scalar Laplacian can be added to M and subtracted from ∇Φ without changing
H or the solution of (1.90). A choice must be made of the most suitable form for the magnetic
source. For a current filament this choice is usually taken to be an infinitesimally thin magnetic
shell.

1.5.3 Example: Circular Current Filament

For a circular current filament, radius a carrying a current I in the plane z = 0, the current
density is represented as

J = δ(ρ− a)δ(z)Iφ̂. (1.91)

Consider an equivalent magnetic shell enclosed and bounded by the filament and having the
form

M = µ0f(ρ)δ(z)ẑ then
1

µ0
∇×M = −

∂f

∂ρ
δ(z)φ̂ (1.92)

and, in view of the relationship (1.87), ∂f
∂ρ = −δ(ρ− a)I. Adopting the condition that f(ρ)→ 0

as ρ→∞ gives

f(ρ) =

{

I if ρ < a
0 otherwise

M =

{

µ0Iδ(z)ẑ if ρ < a
0 otherwise

(1.93)

Note that the shell need not be planar. For example a shell on a hemispherical surface can
serve as the equivalent source or indeed a magnetic shell on any other open surface bounded by
the filament could be used. To keep the calculations simple it makes sense to use a flat shell.
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Figure 1.5: Magnetic shell due to a filament

1.5.4 Discontinuity in the Potential

Consider an arbitrary shaped closed current filament carrying a current I in the plane z = z0.
The magnetic field at z = z0 is directed normal to the plane. This means that the potential
outside the loop is constant in the plane. We shall choose this constant to be zero.

Substitute a planar magnetic shell of constant dipole density bounded by the filament for
the current source. Using (1.89) it clear that Ampère’s circuital theorem is satisfied by putting

M = µ0δ(z − z0)Iẑ. (1.94)

Integrating H across the shell from z = z0 − ε to z = z0 + ε letting ε approach zero and using
(1.89) and (1.94) shows that the potential has a jump

∆Φ = I (1.95)

at the open surface S0 in the plane of the filament inside the loop.

1.5.5 Solution Using Green’s Second Theorem

The solution of (1.90), rewritten as

∇2Φ(r) = −ρ(r) (1.96)

where ρ(r) is the scalar source, can be expressed using a Green’s function satisfying

∇2G(r, r′) = −δ(r− r′) (1.97)

whose solution is

G(r, r′) =
1

4π|r− r′|
(1.98)
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The required relationship is found using Green’s second theorem applied to a region Ω,
bounded by a surface S. The choice of region and surface will be decided later. The theorem
is established using a vector identity,

∇.(A∇B) = ∇A.∇B +A∇2B

from which it follows immediately that

∫

Ω
G(r′, r)∇′2Φ(r′)−Φ(r′)∇′2G(r′, r) dr′ =

∫

Ω
∇′.[G(r′, r)∇′Φ(r′)−Φ(r′)∇′G(r′, r)] dr′ (1.99)

The left hand side is be transformed using (1.73) and (1.96) while the divergence theorem is
applied to the right hand side. This gives

Φ(r)−

∫

Ω
G(r′, r)ρ(r) dr′ =

∫

S0

G(r′, r)
∂Φ(r′)

∂n′
− Φ(r′)

∂G(r′, r)

∂n′
dS′ (1.100)

where the coordinate n′ is in the direction of the outward normal to the surface S as seen from
the region Ω. Thus, in general Φ is given by a volume integral and a surface integral but the
usual strategy is to choose the region Ω such that one or other of these integrals vanishes.

Let the volume Ω be a source free region bounded on the inside by a surface surrounding the
magnetic shell and at infinite by a second surface which together compose S. The the volume
integral and the integral over the surface at infinity vanishes. Allowing the inner surface to
collapse until it approaches the source, it is found that in the limit of close approach

Φ(r) = I

∫

S0

∂G(r′, r)

∂z′
dS′ (1.101)

where (1.95) has been used. It has also been noted that the magnetic field in the vertical
direction, z-direction, is continuous across the plane of the filament.
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