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Abstract

A volume element calculation has been used to predict the field at
the slot in a conductor excited by an eddy current probe. The slot
simulates the presence of a surface crack in a metal component. In-
teraction between the simulated flaw and the electromagnetic field is
computed in order to model the fundamental physical process of eddy-
current nondestructive evaluation. The results are used to suggest
methods for improving testing techniques and to develop procedures
for processing inspection data. As part of an on-going program to
validate the computer model, we compare predictions of the volume
element calculation with analytical results for a test case. In the test
problem a constant, uni-directional eddy-current distribution is per-
turbed by a semicircular crack of negligible opening at the surface of
a half-space conductor. By taking the low frequency limit, the field at
the flaw and the change in probe impedance due to the presence of the
flaw, are given explicitly by simple analytical expressions. Numerical
results found using the volume element calculation are compared with
values found from the analysis.

Introduction

The task of predicting the behaviour of probe-flaw interaction in
eddy—current nondestructive evaluation(NDE) is motivated by a need
to improve inspection techniques and develop methods for analyzing
data. In order to get reliable predictions, the theoretical assumptions,
the numerical algorithm and the computer code must undergo exten-
sive and rigorous testing. As part of a program to validate a volume
element scheme for eddy—current NDE, numerical results have been
compared with an analytic solution for a semicircular surface breaking
crack. Although the three-dimensional volume integral code is design
to give results at arbitrary frequencies, the analytical solution is found
by considering the low frequency limit where the induced current can
be represented by a potential satisfying the Laplace equation.

In modeling single frequency inspections, one needs to consider
time-harmonic solutions of Maxwell’s equations. These solutions
are characterised by a complex parameter k related to the material
properties and to the excitation frequency. In conventional notation
k = \/iwpo = (1+1i)/6 where § is the skin depth and  has the dimen-
sions of reciprocal length. To get low frequency eddy-current solutions
in the vicinity of a flaw whose characteristic dimension is a, we can
assume the dimensionless parameter |ka| is small. As in wave scatter-
ing theory where & is the wavenumber, it is possible to seek a solution
in the form of a power series expansion in ka using perturbation the-
ory. For present purposes we shall not develop a full perturbation
expansion but consider only the lowest order non-vanishing term in
the series for a circular crack comparing the solution with numerical
predictions found using the volume element technique.

Volume Element Scheme

The overall structure of the volume element scheme used here is
fairly conventional, based on an integral equation for the electric
field[1] valid at any frequency in the range where displacement current
is negligible. The integral kernel is chosen to ensure that the electric
field satisfies the correct continuity conditions at the conductor—air in-
terface. Assuming a half-space conductor with an interface at z = 0,

the formalism uses a half-space dyadic Green’s function[2] which guar-
antees that the z- and y—components of the electric and magnetic field
are continuous at the zy-plane regardless of the size, shape and ma-
terial properties of the flaw. A discrete approximation of the integral
equation is found by postulating that the field may be represented as
piece-wise constant. In this way a discrete field representation is de-
fined on a three dimensional lattice of volume elements filling a region
in the form of a rectangular parallelepiped enclosing the flaw. For-
mally, the volume elements are introduced by expanding the electric
field in the flaw region using a set of three-dimensional pulse functions.
Taking moments of the integral equation completes the discretisation.
A numerical solution of the resulting matrix equation is then sought
using a conjugate—gradient algorithm.

It is only at the region of the slot that a discrete representation
of the field is needed and this is defined on a simple regular grid of
rectangular parallelepipeds. Thus one can have any desired flaw shape
that can be constructed from a array of blocks each with an assigned
conductivity. The conductivity is assumed constant within a given
block with a value that can range from zero, if it wholly inside a crack
or cavity, to many times the host conductivity. The upper limit of
the flaw conductivity really depends on how many volume elements
can be tolerated. A high conductivity region will be associated with
a small skin depth and taking account of field variations over short
distances without introducing significant discretisation errors requires
a large number of elements. Fortunately high conductivity flaws are
of limited practical importance.

Integral Formulation

There is some flexibility as to the choice of the unknowns in setting
up a linear system based on a volume element discretisation scheme.
One could for example, derive a matrix equation whose solution gives
the electric field in the flaw region, or rather a piece-wise constant ap-
proximation of the electric field. However we prefer to consider a flaw
in an electromagnetic field in terms of an equivalent source distribu-
tion and find an equation for the source density. Treating the flaw as
an equivalent source is not a new conception in eddy—current theory,
quite the contrary. For example Burrows[2] pointed out, many years
ago that a small defect such as a tiny spheroidal cavity gives rise to a
perturbed field that is the same as that due to a current dipole. In gen-
eralising this idea one can consider a far—field distribution in terms of
a multipole expansion rather as is done in radiation scattering theory
but this would not be particularly useful in eddy-current simulation
since the flaw signals would be very small in situations permitting
far field approximations. An alternative extension of the equivalent
source concept treats the source of the perturbed field as an induced
volume or surface current dipole distribution, depending on whether
the flaw acts as a surface barrier or a volumetric flaw. The equivalent
source concept does not introduce approximations since it is consis-
tent with an exact solution of Maxwell’s equations. It is not essential
to the theory but provides a physically appealing and intuitive way of
understanding the equations. Ultimately the volume element model
depends for its validity on the making correct assumptions and reason-
able approximations, rather than on a particular way of interpreting
the relationships.
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Suppose we have a half-space conductor of uniform conductivity oo
containing a finite flaw whose conductivity o(r) may be a function of
position. In effect the flaw behaves as an induced secondary source,
P(r) = [o(r) — 0o]E(r). P(r), the electric current dipole density, is
zero except at a flaw where the conductivity differs from the host
conductivity go. With the origin of the scattered field defined in this
way, a formal solution of Maxwell’s equations for the electric field can
then be written as

E(r) = E(’)(r) + ./ﬂawg(ee)(r|rr) CP(r)dr, 1)

where E()(r) is the incident field and the integral represents the scat-
tered field. G(*)(r|r’) is a half-space dyadic Green’s function(3]. An
equation for P(r) is found by multiplying by o(r) — ap to give,

P(r) = POm) + oon(r) [ GA(elr) P, (2)

where v(r) = [o(r) - g0]/00 is the flaw function and PO)(r) = [o(r) —

GQ]E (r)
Matrix Approximation

(2) is approximated by a matrix equation using the method of mo-
ments[4] and a solution found by applying a conjugate-gradient al-
gorithm[5]. A similar procedure has been used previously to deter-
mine the induced magnetisation of the ferrite-cores of eddy-current
probes(6]. The discrete approximation of the integral equation (2) is
derived by subdividing the region occupied by the flaw into a regular
lattice of Ny X Ny x N cells each with a volume &, x 6, x 6,. Expanding
the solution in pulse functions defined on this lattice we have

NI—1Ny IN,—1

Pr)~ >, > > PALMPKLM(6 '3, ,3;;0>. (3)

K=0 L=0 M=0

Here Prpp(u,v,w) = 1.0, (K,L,M = 0,1,2,3...) wherever K < u <
K+land L £v< L+1and M < w < M+ 1, otherwise it is
zero. zg is a reference coordinate for the source lattice, usually the
coordinate of the lowest point on the flaw. For example, in the case
of a surface breaking flaw, a suitable choice would be 29 = —N,4,.
Then the topmost layer of cells would extend to the surface of the
conductor in the plane z = 0. Similarly expanding the flaw function
v(r), we have

Nz—1Ny—=1N,-1 z y z-2
OEDY Z 3 UKLMpKLM(é R ), (4
K=0 L=0 M=0 z

the values of vk being assigned in such a way as to give the best
approximation to the flaw.

To complete the conversion to a discrete form, the integral equation
is multiplied by testing functions and integrated over the field coordi-
nates. Here we choose the same pulse functions for testing as are used
for expanding the solution thus following the Galerkin variant of the
method of moments. Substituting (3) and (4) into (2), multiplying by

Pmm(i, 3”; ZT,H /6 6,6, and integrating with respect to z, y and

z gives
@ Ne=1Ny-1N,—1
Pk,)m = Phim — Vkim 9 > Giimkim -Prim,  (5)
K=0 L=0 M=0
where Pi‘,’m is predefined in terms of the unperturbed electric field in

the flaw region due to the probe. In general

. 1 Lk41 ZTi41 Zm+
P, = 26,6, /

zp Zm

= G / T T e e dy s (6)
£ Zm

P(i)r)dz dydz,

Here 24 = kb, y1 = 16, and z,, = mb, + 20 etc. (k,I,m =0,1,2,3....).
The matrix in (5) is given by

1 TH41 fYL41 [ZM+1
/ / G(Tk, i, zmlxlv yl’ zl)(7)

61‘61462 TK=1YYL=1 YIM=-1

n(i)o()m (5

where 8;(u), (§ = 0,1,2,3...) is a convolution of pulse functions given
by

Giim, kLM =

) dz'dy'dz’

u—j+1 ifj-1<u<j
Bi(uy=< j-u+l ifj<u<j+1, (8)
0 otherwise

The matrix elements are found from the integral (8) using a numerical
quadrature scheme with evaluation of the singular element carried out
following a method devised by Lee et al [7]. Although the discrete
representation of (2) requires a dense matrix of say N x N elements,
the symmetry properties of the Green’s function plus the choice of a
regular cell array leads to redundancy in the matrix which means that
we do not have to store N2 elements on the computer. For example
the free-space Green’s function is dependent on z — z/, y — 3’ and
z—2', consequently its matrix representation has a Toeplitz structure;
elements on any leading diagonal are equal. In (2), the Green’s func-
tion can be written as a sum of two terms, one of which is the free
space Green’s function with its z — 2, y — ¢/, z — z’-dependence and
the other term, due to reflection from the surface of the conductor, is
z—2', y—y', 2+ 2’-dependent. (2) therefore contains a combination
of a convolutional and a correlational integral. As a result the corre-
sponding matrix has a structure permitting matrix-vector products to
be carried out using fast Fourier transforms[6]. The efficient execution
of these products enhances the performance of the conjugate-gradient
calculation.

Validation Test

The aim of this study is to compare predictions for the effective
source distribution at a flaw determined from a volume element model,
with the corresponding analytical result for an ideal crack in the low
frequency limit. Here we define an ideal crack as having a negligible
opening, acting as a surface barrier inpenetrable to eddy—current. For
the ideal crack the equivalent source is a surface distribution of current
dipoles(8). In order to compare volume and surface source distribu-
tions, we shall examine the behavior of the volume dipole density P(r)
as a three dimensional flaw collapses to a surface.

Consider a penny-shaped crack of radius ¢ with its axis in the z-
direction having a finite opening A, that is small compared with a.
Assuming that the unperturbed field at the crack is fairly uniform, the
electric field on the inside at a section through the diameter has the
form indicated schematically in Figure 1. Note that E(r) is largely
directed normal to the crack faces and that the tangential compo-
nents are relatively small. Current at the outside surface of the crack
is dependent on the tangential components of the electric field, the
normal component of the electric field at the external surface being
zero. Because the tangential components are continuous across the
crack-conductor interface the y- and z-components of the electric field
at the inner surface of the flaw are proportional to the external cur-
rent density. Thus the behavior of these electric field components on
the inside surface can be understood in terms of the external current
distribution.

The z-directed electric field in the flaw depends mainly on the po-
tential drop across the flaw faces. (An alternating electric field can-
not generally be expressed solely as the gradiant of a scalar function
but the dominate contribution in the flaw can be represented in this
way.) Because the eddy- current distribution does not change much
if an initially small crack opening A, is further reduced, the potential
difference across the crack is insensitive to variations in A,. In the
limit of small crack opening the line integral of E, and therefore P,



across the crack in the z- direction from face to face tends to a value
p(y, z) that is independent of the path length A.. In this limit the
penny-shaped flaw collapses to a disc and its effective source becomes
a surface current dipole distribution whose dipole density is p(y, 2).
Formally we have

Acf2
l / Py(z,y, 2)dz = p(y, 2). 9
Amy | a =Y z)dz = p(y,2) ©

(9), or an approximation of it, allows us to compare p(y,z) found
from analysis with the source distribution given by the volume element
model.

The appropriate solution of Laplace equation for a disc in an un-
bounded domain can be found in standard texts on boundary value
problems[9] or hydrodynamics{10]. Assuming that the unperturbed
field normal to the disc is a constant Ey we get

oy 2) = 22 fa =¥ ) (10)

a result that is found assuming that the normal component of the
current density at the disc surface is zero. This dipole distribution also
applies to a semicircular disc at the surface of a half space conductor
and normal to the interface. Supposing that the interface is in the
plane 2 = 0, the dipole distribution gives rise to an electric field that
satisfies the condition E, = 0 at z = 0. Hence it is an appropriate
solution of the half-space Laplace problem for a half-disc.

Comparison of Results

To make a meaningful comparison of the volume integral predic-
tion with a “low frequency” boundary integral solution, it is necessary
to ensure that the two inequalities hold. Firstly we need to choose
flaw parametérs such that A, < @ and secondly the low frequency
assumption means that a < 6. These conditions have been approxi-
mated using a simulated crack of radius @ = 10mm., with an opening
A, = lmm. in a uniform field whose skin depth is § = 1000mm. For
the computation, a flaw grid consisting of 16 x 4 X 8 volume elements
was used, although the flaw itself was only 14 cells long 3 cells wide and
7 cells deep. Figure 1 shows the value of p(y, z) at the flaw compared
with the theoretical result normalised to a maximum value of 1.0 by
choosing the unperturbed field as Eo = 7/(4a0o). The volume inte-
gral result is found by approximating the line integral of Py(z,y,2)
across the crack opening, equation (9), by the sum of contributions
from the three cells. Clearly the agreement between the two results is
very good.
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Figure 1: Comparison of volume element and analytical result, for the
effective current dipole distribution along the diameter of a semicircu-
lar surface crack in a uniform field.
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Figure 2 shows results of the volume element calculation of
A.P(2,y,2) at one of the crack faces as a surface plot. A charac-
teristic of the distribution is that P, tends to a small value at the
edge of the crack with a small opening. This is consistent with the
fact that the surface dipole distribution vanishes at the crack edge(8].
As discussed easlier the tangential components of P(z, y, z) are depen-
dent on the current density at the crack faces. For a narrow crack P
and P, are smaller than the axial component P, showing an indica-
tion of a weak singularity at the corners. These tangential components
are indicative of the external current density, showing that the flow
pattern is directed radially towards or away from the edge of the crack
and that a maximum in the current density arises at the edge.

Figure 3: Components of the current dipole density at the face of a
semicircular crack computed using volume elements. (a) x-component
(b) y-component (c) z-component
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Conclusion

A volume element model, designed for applications in eddy—current
nondestructive evaluation, has been tested by comparing predictions
with an analytical solution for a semicircular crack. The analytical
result is adapted from a well known hydrodynamic problem where
incompressible fluid flows around a circular disc. Just as the effects of
the disc on the fluid may be viewed in terms of a layer of fluid dipoles,
a circular crack has the effect of a layer of electric current dipoles. The
prediction of the volume element code for the dipole density in the low
frequency limit shows good agreement with the analytical result.

References

[1] Chen-To Tai, Dyadic Green’s Functions in Electromagnetic
Theory, Intext, Scranton, 1971.

[2] R.E. Beissner, “Analytical Green’s dyads for an electrically con-
ducting half-space,” J. Appl. Phys., Vol. 60, pp855-858, 1986.

[3] M. A. Burrows, “A Theory of Eddy-Current Flaw Detection ”
PhD Thesis, University of Michigan, 1964.

[4] R.F. Harrington, Field Computation by Moment Methods. New

York: Macmillan, 1968.
[5] A. McIntosh, Fitting Linear Models: An Application of

Conjugate-Gradient Algorithms, New York: Springer-Verlag,

6] }?81%'. Bowler, L. D. Sabbagh and H. A. Sabbagh, “A Theo-
retical and Computational Model of Eddy-Current Probes In-
corporating Volume Integral and Conjugate—Gradient Methods.”
IEEE Trans." Magnetics, Vol. 25, No.3, pp2650-2664, 1989.

{7] S. Lee, J. B. Boersma, C. Law and G. A. Deschamps, “Sin-
gularity in Green’s function and its numerical evaluation,”
IEEE Trans. Antennas Propagat., Vol. AP-28, No.3, pp311-317,

1986.
[8] J. R. Bowler, “Eddy-Current Field Theory for a Flawed

Conducting Half-Space,” Review of Quantitative Nondestructive
Evaluation, Vol. 5A, D. O. Thompson and D. E. Chimenti, Eds.

New York: Plenum, 1986, pp149-155.
[9] L N. Sneddon, Mixed Boundary Value Problems in Potential

Theory, North-Holland, Amsterdam, 1966.
[10} L. M. Milne-Thompson, Hydrodynamics, 4th. Edition, Macmil-
lan, New York, 1962.




