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Thin-Skin Eddy-Current Interaction with
Semielliptical and Epicyclic Cracks

J. R. Bowler, Member, IEEE,and N. Harfield

Abstract—Eddy-current probe impedance variations due to in-
teractions with planar cracks have been calculated for the thin-skin
regime. In this regime, the skin depth of the induced current is
small compared to the crack depth and length, allowing approxi-
mations to be made. The approximations have been used by others
to show that the thin-skin field at the surface of a crack is governed
by a potential satisfying the two-dimensional (2–D) Laplace equa-
tion. In fact, the transverse magnetic potential at the crack face,
defined with respect to the normal to this surface, satisfies a 2–D
Laplace equation at an arbitrary skin depth. However, thin-skin
boundary conditions applied at the crack perimeter greatly sim-
plify the problem. Solutions of the Laplace problem for semiel-
liptical cracks have been found by conformal mapping to a rect-
angular region. The surface potential in the rectangular domain
is expressed as a Fourier series expansion and the coefficients of
the series determined from the boundary conditions. Curved crack
profiles of a general class, including semielliptic cracks as a special
case, have been approximated by using ordered elliptical epicycles,
a representation that retains the ability to map the crack domain to
a rectangle. The probe impedance change due to a crack has been
expressed in terms of the transverse magnetic potential and calcu-
lated from a line integral. Predictions of the probe impedance vari-
ations with position and frequency have been compared with an
analytical solution for a semicircular crack and with experimental
coil impedance measurements on semielliptical and epicyclic slots.
Good agreement is observed in all comparisons.

Index Terms—Crack, eddy current, nondestructive evaluation.

I. INTRODUCTION

I N EDDY-CURRENT nondestructive evaluation, cracks
in metal components are detected through the changes in

probe impedance that occur when induced current is perturbed.
Testing for defects is commonly carried out at frequencies
such that the electromagnetic skin depth is much smaller than
the size of typical cracks. For example, the inspection of the
interior of fastener holes on aircraft is carried out with the
fasteners removed using a rotating probe operated at 500 kHz
or more. At this frequency, the skin depth in an aluminum alloy
structure is roughly 250µm or less whereas the cracks are
commonly a few millimeters long.

The thin-skin regime is of practical importance both for
the inspection of nonferrous metals and for steels but it can
be difficult to calculate high-frequency solutions. General
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three-dimensional numerical methods which use a nodal or
mesh scheme to define a discrete approximation of the field
are inefficient at small skin depths because a large number of
unknowns may be required to achieve reasonable accuracy.
This difficulty is avoided by adopting an approximation which
allows the problem to be solved in terms of a surface potential
satisfying the Laplace equation. The key to such an approach
lies in finding the boundary conditions that apply to this
potential at the mouth of the crack and at the buried edge.

A thin-skin eddy-current theory has been developed by Auld
[1] for cracks in materials with the permeability of free space.
Auld proposed an approximate boundary condition for the crack
mouth which neglects the perturbed field due to the flaw. This
approximation gives predictions that are in reasonable agree-
ment with measurements in some cases [2], but comparisons
with experimental results for a probe whose diameter is smaller
than the crack depth reveals significant inaccuracies [3]. An al-
ternative to Auld’s approximation has been developed which
takes into account the perturbed field at the crack mouth [4].
Although the new boundary condition is more complicated, it
leads to improved predictions. Furthermore, it can be applied
to materials of arbitrary permeability including ferromagnetic
steels [3].

In this paper, eddy-current probe impedances due to semiel-
liptical cracks in materials with a permeability of free space are
calculated using accurate thin-skin boundary conditions. The
present formulation uses a transverse magnetic potential to de-
scribe the interactions of the electromagnetic field with an ideal-
ized crack. Calculations for semielliptical cracks are performed
by a conformal mapping to a rectangular region. This standard
mapping has been generalized here to deal with a class of crack
shapes that can be represented as elliptical epicycles. The rep-
resentation uses a series expansion ordered according to the
number of terms in the series, the semiellipse being the first-
order case. Impedance predictions for elliptical and epicyclic
cracks have been compared with experimental measurements
performed on slots in aluminum plates. Further comparisons
have been made with results derived from an analytical solu-
tion for a semicircular crack. These comparisons demonstrate
the validity of the predictions.

II. REVIEW OF THE FORMULATION

A. Scalar Decomposition

In the problem considered, eddy currents induced by a coil
interact with a surface crack as shown in Fig. 1. The aim is to
calculate a scalar potential representing the field at the crack
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Fig. 1. A normal coil over a surface-breaking crack in a conductor.

surface and, from the solution, determine the coil impedance
change due to the flaw. A brief description of the problem for-
mulation is presented below summarizing a more detailed ac-
count given elsewhere [4].

As illustrated in Fig. 1, the coordinate system is chosen such
that the surface of the conductor lies in the plane and
the crack lies in the plane . The electric field in the con-
ductor is decomposed into transverse electric (TE) and trans-
verse magnetic (TM) modes defined with respect to the normal
to the crack. Assuming that the electromagnetic field varies as
the real part of , this decomposition is written [5]

(1)

where
-directed unit vector;

TE Hertz potential;
corresponding TM potential.

It is more usual in a scalar reduction of a half-space electro-
magnetic field to choose the preferred direction as the direction
normal to the interface. The normal to the crack is selected here
because this means that only the TM mode interacts directly
with an ideal crack of negligible opening.

If the crack has a finite opening, there is direct TE interaction
even though the current is incident edge-on. The approach taken
here is to determine the field for the case of a crack of negligible
opening and neglect direct perturbation of the TE field. Indirect
perturbation of the TE field occurs through the cross-coupling
between TE and TM modes at the air-conductor interface, and
this is taken into account implicitly through the integral kernels
that are used.

Assuming that a crack at open surfaceis a perfect barrier
to electric current, the normal component of the electric field at
the crack face is zero. Putting

(2)

in (1) shows that

(3)

where is the Laplacian operator
defined for a surface transverse to thedirection. Thus the TM

potential satisfies a two-dimensional (2-D) Laplace equa-
tion on the crack face regardless of the frequency of excitation
or the skin depth.

B. Boundary Conditions

In order to find a solution of (3), boundary conditions at the
perimeter of the crack face are needed. Although the general
case of arbitrary frequency is tractable [6], the problem can be
simplified by considering the field at high frequencies where
the skin depth is small compared with the dimensions of the
crack face. Two boundary conditions have been derived for the
thin-skin regime; one which applies at the buried edge of the
crack and the other at the crack mouth.

1) Edge Boundary Condition:Following other authors who
have considered the thin-skin regime [2], [7]–[10], the magnetic
field in the plane of the crack normal to the edge is taken to be
zero. Applying this condition to the TM field gives

(4)

where the subscript refers to points at the crack edge and
is a unit vector in the plane of the crack, normal to the edge.
Because it is only necessary to consider the field in the plane

, reference to the zero coordinate is suppressed. The
TM magnetic field in the plane of the crack is given by

(5)

where with . Hence
the edge condition, (4), implies that the derivative ofwith
respect to a coordinate tangential to the edge is zero. Integrating
with respect to this edge coordinate and setting the arbitrary
integration constant to zero gives

(6)

at the crack edge.
2) Mouth Boundary Condition:The mouth boundary con-

dition is more problematic. In general, thecomponent of the
magnetic field can be expressed as the sum of an incident and a
scattered field

(7)

where the superscript denotes the known incident field and
refers to the scattered field. Similarly, the corresponding re-

lationship for the TM potential is written as

(8)

According to Auld’s approximation, the scattered field at the
mouth of the crack is neglected, but for more accurate predic-
tions [3] its effect must be retained. By writing the scattered field
in integral form and considering points at the crack mouth it is
found that [3]

(9)
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where 2 is the surface length of the crack , and

(10)

with , , and the root with a
positive real part is taken.

Note that the boundary condition (9) is derived from an inte-
gral equation that represents the jump in the electric field at the
crack in terms of a surface dipole density [4]. A thin-skin re-
lationship, equivalent to the impedance boundary condition, is
used to eliminate the dipole density inside the integral in favor of
the TM potential, see [4, eq. (23)]. Although the derivation of (9)
involves a thin-skin assumption, the half-space kernel
given in (10), has not been simplified using the same assump-
tion. This is because there is no significant advantage gained
when solving (9).

III. PROBE IMPEDANCE

The change in the impedance of an eddy-current probe
due to a crack is commonly defined in terms of the perturbed
field at the excitation coil. This relationship is transformed using
reciprocity principles and the impedance boundary condition to
give a more convenient form for computation from a knowl-
edge of the TM potential [4]. Although the TM potential is
determined for a crack of zero opening, the derivation of the
impedance allows for the effects of a small crack gape, and the
possibility that the crack is filled with a nonconducting material
of relative permeability , which may differ from the perme-
ability of the host material . The impedance is written as

(11)

where, for unit coil current

(12)

(13)

and

(14)

The expression for , (12), can be interpreted as the sum of a
volume term of order and a surface term of order. The
loss of surface at the crack mouth and the additional surface at
the crack base give rise to the contribution, where is
the TM magnetic field tangential to the crack edge in the

plane. As with the surface term in , the factor in
indicates that it can be derived with reference to the impedance

(a)

(b)

Fig. 2. (a) Semielliptical crack domain and (b) rectangular domain defined by
mapping the semiellipse.

boundary condition [2] or an equivalent approach [4]. Finally,
corrections of order due to Kahn effects at the crack mouth
and the edge are contained in [4], [11]. In the expression
for the edge effect, represented by the third integral in (14), the
angle is as shown in Fig. 2(a).

In order to compute the impedance from (11)–(14), it is nec-
essary to calculate the potentialand the magnetic field. These
calculations have been performed for long cracks of uniform
depth [4] and for rectangular cracks [12]. Below, the formalism
is adapted to deal with curved crack profiles.

IV. SEMIELLIPTICAL CRACK

A. Mapping to a Rectangle

Consider a semielliptical crack with a semimajor axis of
length and a semiminor axis of lengthwhose surface normal
is in the direction [Fig. 2(a)]. By mapping the semiellipse to
a rectangle, a simple series expansion can be used to represent
the solution. The mapping is introduced by first noting that the
ellipse can be represented in parametric form as

(15)

(16)

where is the angle between theaxis and a line drawn from
the center of the ellipse. Rather than using the variable, it will
be advantageous to put

(17)

and express the relationships in (15) and (16) in terms of the
complex variable . Define parameters and such
that

(18)
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and

(19)

where locates the focal points. Put

(20)

where . Equations (15) and (16) are recovered by
putting , and equating real and imaginary parts. Equation
(20) maps a semiellipse in the half-plane to a rectangular
region, Fig. 2, in the complex plane of the variable. Consider-
ation of how the boundary of the semiellipse maps to the-do-
main gives rise to a number of useful relationships. These will
be derived while noting the correspondence between parts of the
boundary of the semiellipse and each side of the rectangle AB,
BC, CD, and DA in turn [Fig. 2(b)].

The inverse of the mapping defined by (20) is given by

(21)

and is made single-valued by selecting the principal value of the
inverse cosine function. Thus in (21) the function
is defined with its real part in the range 0 to.

B. Mapping Points on the Crack Perimeter

In transforming points on the line of the crack mouth, AD
in Fig. 2, it is helpful to write (21) for in the form [13,
eqs. (4.4.11) and (4.4.38)]

(22)

The mouth line, divided into three parts by the foci, transforms
piecewise as follows.

For with , corresponding to the
line A B in Fig. 2(a), then the argument of the natural logarithm
in (22) is a negative real number which means that the real part
of the RHS of (22) vanishes. Consequently and

(23)

For with , corresponding to BC in
Fig. 2(a), it can be seen from (21) thatis real. This means that

and

(24)

For and , corresponding to CD in
Fig. 2(a), equating the real and imaginary parts of (22) gives

and

(25)

Expressions (23)–(25) are derived from (22) using the identities
[13, eqs. (4.4.27) and (4.6.21)]

(26)

(27)

Finally, on the elliptical boundary and, from (15) and
(17)

(28)

where .

C. Formal Solution

It is easy to construct a series solution of the Laplace equation
in a rectangular domain if the potential, or its normal gradient,
vanishes on three sides of the rectangle. To take advantage of
this facility, the solution for a semielliptical crack is written as

(29)

where both and satisfy the Laplace equation. The first
function is the solution for a rectangular crack whose length
and depth equal those of the semiellipse. The second function

corrects for the fact that the actual crack domain is not rect-
angular.

With the TM potential expressed as in (29), the edge boundary
condition, (6), is easily satisfied by demanding that

(30)

but once again the mouth boundary condition presents a diffi-
culty. Substituting (29) into (9) gives an equation coupling
and at the boundary. However, it is desirable to satisfy the
edge boundary condition in such a way that one of the two so-
lutions can be found independently of the other. This is difficult
to accomplish if exact compliance with (9) is demanded, and for
this reason an approximation is used.

As matter of choice, let

(31)

apply at the crack mouth. As a consequence, the normal gradient
of vanishes on three sides of the rectangle in the transformed
domain. By solving first for , as described below, (30) gives
a Dirichlet condition for on the fourth side of the rectangle.

An approximate mouth boundary condition for is obtained
by substituting (29) and (31) into (9), using (31) and neglecting

in the integral term. This gives

(32)
It is reasonable to neglect in the integral first because
is much smaller than at the mouth of the crack and second
because the integral operator makes a contribution to the
right-hand side of (32) that is much smaller than the incident
field term.

The potential is set to zero at three sides of a rectangle in
ordinary configuration space. Thus

.
(33)

This means that has the same boundary conditions as the so-
lution for a rectangular crack and can therefore be calculated in
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the same way [12]. Once is known, (30) is used to determine
the edge condition on . Writing for points
on the elliptical boundary, (30) is satisfied by putting

(34)

The 2-D Laplace equation for on the semielliptical domain
can now be solved according to boundary conditions (31) and
(34). The solution proceeds by mappingto a rectangle in the

-domain using (21). The edge maps to the line in the
-domain with . Let map to a function

on this line. Then, in mapping to the -domain such
that

(35)

it is required that

with (36)

while at the other three sides of the rectangle, the normal gra-
dient is zero

or (37)

(38)

This completes the definition of the boundary conditions needed
to find and .

D. Series Solutions

The solution of the Laplace equation for in the rectangular
domain is written

(39)

Note that this vanishes for and for as required by
(33). The normal derivative at the crack mouth, given by

(40)

is substituted into (32) and the expansion coefficientsare
calculated by solving a matrix equation. To obtain the matrix
equation, (32) is multiplied by , the resul-
tant relationship integrated from to and the orthogonality
properties of the sine function used to define a system of linear
equations as described in [12]. A solution of the linear system
is found by LU decomposition [14].

In the -domain, the required solution is

(41)

TABLE I
EPI-CYCLE COORDINATES

(a)

(b)

Fig. 3. (a) Circular arc crack and (b) solution domain defined by mapping the
region of the arc crack to an infinite strip such that� � � � �.

Note that the normal derivative of the potential on three sides
of the rectangle vanishes in accordance with (37) and (38). For

(42)

and the derivative with respect toat is given by

(43)

This derivative is needed to calculate at the crack edge as
required for the evaluation of (14). From (36) and (42)

(44)

The procedure outlined in this section gives the TM potential
for a semielliptical crack. A variation of this analysis has been
used for elliptical epicyclic cracks as follows.

V. SEMIELLIPTICAL EPICYCLIC CRACK PROFILE

Consider a crack that has a smooth profile intersecting the sur-
face of the conductor at right angles (Fig. 1). This type of crack
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(a)

(b)

Fig. 4. Potential and potential gradient at the mouth of a semicircular crack in a uniform field: comparison of an analytical solution (continuous line) with results
computed by Fourier expansion (circles).

can occur in practice when two semielliptical cracks merge.
Crack shapes of this type, which include the semiellipse as a
special case, can be approximated by a series of nested ellip-
tical epicycles. Generalizing (15) and (16) and using (17), the
crack profile is represented in parametric form as

(45)

(46)

with . In order to define a suitable transforma-
tion from the to the -domain, Fig. 2, write

(47)

and

(48)

Then with define

(49)

The four corners of the rectangular region in the-domain
correspond to the ends of the crack and the focal points. The
coordinates of these points are related to expansion parameters
as given in Table I. Define two new parametersand such
that their reciprocals are thecoordinates of the foci. Then

(50)

TABLE II
COIL PARAMETERS

Note that the length of the crack is given by

(51)

and the center of the crack mouth is located at where

(52)

Clearly, if , then these expressions reduce to those for the
semiellipse.

VI. CALCULATIONS AND VALIDATION

In order to validate the predictions, comparisons have been
made with analytical results for a semicircular crack in a
uniform field and with experimental measurements of coil
impedance for a number of slots in aluminum plates. The
solution for a semicircular crack is derived as a special case
of the circular-arc crack solution described in the Appendix.
Using Auld’s approximate boundary condition, three analytical
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(a)

(b)

Fig. 5. Comparison of crack edge coordinates with the profile representation used for mapping. (a) Slot D1 is approximated in the calculation as a semiellipse.
(b) Slot D2 is approximated as a fifth-order elliptical epi-cycle.

results have been derived allowing comparisons with the
computed results of the expansion method, Section IV-D.

The circular arc crack problem is solved by conformal map-
ping of a region bounded by the arc and its chord to an infinite
strip parallel to the imaginary axis in the transformed domain,
Fig. 3. The solution is written

(53)

where is the potential in the domain of the strip. The chord
maps to a line and the arc to a line . For the first
comparison, the potential at the chord is used, given by

(54)

with . This is compared with the results of
the expansion method with the Auld approximation, Fig. 4(a).
Second, the magnetic field at the edge of the circular arc crack,
which can be deduced from

(55)

with , is compared with the results of the expansion
method in Fig. 4(b). Note that the angleis shown in Fig. 3.

From (12), the dominant impedance term for a semicircular
crack of radius and zero opening in a uniform incident mag-
netic field , can be written as

(56)

for unit coil current, where is a dimensionless normalized
impedance. Note that the impedance depends on the square of
the crack radius and therefore depends on its area. In the Ap-
pendix it is shown that

(57)

Hence to four significant figures. This is in close
agreement with the result from the expansion method 0.9350
with 20 terms in the summations.

Impedance predictions have been compared with ex-
perimental measurements made by Harrisonet al. [15] on
electro-discharge machined slots in aluminum plates. The coil
parameters for these experiments are listed in Table II. Calcula-
tion of the incident coil field is performed using a well-known
integral expression [16]. Parametric representations of two of
the slots used in the experiments of Harrisonet al.are compared
with slot profile measurements in Fig. 5. Two further slots are
shown in Fig. 6. The undulating shapes shown in Figs. 5(b) and
6(b) were approximated using fifth-order epicycles to facilitate
mapping to a rectangular domain. Parameters of the epicycles
were found by a least-squares fit to the measured slot profiles
and are given in Table III. Other slot parameters are given in
Table IV together with probe lift-off values.

A comparison between theory and experiment at the highest
excitation frequency, 50 kHz, for a near semielliptical simulated
crack [Fig. 5(a)] is shown in Fig. 7. The calculated resistance
variation shows good agreement with experimental data, while
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(a)

(b)

Fig. 6. Comparison of crack edge coordinates with the profile representation used for mapping. (a) Slot D3 is approximated as a semiellipse. (b) Slot D4 is
approximated as a fifth-order elliptical epi-cycle.

TABLE III
EPI-CYCLE PARAMETERS

TABLE IV
SLOT PARAMETERS

the agreement between the predicted and measured self-induc-
tance is excellent. Calculations have also been performed to de-
termine the impedance due to the simulated crack with an un-
dulating profile shown in Fig. 5(b). The comparison between
calculated and measured probe response for this flaw (Fig. 8)

again shows good agreement between predictions and experi-
ment. Comparisons between predictions and experiment for the
two further slots (Fig. 6) are shown in Figs. 9 and 10.

VII. CONCLUSION

A central aim of the present theory is to predict high-
frequency probe impedance variations due to eddy-current
interactions with cracks in materials of arbitrary permeability
taking into account the perturbation of the field at the
crack mouth. The starting point of this thin-skin theory is
a vector potential formulation of the crack problem which
yields an integral equation valid at arbitrary frequency [6]. In
solving the general equation, a solution of the surface Laplace
equation must be found and, simultaneously, the discontinuity
in the electromagnetic field at the crack must be found. The
discontinuity in the tangential electric field was represented in
terms of a surface dipole layer [6] which could be computed
by calculating the numerical solution of an integral equation.
Subsequently, the vector potential formulation was recast
using Hertz potentials and specialized for the high-frequency
regime [4]. In this regime, the dipole density drops out of the
problem because it is simply proportional to the Laplacian
potential. This means that only one unknown surface function
is required; the TM potential at the crack face.

The TM potential has been evaluated using a boundary con-
dition valid for arbitrary permeability which takes into account
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Fig. 7. Comparison of probe impedance predictions with experimental measurements for slot D1, approximated as a semiellipse.

Fig. 8. Comparison of probe impedance predictions with experimental measurements for slot D2.

the perturbation of the magnetic field at the crack mouth. In-
cluded in the impedance calculation are terms that represent the
effects of crack opening. In addition, Kahn-level terms are used
which have the correct reciprocal form [4]; they involve inte-
grals of products of an unperturbed field and the total field. This

contrasts with earlier attempts to account for Kahn effects [2],
[8]. Calculations have been performed to test the accuracy of the
predictions by comparing the results with an analytical solution
and with experimental measurements. These have demonstrated
that the numerical calculations are both rapid and accurate.
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Fig. 9. Comparison of probe impedance predictions with experimental measurements for slot D3, approximated as a semiellipse.

Fig. 10. Comparison of probe impedance predictions with experimental measurements for slot D4.

APPENDIX

THE CIRCULAR ARC CRACK

A mapping applicable to cracks bounded by a circular arc and
a chord (Fig. 3) has been considered by McIver [17] in a study
of an inverse problem. For a semicircular crack in a uniform

unperturbed field, an analytical solution can be derived by ap-
plying Auld’s approximate boundary condition. By scaling the
field, the boundary condition at the chord is written

(A1)
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and on the circular arc

(A2)

as before.
The required mapping is given by

(A3)

for a chord whose half-length is unity. The inverse mapping can
be expressed as

(A4)

For points on the chord, with . Putting
and equating the real and imaginary parts of (A4) for such points
gives and . Hence, that part of the
real axis in the -plane from to , corresponding
to the crack mouth, maps to a line in theplane parallel to the

axis passing through theaxis at .
In order to elucidate the mapping of the circular arc, note that

by using the notation of Fig. 3

and

(A5)

for an arbitrary point on an arc of radius. Hence from (A4)

(A6)

The argument of the natural logarithm lies in the range zero (for
, ) to infinity (for , ) hence

the arc maps to a line in theplane parallel to the axis and
passing through the point . For a semicircle,

and the argument of the natural logarithm reduces to
. Hence, from the imaginary part of (A6),

and the arc maps to a line parallel to theaxis crossing the real
axis at .

The required solution is written as

(A7)

where [17]

(A8)

For a semicircular arc, and the potential on the line
may be evaluated to give [18]

(A9)

It is also of interest to evaluate the gradient of the potential at
the line of the arc since this is of relevance to the calculation of
the edge field. For a semicircular crack, it is found that

(A10)

The normalized probe impedance is defined by

(A11)

where is the prescribed unperturbed field. This definition may
be compared with (12) of the main text with a multiplying factor
removed in the process of normalizing. For a uniform incident
field and with given by (A7) and (A9)

(A12)

which may be evaluated to give

(A13)

In the main text this result is compared with calculations car-
ried out using the Fourier expansion method for a semielliptical
crack that approximates a semicircle.
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