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Chapter 4

Integral Methods for Scalar

Boundary Value Problems

4.1 Integral Formulations for Scalar Problems

4.1.1 The Delta Function

A function f(x) say has by definition a numerical value for each value of x. The so called
delta function, δ(x) is not actually function but is properly called a generalized function or a
distribution because it does not have a value for x = 0. Its defining property is as follows:

f(x) =

∫

f(x′)δ(x− x′) dx′ (4.1)

See the first appendix of [3] for further details. One can consider δ(x) as the limiting case of a
pulse function:

δa(x) =

{

1
a −a

2 < x < a
2

0 otherwise
(4.2)

which has height 1/a and width a. Hence the area is 1. Taking the limit

lim
a→0

δa(x) = δ(x) (4.3)

Note from (4.1) with f(x) = 1,
∫

δ(x− x′) dx′ = 1 (4.4)

Exercise 1. Distribution theory allows us to treat a delta function like an ordinary
function when integrating by parts. This implies that the derivative of the delta
function

δ′(x) =
dδ(x)

dx

has a meaning in an integral. To illustrate the properties of the derivative, evaluate

∫ b

a
f(x′)δ′(x− x′) dx′

for a < x < b.
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Exercise 2.

(a) Evaluate the Heaviside function H(x) given that

H(x) =
1

2

(

d|x|
dx

+ 1

)

(b) Evaluate
∫

dH(x− x′)
dx

f(x′) dx′

where f(x) and its derivatives vanish as x→ ±∞. Compare the result with (4.1) to
determine the relationship between the Heaviside function and the delta function.

In three dimensions, define the delta function as

F (r) =

∫

F (r′)δ(r− r
′) dr′ (4.5)

Note that with F (r) = 1,
∫

δ(r− r
′) dr′ = 1 (4.6)

Also note that we can write

δ(r− r
′) = δ(x− x′)δ(y − y′)δ(z − z′) (4.7)

4.1.2 Scalar Field in Three Dimensions

Consider a general problem in which a potential Φ is sought satisfying the Poisson equation:

∇2Φ(r) = −ρ(r), (4.8)

where ρ(r) is a prescribe source. The solution can be expressed using a Green’s function
satisfying

∇2G(r, r′) = −δ(r− r
′), (4.9)

whose free space solution is

G(r, r′) =
1

4π|r− r′| . (4.10)

Derivation of (4.10):

As a simple derivation write ∇2 = ∇·∇ in (4.9), integrate over a sphere of radius R = |r−r
′|

centered at r
′ and apply the Gauss divergence theorem and (4.5) with F (r) = 1 to give

∫

S0

∇G(r, r′) · dS = −1 (4.11)

where S0 is the surface of the sphere. Consider a solution that vanishes as R → ∞, that is
therefore spherically symmetric about the point whose coordinate is r

′. Note that the outward
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normal to the spherical surface of which dS is an elementary portion is in the direction of the
radial unit vector R̂. Then we find

4πR2
∂G

∂R
= −1 (4.12)

and (4.10) follows by integration.

A formal equation for Φ is found using Green’s second theorem applied to a suitably chosen
region Ω, bounded by a surface S. Green’s second theorem is established using a vector identity,

∇ · (A∇B) = ∇A · ∇B +A∇2B,

from which it follows immediately that

A∇2B −B∇2A = ∇ · [A∇B −B∇A].
Applying this identity with G ≡ A and Φ ≡ B and integrating the result over a volume Ω gives

∫

Ω
G(r′, r)∇′2Φ(r′)−Φ(r′)∇′2G(r′, r) dr′ =

∫

Ω
∇′.[G(r′, r)∇′Φ(r′)−Φ(r′)∇′G(r′, r)] dr′. (4.13)

The left hand side is transformed using (4.8) and (4.9) with primed and unprimed co-ordinate
reversed, while the divergence theorem is applied to the right hand side. This gives

Φ(r)−
∫

Ω
G(r′, r)ρ(r′) dr′ =

∫

S
G(r′, r)

∂Φ(r′)

∂n′
− Φ(r′)

∂G(r′, r)

∂n′
dS′, (4.14)

where the surface S encloses Ω and the coordinate n′ is in the direction of the outward normal
to the surface S as seen from the region Ω. Thus, in general, Φ is given by a volume integral
plus a surface integral but the basic strategy in problem solving is to choose the region Ω such
that one or other of these integrals vanishes. We consider first examples in which the volume
integral vanishes.

Exercise 2. Deduce the Green’s function g(r|r′), for a two dimensional Laplace or
Poisson problems using the method given above for the three dimensional problem.

4.2 Single Layer Potential

4.2.1 Charged Conducting Plate

As an example of the application of Green’s theorem we consider the problem of finding the
electric field due to a charged conducting plate in air. The plate is of negligible thickness and is
defined on an open surface S0. The surface can be planar, such as a circular disk or non-planar,
such as a spherical cap. In electrostatics the electric field is irrotational (∇× E = 0), and can
therefore be written as

E = −∇V, (4.15)

where V is the electric potential (potential energy per unit charge). Because ∇ ·D = ρ where
ρ is the charge density and in air, D = ε0E, taking the divergence of (4.15) shows that the
potential satisfies the Poisson equation
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∇2V = − ρ

ε0
. (4.16)

The Poisson equation is to be solved subject boundary conditions at infinity and on the plate.
In the problem considered here, the potential at infinity is zero and the potential on the plate is
a constant V0. A boundary value problem such as this, in which the potential on the boundary
is specified is called a Dirichlet problem and the boundary condition, a Dirichlet boundary

condition.

4.2.2 Charge density on the Plate

The charge density on the plate is expressed as the charge per unit area σ. The source density
is related to a jump in the gradient of the potential at the plate. To establish the relationship
between the charge density and ∇V , write the Poisson equation as ∇·∇V = −ρ/ε0 then apply
the divergence theorem to an infinitesimally small cylindrical region which encloses part of the
plate such that the ends of the cylinder are parallel to plate surface. The divergence theorem
then gives

∫

Sc

∇V · dS = −
∫

Ωc

ρ/ε0dr (4.17)

where Sc is the entire surface of the cylinder and Ωc the region it encloses. Evaluation of the
right hand side is carried out by noting that in the limiting case of an infinitesimally thin plate,
the volume charge density has the form ρ = σδ(n− n′), n′ being the normal coordinate of the
plate surface and σ being the surface charge density. To evaluate the left hand side, note that
because the potential on the plate is constant, the normal gradient at the cylindrical surface is
zero, hence, in the limit as the ends of the cylinder approach the faces of the plate (denoted as
positive and negative) we get

∂V

∂n

∣

∣

∣

∣

+

− ∂V

∂n

∣

∣

∣

∣

−

= − σ

ε0
(4.18)

where n is a coordinate representing the distance from the plate in the direction of the normal
on the side labelled +. Note that a potential such as V which arises from a discontinuity in its
normal gradient is known as a single layer potential.

4.2.3 Integral Equation for the Surface Charge Density

An integral equation for the charge distribution on the plate is found by applying Green’s
second theorem to a region Ω external to the plate bounded by a surface which is the union
of a surface enclosing the plate S and another at infinity. This surface does not enclose any
charge because it excludes the plate itself hence the term corresponding the the volume integral
in (4.14) is zero.

Let the surface S collapse onto the surface S0, then in the limit it is found that

V (r) = −
∫

S0

G(r′, r)

[

∂V

∂n′

∣

∣

∣

∣

+

− ∂V

∂n′

∣

∣

∣

∣

−

]

dS′ −
∫

S0

∂G(r′, r)

∂n′
[V |+ − V |−] dS′ (4.19)

where the coordinate n′ is in the direction of the normal to the surface S0 on the + side. The
potential is continuous at the crack, therefore V |+ = V |− = V0 and the second integral vanishes.
Using (4.18) gives

42



V (r) =
1

ε0

∫

S0

G(r, r′)σ(r′) dr′ (4.20)

which gives the potential at an arbitrary point r in terms of the surface charge density on the
plate.

The charge density is found by applying the boundary condition. For r0 ∈ S0, the potential
is specified as V (r0) = V0. Thus

V0(r0) =
1

ε0

∫

S0

G(r0, r
′)σ(r′) dS′ (4.21)

An approximate solution of equation (4.21) can be found using the moment method. Exact
solutions may be found for simple geometries. An example follows.

4.2.4 Charged Circular Disk

Problem 1. Determine the potential V which satisfies the Laplace equation
subject to the boundary conditions in the plane z = 0 of a circular disk of unit
radius:

V = 1 0 ≤ ρ < 1 (4.22)

∂V

∂z
= 0 ρ > 1 (4.23)

and vanishes as the distance from the center of the disk tends to infinity.

Note that the problems has axial symmetry and therefore V is independent of the azimuthal
angle. In cylindrical polar coordinates, we have

(

1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

∂2

∂z2

)

V (ρ, z) = 0 (4.24)

In applying the method of separation of variables we seek a solution of the form

V (ρ, z) = R(ρ)Z(z) (4.25)

Sub into (4.24), divide by R(ρ)Z(z) to give

{

1

R(ρ)

1

ρ

∂

∂ρ

[

ρ
∂

∂ρ
R(ρ)

]

+
1

Z(z)

∂2

∂z2
Z(z)

}

= 0 (4.26)

Note that in the above equation the sum of two terms is a constant, zero. The first term can
only depend on the variable ρ. The second can only depend on the variable z but because their
sum is a constant then they are both equal to a quantity that does not depend on ρ or z. Write

1

Z(z)

∂2

∂z2
Z(z) = κ2 (4.27)

where κ is independent of ρ or z. Then

∂2Z(z)

∂z2
− κ2Z(z) = 0 (4.28)
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which has solutions e−κz and eκz. Similarly

1

ρ

∂

∂ρ

[

ρ
∂R(ρ)

∂ρ

]

+ κ2R(ρ) = 0 (4.29)

which has solutions J0(κρ) and Y0(κρ) [2]. We shall construct a solution that vanishes as
|z| → ∞ and ρ→∞ of the most general form. Noting that the equations are satisfied for any
real value of κ and that nothing is gained by allowing κ to be negative we consider all positive
values for κ and write our general solution as

V (ρ, z) =

∫ ∞

0

1

κ
A(κ)e−κ|z|J0(κρ) dκ (4.30)

With this formulation of the problem, a solution amounts to the problem of finding A(κ).

The solution can be found through Weber’s method in which one needs to first find certain
integral forms as follows:

∫ ∞

0

1

κ
sinκJ0(κρ) dκ =

{

π
2 ρ < 1

sin−1(1/ρ) ρ > 1
(4.31)

∫ ∞

0
sinκJ0(κρ) dκ =

{

(1− ρ2)−1/2 ρ < 1
0 ρ > 1

(4.32)

Apply the boundary conditions to give

∫ ∞

0

1

κ
A(κ)J0(κρ) dκ = 1 ρ < 1 (4.33)

∫ ∞

0
A(κ)J0(κρ) dκ = 0 ρ > 1 (4.34)

and compare with the integrals above to reveal that

A(κ) =
2

π
sinκ (4.35)

The charge density can be deduced also from (4.18) and (4.32):

σ(ρ) =
4ε0
π

1

(1− ρ2)1/2 (4.36)

Note that the charge density approached ∞ as ρ approaches the edge of the plate. For a point
on the plate close to the edge, ρ = 1−ξ where ξ is small. Substituting into (4.36) and neglecting
terms of second order in ξ one finds that

σ ≈ 4ε0
π
ξ−1/2.

Hence the singular edge behavior of the charge density characterized by a half-power law.
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4.3 Double Layer Potential

4.3.1 Electric Current and an Ideal Crack

An ideal crack in a conductor is one in which the crack opening is negligible yet the crack is
impenetrable to electric current. The crack is defined on an open surface S0 in an otherwise
homogeneous conductor of conductivity σ0 and interacts with a steady direct current of current
density J(r). The current density is written in terms of the scalar potential as

J(r) = −σ0∇V (r)

Conservation of charge requires that J has zero divergence in static conditions therefore

∇2V (r) = 0

Applying Green’s second theorem to the region surrounding the crack and letting the surface
collapse onto S0 gives, in the limit

V (r) = V (0)(r)−
∫

S0

∂G(r′, r)

∂n′
[V |+ − V |−] dS′ (4.37)

where it has been noted that the normal gradient of the potential vanishes because Jn = 0 at
the surface of the crack and a term V (0)(r) has been added representing the unperturbed field.

Take the normal gradient and multiply by σ0 to give

J(r) = J
(0)(r)−∇

∫

S0

∂G(r′, r)

∂n′
p(r′) dS′ (4.38)

where
p(r0) = σ0 V |+ − V |− . (4.39)

Apply the boundary condition Jn(r0) = 0 to get an equation for p(r). Thus

J (0)n (r) =

∫

S0

∂2G(r′, r)

∂2n′
p(r′) dS′ (4.40)

This equation can be solved numerically using the moment or Nyström method. First examine
an analytical solution.

4.3.2 Steady Current and the Penny Shaped Ideal Crack

For a penny shape ideal crack in a uniform current stream, the incident current density is
uniform. This means that the normal gradient of the perturbed potential at the face of the
crack is constant over the surface of the crack. We shall consider a more general case in which
it varies with the distance from the center as f(ρ).

Problem 2. Determine the potential V which satisfies the Laplace equation
subject to the boundary conditions in the plane z = 0 of a circular disk of unit
radius:

∂V

∂z
= f(ρ) 0 ≤ ρ < 1 z = 0 (4.41)

V = 0 ρ > 1 z = 0 (4.42)

and vanishes as the distance from the center of the disk tends to infinity.
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Write the solution as

V (ρ, z) =

∫ ∞

0
ψ(κ)e−κ|z|J0(κρ) dκ (4.43)

With this formulation, the problem, a solution is found by finding ψ(κ). Apply the boundary
conditions to give

∫ ∞

0
κψ(κ)J0(κρ) dκ = f(ρ) ρ < 1 z = 0 (4.44)

∫ ∞

0
ψ(κ)J0(κρ) dκ = 0 ρ > 1 z = 0 (4.45)

A means of finding a solution is indicated by the properties of the discontinuous integral, 6.671
7 from reference [2],

∫ ∞

0
sin(uκ)J0(κρ) dκ =

{

(u2 − ρ2)−1/2 ρ < u
0 ρ > u

(4.46)

which suggests that by limiting u to a range up to 1, one can satisfy (4.45)with a solution of
the form

ψ(κ) =

∫ 1

0
χ(u) sin(κu) du χ(0) = 0 (4.47)

It can be shown that [8]

χ(u) =
2

π

∫ u

0

ρf(ρ)
√

u2 − ρ2
dρ (4.48)

Derivation of (4.48): Integrate (4.47) by parts:

ψ(κ) = −χ(1) cos(κ) +
∫ 1

0
χ′(u) cos(κu) du (4.49)

Substitute into (4.44) and use

∫ ∞

0
cos(uκ)J0(κρ) dκ =

{

0 ρ < u

(u2 − ρ2)−1/2 ρ > u
(4.50)

to give

f(ρ) =

∫ ρ

0

χ′(u)
√

ρ2 − u2
du 0 ≤ ρ < 1 (4.51)

Consider the integral

∫ ρ

0

vf(v)
√

ρ2 − v2
dv =

∫ ρ

0

∫ ρ

0

vχ′(u)√
v2 − u2

√

ρ2 − v2
du dv

=

∫ ρ

0
χ′(u)

∫ ρ

0

v√
v2 − u2

√

ρ2 − v2
dv du

=
π

2
χ(ρ) (4.52)

from which (4.48) follows.
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By substituting (4.47) into (4.43), setting z = 0 it is found that

V (ρ, 0) =
2

π

∫ 1

ρ

χ(u)
√

u2 − ρ2
du ρ < 1 (4.53)

It is then easy to show that for f(ρ) = 1, χ(u) = u and

V (ρ, 0±) = ±
2

π

√

1− ρ2 (4.54)

hence, from (4.39),

p(ρ) =
4

π

√

1− ρ2. (4.55)

4.4 Moment Method

Using moment method to solve the following equation to find the surface charge density σ(r)
on an infinitesimally thin rectangular plate defined on the open surface S0:

V0(r0) =
1

ε0

∫

S0

G(r0|r′)σ(r′)dS′ (4.56)

Divide S0 into N = Nx × Ny rectangles (boundary elements). Approximate σ as constant on
each boundary element. Thus σ(r) is then approximated by

σ(r) ≈
Nx−1
∑

j=0

Ny−1
∑

k=0

σjkψjk(r) (4.57)

where the ψjk(r), the functions used for expanding the unknown, are called basis functions.
These are usually local; zero outside a limited range. They are typically a low order polynomial
which represents the unknown as piecewise constant or piecewise linear or piecewise quadratic
and they are defined with respect to the boundary elements. Substitute equation (4.57) into
(4.56) and require that (4.56) is satisfied at points whose coordinate rjk j = 0, 2, ...Nx − 1
k = 0, 2, ...Ny − 1 are the coordinate of the center of each boundary element. This is called
point matching or co-location. The procedure gives

Vjk =

Nx−1
∑

j′=0

Ny−1
∑

k′=0

Mjk,j′k′σj′k′ (4.58)

Note Vjk = V0(rjk) and

Mjk,j′k′ =
1

ε0

∫

Sj′k′

G(rjk|r′)ψj′k′(r′) dS′ (4.59)

is an integration over the j ′k′-th boundary element. Equation (4.58) can also be written as:

V̄ =Mσ̄ (4.60)

where V̄ and σ̄ are column vectors with N elements and M is an N ×N matrix.
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4.4.1 Taking Advantage of the Convolutional Properties

One can choose to divide the region of the plate into a regular rectangular lattice and use the
same shape function for all the basis functions1. In which case, the basis functions will have
the shift property

ψjk(r + rjk) = ψnm(r + rnm) (4.61)

By changing the coordinates in (4.59), putting r
′ = r+rj′k′ and applying the shift property

of the basis functions we get

Mjk,j′k′ =
1

ε0

∫

S00

G(rjk − rj′k′ − r)ψ(r) dS (4.62)

where we have put ψ(r) = ψ00(r + r00). It can be seen from (4.62) that Mjk,j′k′ is a Toeplitz
matrix having the form

Mjk,j′k′ =M|j−j′|,|k−k′| (4.63)

with only N distinct elements.

4.4.2 Testing Functions

Rather than using point matching, one can, adopt a more generally procedure and take moments
of (4.56) to establish the matrix equation. Taking moments mean multiplying (4.56) by local
testing functions, φjk say, and integrating over the domain of the testing function. This gives

Vjk =

∫

Sjk

φjk(r)V0(r) dS (4.64)

and

Mjk,j′k′ =
1

ε0

∫

Sjk

φjk(r)

∫

Sj′k′

G(r− r
′)ψj′k′(r′) dr′ dS (4.65)

Exercise 3. Show that for a regular grid of boundary elements, the matrix formed
by testing has a Toeplitz structure and that the matrix elements are given by an
equation of the form

M|j−j′|,|k−k′| =
1

ε0

∫

Sβ

G(rjk − rj′k′ − r)β(r) dS. (4.66)

where Sβ is the domain of β. Give an expression for β(r) in terms of φ(r) and
ψ(r)

4.4.3 Singular Matrix Element

When j = j′ and k = k′, the integration involving G(rjk|r′) will need to deal with the singularity
in the Green’s function, equation (4.65). The value of the singular Matrix element is assigned

to the diagonal of M and will be evaluated for a pulse function expansion and point matching.
In which case, we have

Mjk,jk =
1

ε0

∫

Sjk

G(rjk|r′)dr′ (4.67)

1Alternatively, one can used a higher density of rectangles near the edge to cope with the singular behavior

of the charge near the edge. Also one could have special elements to describe this edge behavior.
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The integration is done in two parts, by a numerical method for a region where the singularity
is excluded and analytically over the exclusion zone. With SX as a 2a × 2a square exclusion
zone at the center of the boundary element, we have

Mjk,jk =
1

ε0

∫

Sjk−SX

G(rjk|r′)dr′ +
a

πε0
I(1) (4.68)

where

I(1) =
1

a

∫

Sq

1

R
dS (4.69)

and Sq is one quadrant of the exclusion zone and R2 = x2 + y2. Re-scale the variables of
integration with respect to a and write

I(1) =

∫ 1

0

∫ 1

0

x2 + y2

R3
dx dy

= 2

∫ 1

0

1√
1 + x2

dx

= 2 log(1 +
√
2) (4.70)

This result make use of standard integrals 2.271 5 and 2.271 4 from Gradshteyn and Ryzhik [1].

Exercise 4. Proceeding as above with the equivalent double layer potential prob-
lem, equation (4.40), it is found that we must deal with an exclusion zone integral

I(2) = lim
z→0

∫ 1

0

∫ 1

0

∂2

∂z2

(

1

R

)

dx dy. (4.71)

where R2 = x2 + y2 + z2. To evaluate I(2) perform the integration before taking
the limit.

Exercise 4: Solution.

(a) Evaluate the integrand.

∂

∂z

(

1

R

)

=
∂R

∂z

∂

∂R

(

1

R

)

= − z

R3
(4.72)

∂2

∂z2

(

1

R

)

= − ∂

∂z

( z

R3

)

=
z2

3R3
− 1

R3
(4.73)
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(b) Evaluate

Q3 =

∫ ∫

1

R3
dx dy (4.74)

Integrating with respect to x gives

Q3 =

∫

1

y2 + z2
x

R
dy (4.75)

Let v = y/R, then dv = (1/R)(1− y2/R2)dy

Q3 = x

∫

1

z2 + x2v2
dv =

1

z
arctan

(x

z
v
)

Thus

Q3 =
1

z
arctan

( xy

zR

)

(c) Evaluate

Q5 =

∫ ∫

1

R5
dx dy (4.76)

Integrating with respect to x gives

Q5 =
x

3

∫

1

R

[

1

(y2 + z2)R2
+

2

(y2 + z2)2

]

dy

Split the first term in bracket using partial fractions to give

Q5 =
x

3

∫

1

R

[

1

x2(y2 + z2)
− 1

x2R2
+

2

(y2 + z2)2

]

dy

The middle term can be integrated immediately, and the other terms dealt with
using the substitution v = y/R as before.

Q5 = −
y

3x(x2 + z2)R
+
x

3

∫

1

R

[

1

x2(y2 + z2)
+

2

(y2 + z2)2

]

dy,

and the other terms dealt with using the substitution v = y/R as before and
thereby reduced to integration of rational functions. The first of these has been
dealt with above

Q5 = −
y

3x(x2 + z2)R
+

1

3x2z
arctan

( xy

zR

)

+
2x

3

∫

1− v2
(z2 + x2v2)2

dv,

Putting u = zv/x gives

Q5 = −
y

3x(x2 + z2)R
+

1

3x2z
arctan

( xy

zR

)

+
2

3z3

∫

1

(1 + u2)2
dv− 2

3zx2

∫

v2

(1 + u2)2
dv,

4.5 Fourier Representation of the Green’s Function

We can show that (4.10) is indeed the desired solution of equation (4.9) using Fourier transform
techniques [4]. The Fourier transform with respect to x and y is written as

f̃(u, v) =

∫ ∫ ∞

−∞
f(x, y)e−(iux+ivy) dx dy (4.77)
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and the corresponding inverse Fourier transform as

f(r) =
1

(2π)2

∫ ∫ ∞

−∞
f̃(u, v, z)eiux+ivy du dv, (4.78)

In taking the two dimensional Fourier transform of (4.9) we have

F{∇2G(r|r′), x→ u, y → v} =

∫ ∫ ∞

−∞
∇2G(r|r′)e−(iux+ivy) dx dy

=

∫ ∫ ∞

−∞
G(r|r′)∇2e−(iux+ivy) dx dy

=

[

∂2

∂z2
− (u2 + v2)

]
∫ ∫ ∞

−∞
G(r|r′)e−(iux+ivy) dx dy

=

[

∂2

∂z2
− (u2 + v2)

]

G̃(u, v, z, z′)e−(iux
′+ivy′),

where we have defined

G̃(u, v, z, z′) =

∫ ∫ ∞

−∞
G(r|r′)e−iu(x−x′)−iv(y−y′) dx dy (4.79)

Hence the transformed equation is
(

∂2

∂z2
− κ2

)

G̃(u, v, z, z′) = −δ(z − z′), (4.80)

κ being the positive root of κ = (u2+ v2)1/2. To get a solution vanishing as z →∞ we propose
F (κ)e−κ(z−z

′) for z > z′. Direct substitution in (4.80) confirms that this is a valid solution.
Similarly, noting that the solution must also vanish as z → −∞, we propose F (κ)eκ(z−z

′) for
z < z′. Substitution into ( 4.80) shows that the equation is satisfied for z 6= z ′.

F (κ) may be determined by integrating 4.80 from z = z ′ − ε to z = z′ + ε and taking the
limit as ε→ 0 to give

(

∂G̃

∂z

)

+

−
(

∂G̃

∂z

)

−

= −1 (4.81)

where the ± subscripts refer to limiting values on either side of z ′. Thus the derivative of the
Green’s function has a jump of -1 at z = z′. From the size of the jump we find that F (κ) = 1

2κ
and hence

G̃(u, v, z, z′) =
1

2κ
e−κ|z−z

′|. (4.82)

The inverse transform is written

G(r, r′) =
1

(2π)2

∫ ∫ ∞

−∞

1

2κ
e−κ|z−z

′|eiu(x−x
′)+iv(y−y′) du dv (4.83)

hence we ought to be able to show by direct integration that

1

4π|r− r′| =
1

(2π)2

∫ ∫ ∞

−∞

1

2κ
e−κ|z−z

′|eiu(x−x
′)+iv(y−y′) du dv. (4.84)

Exercise 5. Use the method of images to write down a Green’s function satisfying
(4.9), vanishing as |r−r

′| → ∞| and vanishing on the plane z = 0. What is the two
dimensional Fourier transform with respect to x and y of this half-space Green’s
function.
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Exercise 6. What is the Fourier transform with respect to x and y of the Green’s
function satisfying,

∇2G(r, r′) + k2G(r, r′) = −δ(r− r
′), (4.85)

vanishing as |r− r
′| → ∞.
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4.5.1 Vector Potential Due to an Axial Current

Let us specialize equation 2.29 assuming that the current density J(r) is axially symmetric
having the form

J(r) =
◦
J (ρ′, z′)φ̂′

If we convert the Green’s function from the last section into cylindrical coordinates by the
substitutions

x = ρ cosφ y = ρ sinφ
u = κ cosβ v = κ sinβ

then

u(x− x′) + v(y − y′) = κ[ρ cos(φ− β)− ρ′ cos(φ′ − β)]
du dv = κ dκ dβ

φ̂′ = φ̂ cos(φ− φ′) + φ̂ sin(φ− φ′)

Substituting these results back into equation 2.29 and noting using the Fourier representation
of the Green’s function 4.84, we get

A(r) = µ0φ̂

∫

◦
G (ρ, z|ρ′, z′)

◦
J (ρ′z′) ρ′dρ′ dz′ (4.86)

where

◦
G (ρ, z|ρ′, z′) =

1

(2π)2

∫ 2π

0

∫ 2π

0

1

2κ
e−κ|z−z

′|

· eiκ[ρ cos(φ−β)−ρ′ cos(φ′−β)]

· cos(φ− β) cos(φ′ − β)κ dκ dφ′ dβ

Using the standard integral [2]

J1(α) =
1

2πi

∫ 2π

0
eiα cos θ cos θ dθ (4.87)

integration with respect to φ′ and β gives

◦
G (ρ, z|ρ′, z′) =

∫ ∞

0
G̃(u, v, z, z′)J1(κρ)J1(κρ

′)κ dκ (4.88)

This result has been derived for a coil in free space but similar integrals arise in calculating the
vector potential due to an axially symmetric coil above a half-space conductor or multilayered
slab [6]. The main difference in half-space problems is that one must account for reflections
from the surface of the material using a modified Green’s function. These reflection terms
are found by applying interface conditions which match the solution in air to the solution
in the conductor. Before we do this for a coil above a half-space we shall consider a simple
one-dimensional interface problem.
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