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Pulsed Eddy-Current Response
to a Conducting Half-Space

John Bowler,Member, IEEE, and Marcus Johnson

Abstract— Eddy-current nondestructive evaluation is
commonly carried out using single frequency time harmonic
excitations, but a pulsed excitation offers a simple and effective
alternative. The pulse signals have been calculated for a probe
coil whose current rises and falls exponentially, approximating
a square wave when the exponential time constant is small.
Predictions of the induced electromotive force (EMF) across a
coil above a half-space conductor and of the magnetic field on the
coil axis have been compared with experiments. The comparison
shows excellent agreement between theory and experiment.

Index Terms—Eddy current, half-space, pulsed, transient.

I. INTRODUCTION

PULSED eddy-current measurements rival single and mul-
tifrequency testing for many of the common applications

in nondestructive evaluation such as the detection of defects,
the measurement of conductivity, and the estimation of the
thickness of coatings. The basic advantages of a transient
system are, first, that the circuitry is relatively simple com-
pared with that needed for broad band alternating current
testing and, second, that a single transient response contains as
much information as an entire spectrum of frequency domain
excitations. In order to extract the information and thus realize
the full potential of pulsed eddy-current testing, the signals
must first be analyzed. As an aid to transient signal analysis,
this paper examines some basic aspects of the theory of pulsed
eddy-current testing.

Theoretically, a transient field or an induced voltage is
related to the corresponding time-harmonic complex amplitude
through the Laplace transform. Consequently, results from an
analysis of alternating fields can be used to determine the
variation of the probe signal or the electromagnetic field with
time. In order to evaluate the time domain field or signal
it is necessary to carry out an inverse Laplace transform,
but an exact inverse is not always available. For example,
the frequency dependence may be too complicated or simply
not of a form that can be integrated by exact methods. One
possible recourse is to express the original solution in terms
of a Fourier transform rather than a Laplace transform and
compute the time dependence numerically using a fast Fourier
transform (FFT) [1]. However, in the present study, the inverse
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Laplace transforms are reducible to standard forms and can be
evaluated exactly using contour integration.

Our starting point is the frequency domain electromagnetic
field due to a circular current filament whose axis is normal
to the surface of a uniform half-space conductor. This field,
given by Wait [2] and later by Hammond [3], is expressed
in the form of spatial frequency integrals of the Sommerfeld
type involving the first-order Bessel function. A superposition
of the filament solutions gives the time-harmonic field due
to a coil of rectangular cross section [4]. For a half-space
conductor, the resulting equation can be transformed into
the time domain analytically. Here the Sommerfeld spatial
frequency integration is carried out using a standard numerical
method [5] to give the transient coil electromotive force (EMF)
and the electromagnetic field.

Closely related problems to those that arise in eddy-current
testing occur in the theory of geophysical surveying where
the interaction of electromagnetic fields with the earth is
studied. In this context, Wait has derived an expression for
the transient field due to a filamentary coil excited by an
instantaneous step current [6]. Following Wait, a number of
others have considered the same solution [7], [8]. In the present
paper, a more general problem is considered in which transient
signals for coils of finite cross section have been calculated by
considering a pulse excitation with a finite rise time. This is
a simple generalization of the idealized case of a unit step
current excitation [9].

II. COIL EMF

Consider a coil of rectangular cross section whose axis is
normal to the surface of the conductor. The coil carries a
prescribed current varying in time as

(1)

where is the characteristic rise time of the current, and
is a unit step function. for but is otherwise
zero. The induced current in the conductor, generated by the
changing flux surrounding the coil, increases initially but then
decays to zero as its energy is dissipated and the primary
magnetic field due to the coil tends toward a steady state. By
sampling the coil EMF as a function of time, the relaxation of
the eddy-current field can be measured and the observations
related to the probe and material parameters. For example,
it is possible to infer the conductivity of the material from
the probe signal. In making precise measurements, practical
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Fig. 1. Equivalent excitation coil circuit.

Fig. 2. Measured coil current normalized between�1 and compared with
that given by (1) for�0 = 275 �s.

problems arise due to ringing of the coil EMF. Ringing occurs
at the probe‘s resonant frequency which is lowered due to
stray capacitance in the leads. The effect can be mitigated by
increasing the excitation time constant.

An idealized equivalent circuit of the system, shown in Fig.
1, is applicable to the case where the probe is in free space. V
is a bipolar square wave, the amplitude of which determines
the amplitude of the coil current . The time variation of the
coil current in (1) is determined by a first-order RC filter, the
values of R and C being 4048 and 0.068 F, respectively.
A transconductance amplifier ensures that the coil current is
proportional to the filter output voltage and is independent of
the series resistance of the coil. Fig. 2 shows a comparison of
the measured coil current and that predicted using (1) for a
time constant of 275 s where is equal to the product
of R and C in Fig. 1.

If the coil resistance is neglected, then the coil current and
the induced EMF across the coil will vary as shown in Fig.
3. Also shown in Fig. 3 is the coil EMF as a function of time
in the presence of a conducting workpiece. The difference
between the two voltage transients, in free space and on the
conductor, is due to the induced EMF arising from the eddy-
current field as shown in Fig. 4. Circuit theory alone is not

(a)

(b)

Fig. 3. (a) Coil current as a function of time with a source time constant
�0 = 20 �s. (b) Coil EMF variation as a function of time in free space, solid
line, and in the presence of a conductor dashed line.

(a)

(b)

Fig. 4. (a) Eddy-current signal defined as the induced EMF for the coil
in free space minus the induced EMF in the presence of the conductor. (b)
Integrated eddy-current response.

suited to the prediction of the coil EMF due to induced currents
or the response of a Hall sensor located on the coil axis. Instead
the problem must be examined using field theory.
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III. FIELD THEORY

The required solutions of Maxwell’s equations may be
found by using the Laplace transform, written as

(2)

The corresponding inversion formula

(3)

recovers the variation in time of the function from its
Laplace transform . The Bromwich contour is the
usual path of integration in the complexplane parallel to
the imaginary axis, passing to the right of any poles. In the
analysis below, the initial solutions considered are of the form

. Equation (3) then synthesizes the time dependence
from the corresponding domain solution. More commonly,
the time dependence is defined by the real part of the phase
factor , but the Laplace formalism means anappears
in place of the .

As is usual in eddy-current problems, the displacement
current has been neglected. A coil carrying a current ,
whose axis is normal to the surface of a half-space conductor
and whose turns density is , excites an azimuthal
electric field satisfying

(4)

in air and

(5)
in the conductor. It is not necessary to derive the complete
solution because the time harmonic filament solution discussed
by Hammond [3], and the more general case of a rectangular
coil developed by Dodd and Deeds [4] forms the basic
elements for all the results developed here. The elemental
solution needed is the azimuthal electric field due to a circular
current filament of radius at a height in air above a
half-space conductor. The required field satisfies

(6)

in air and

(7)

in the conductor. From Hammond [3], the solution vanishing
as and is

(8)

where is a first order Bessel function of the first kind and

(9)
with , taking the root with a positive real
part.

The field due to a filament has the properties of a Green’s
function in that its first-order derivative with respect tohas
a jump at , and similarly the derivative with respect
to is discontinuous at . Consequently, the second-
order derivatives are symbolically related to delta functions.
The half-space transverse electric reflection and transmission
coefficients and are given by

and (10)

Through the presence of these coefficients, the surface acts
as a spatial frequency filter. At low spatial frequencies, the
reflection coefficient approaches1 and in the high spatial
frequency limit, it tends to . The transmission
coefficient, on the other hand, increases from zero to

as the spatial frequency increases from zero.

IV. COIL FIELD

The field is linearly dependent on its source. Therefore, the
superposition principle may be used to write the solution of (4)
and (5) for the azimuthal electric field in terms of the solution
of (6) and (7) as

(11)

The electric field above the conductor may be written as

(12)

separating the free space, , and reflection terms,
. Combining (8), (9), (11), and (12) gives

(13)

and

(14)

Note that the integral over in (13) can be evaluated in terms
of elliptical integrals [10], using a standard form [11]. By
changing the order of integration, (14) can be written

(15)
where is defined in terms of integrals over the coil turns
density function as

(16)
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which is a combination of a Hankel transform in the radial
coordinate and a Laplace transform with respect to the z
coordinate.

For a cylindrical coil of rectangular cross section and with
the coil turns density constant over the cross section, we
have

otherwise.
(17)

Here is the outer radius of the coil and the inner radius.
The axial length is 2, and is the height of the coil center
above the surface of the conductor. From (16) and (17) it is
found that

(18)

where , which arises from the radial integral of (16), is
defined in terms of a standard form by [12]

(19)

where and are Struve functions.

V. TIME DOMAIN FIELDS

It is evident from (15) that the frequency/time dependence
of an arbitrary coil is determined by the product of the current
and the reflection coefficient. Introducing the function

(20)

the corresponding time variation and its time derivative are
given by the inverse Laplace transforms

(21)

For a half-space reflection coefficient and an exponential
current variation with time, the integrals reduce to standard
forms that can be evaluated analytically in terms of error
functions.

Formally taking the inverse Laplace transform of (15), the
time dependent reflected electric field is given by

(22)

The magnetic field is found from the induction law by taking
the inverse Laplace transform of
being the azimuthal unit vector. This gives

(23)
for the reflected magnetic field above a uniform half-space
conductor ( ). Equation (23) is evaluated using standard
numerical techniques [5].

VI. PROBE RESPONSE

The induced EMF in a probe coil in free space and the EMF
due to the field reflected by the conductor are given by

(24)

respectively, where is the coil region. For an axially
symmetric system and a coil with a uniform turns density, the
coil current is given by (16) with (17), the free space field by
(13), and the reflected electric field by (15). These equations,
substituted into (24), give

(25)

where

(26)

Hence, the time domain probe response is given by

(27)

where is the free space self-inductance
of the coil.

It is often useful to consider not just the induced EMF in
the coil but also the integral of the EMF with respect to time.
From (27), the integrated and negated signal due to induced
current is

(28)

Below, is calculated together with the variation of
for specific coil current transients.

In order to evaluate the induced EMF as a function of time,
has been found for two cases of interest. In the first

case, the coil is assumed to be excited by a step current and
in the second case, an exponentially rising current of the form
given by (1). The first result is the limiting case of the second
as the rise time goes to zero.
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VII. EVALUATION OF TRANSIENTS

It is convenient to write the transverse electric reflection
coefficient for a half-space of uniform conductivity, as

(29)

where . With the reflection coefficient in this
form the inverse Laplace transform may simply be looked up
[13]. For brevity, the dependence of is not shown explicitly
in the development below but is assumed.

A. Response Due to a Step Current

Consider a coil carrying a current whose time variation is
defined by where is a unit step function.
Thus for and otherwise. Then the
Laplace transform of the current is and

(30)

By rewriting this as

(31)

and noting that the inverse transform of

(32)

is [13]

(33)

where

(34)

it is found that

(35)

The integrated coil EMF and the magnetic field is expressed
in terms of in (28). One can determine either
by integrating (35) directly or by taking the inverse Laplace
transform of the following [13]

(36)

By either method, the result is

(37)

where once again and

(38)

In the limit as the relative permeability approaches 1.0, (37)
becomes

(39)

B. Exponential Source Current

With the coil current that varies exponentially as in (1), we
have instead of (30)

(40)

A standard inverse Laplace transform [13] gives

(41)

where

(42)

The integrated response coil EMF and the magnetic field are
found from

(43)

a form which allows us to express in terms of functions
defined earlier

(44)

Clearly, if the system time constant is zero, (39) is recovered
from (44).

VIII. N ORMALIZATION

As with the coil impedance characteristic [4], it proves
useful to introduce a normalization convention using the
free-space coil self-inductance as a reference. With a step
current excitation, the self-induced EMF in the coil in air is
theoretically a delta function and has the form for a
transition at . The normalized coil EMF and integrated
response due to the reflected field are now defined as

and (45)
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Fig. 5. Eddy-current probe cross section.

In the limit as the integrated signal becomes

(46)

where is the probe coupling coefficient [14].

IX. EXPERIMENTAL PROCEDURE

The normal component of the magnetic field on the axis
of a coil in the presence of a thick conducting plate is to
be measured. The coil is cylindrical and of rectangular cross
section. Equation (1) governs the current flowing through the
coil. The magnetic field is measured using a Hall device
located on the coil axis, Fig. 5.

The coil current with its characteristic time constantis
provided by a transconductance amplifier. The input to the
transconductance amplifier is simply a square wave passed
through a first-order low-pass filter as shown schematically in
Fig. 1. The peak-to-peak coil current is about 32 mA while

is equal to 275 s. Measurements of the magnetic field are
made by sampling the Hall device outputs at 20s intervals
using a PC with an analog to digital converter card. Normally
the PC will also be used to subtract a reference signal from all
measurements. Such a reference could be the probe’s transient
response in air.

The Hall device sensitivity is temperature dependent but
the asymptotic value of the incident field is fixed by the
transconductance amplifier. The normal field at the Hall device
may be calculated, (47), using the asymptotic coil current.

(47)

where

(48)

The distances between the Hall device and the bottom and
top of the coil are and , respectively. is the peak
coil current. By using (47), the Hall device measurements are
calibrated to yield normal magnetic field measurements.

Measurements have been made on aluminum and copper
plates such that a half-space approximation is accurate, the
aluminum plate had a thickness of 25 mm, and the copper
plate a thickness of 19 mm. The samples have conductivities

TABLE I
PROBE PARAMETERS

Coil parameters Coil 1 Coil 2
Inner radius (a1) 2.5 mm 7.10 mm
Outer radius (a2) 5.0 mm 11.41 mm

Length (2b) 2.5 mm 5.0 mm
Number of turns 100 2550

Fig. 6. Integrated eddy-current response for a range of conductivities with
the source time constant�0 = 0.

of 2.25 10 Sm and 5.80 10 Sm , respectively. Coil
2, see Table I, was used with the Hall device 0.25 mm below
the lower coil surface. A number of different probe lift-off
values have been used by placing the probe on plastic shims
of known thickness. The lift-off is the distance from the lower
surface of the coil to the surface of the conductor.

X. NUMERICAL RESULTS

In Fig. 6, the normalized integrated coil EMF, is
plotted as a function of time for various conductivities from
5.80 10 Sm to 5.80 10 Sm . The coil parameters are
given in Table I as coil 1. The signal data have been calculated
for the case of a step current, hence the time derivative
represents the impulse response of the induced EMF due to
the reflected field. Note that the initial signal at , being
equal to the square of the coupling parameter, is independent
of the conductivity of the workpiece and depends only on the
coil parameters. The coupling coefficient decreases with lift-
off. In the limit where the coil has zero axial length and zero
lift-off, . The coupling parameter represents a figure
of merit for the coil-workpiece combination in the range zero
to 1.0.

The curves shown in Fig. 6 are geometrically similar,
differing only in their time scale which increases in proportion
to the conductivity of the workpiece. With the coil current
given by (1), a current time constant s, the time
dependence of for coil 1 is shown in Fig. 7. A finite
time constant is necessary to avoid saturation of a current
source, but it means that the coupling parameter cannot be
read directly from the observed response. Fig. 8 shows the
corresponding transients for a number of different source time
constants from to 80 s.



2264 IEEE TRANSACTIONS ON MAGNETICS, VOL. 33, NO. 3, MAY 1997

Fig. 7. Integrated eddy-current response for a range of conductivities with
the source time constant�0 = 20 �s.

Fig. 8. Transients response for a number of different source time constants
from zero to 80�s.

Fig. 9. Variation of Hall signal with time for various lift-off values. The
sample was aluminum of conductivity 38.8% IACS. The source time constant
was 275�s.

Predictions of the normal field due to coil 2 (see Table I)
have been made for the aluminum and copper plate samples
over a range of lift-off values. The predictions for the alu-
minum, conductivity 2.25 10 Sm , are compared with
Hall measurements in Fig. 9. Similar comparisons have been
made for the copper sample of conductivity 5.8010 Sm
in Fig. 10. Both sets of predictions show excellent agreement
with experiment.

Fig. 10. Variation of Hall signal with time for various lift-off values. The
sample was copper of conductivity 100% IACS. The source time constant
was 275�s.

XI. CONCLUSION

The induced EMF of a coil due to transient eddy-currents in
a half-space conductor have been calculated from closed-form
integral expressions. The induced current decays with a char-
acteristic time constant that is proportional to the conductivity
of the material. The time constant is inversely proportional to
the square of the spatial frequencywhich means that the
integrated decay time for a coil increases in proportion to the
square of the coil dimension.

Predictions of induced EMF and the magnetic field have
been calculated for a coil current that rises exponentially to a
constant asymptotic value. Comparison of the time variation
of the field with experimental measurements acquired using a
Hall sensor show excellent agreement.
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