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The change in electromagnetic impedance of a conductor due to the presence of a long, 
perpendicular surface-breaking crack in a normally incident, uniform electric field is calculated in 
closed form in the high-frequency limit. At high frequencies, where the skin depth is much smaller 
than the depth of the crack, the fields near the edge and corners of the crack are effectively 
decoupled. This means that the solution may be formulated as the sum of contributions from the 
comers, faces, and edge of the crack. Simple analytical expressions for the electric field are found 
and used to calculate the impedance due to the crack in the high-frequency limit without resorting 
to numerical methods. 

I. INTRODUCTION II. THEORY 

A greater understanding of the interaction between in- 
duced eddy currents and cracks in metals is important for 
quantitative nondestructive evaluation. In this paper the in- 
teraction between a long, perpendicular, surface-breaking 
crack in a half-space conductor and a normally incident, uni- 
form electric field is examined. This problem is a special 
case of the more general problem of a conducting cylinder 
containing a radial surface-breaking crack of constant depth. 
The more general problem was solved in 1979r in terms of 
an infinite series whose coefficients must be found by solv- 
ing a large set of simultaneous equations. We will show that, 
in this limiting case of a crack in a half-space conductor, a 
very simple closed-form solution can be found. 

The chosen orientation of the coordinate axes is shown 
in Fig. 1. It is assumed that the crack forms a perfect barrier 
to the flow of current, that the uniform incident magnetic 
field, HOeeLW’, has only a y component, and that the, dis- 
placement currents in the material are negligible. The mag- 
netic field in the conductor satisfies the Helmholtz equation 

(V2+k2)H(x,z)=0, k2=iwpOc+, (2) 

where H is the total magnetic field. At the air-conductor 
interface and on the faces of the crack the total field satisfies 
the boundary condition H =H, . The current density, J, and 
electric field, E, in the conductor may be obtained from the 
magnetic field by using the following relation: 

At high frequencies, where the skin depth is much 
smaller than the depth of the crack, current flows uniformly 
over the crack faces except near the edge (which is buried in 
the conductor) and the corners (where the crack meets the 
surface of the conductor). The edge and corner fields are 
effectively decoupled in this limit and may, therefore, be 
examined independently. The effective decoupling of the cor- 
ner and edge fields in the high-frequency limit for a suffi- 
ciently deep crack allows the change in probe impedance due 
to the presence of the crack, AZ, to be calculated as a sum of 
terms 

J=aE=Vx(yH), (3) 

where j is the unit vector perpendicular to the xz plane. 
The impedance due to the crack is found by evaluating 

the following integral: 
-. . . 

I’AZ= [E@)X(jH)].ridS. 
J (4) 

s 

AZ=Z,+Z,+Z,. (1) 

The contribution Zf arises from the uniform current-flow 
over the faces of the crack, Z, arises from the perturbation of 
the fields by the crack edge, and Z, from the perturbation by 
the corners. Our approach will be similar to that of Kahn, 
Spal, and Feldman” who used an edge field based on Som- 
merfeld’s analysis of the diffraction of a wave by. a half- 
plane and whose corner solution was expressed as a bound- 
ary integral with a Hankel function kernel. Kahn et al. 
proceeded to calculate the components of Eq. (1) numeri- 
cally. Here, simple expressions for Zf, Z,, and Z, will be 
found in closed form. 

In Eq. (4) the Poynting vector formed by the perturbed part 
of the electric field, E@) 7 and the total magnetic field, jH, is 
integrated over the surface of the conductor, S. The unit vec- 
tor normal to S is denoted by ri and points into the conductor 
since this is the direction of energy transfer. The surface of 
integration includes the faces of the crack and is shown by 
the dashed line in Fig. 1. 

The crack edge has been shown to have an effective 
range of a few skin depths’ in perturbing the electric field on 
the crack faces. This means that, when the perturbation due 
to the corners is ignored, the fields are uniform beyond ap- 
proximately 28 from the crack edge (S is the electromagnetic 
skin depth). It is the uniform part of the field which gives rise 
to Zf in Eq. (1). It is clear that, by retaining this uniform part 
of the field and integrating the Poynting vector over the two 
faces of the crack, .Zf and Z, can be calculated together. (The 
effect of the corners is ignored in this part of the calculation). 
Equation (4) reduces to 
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0 
12(Zf+Z,) = - 2Ho 

I E,,(O + ,zm, 
-d 

(5) 
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FIG. 1. The geometry of the system showing S, the surface of integration, as 
a dashed line. The crack is assumed to be of infinite extent in the y dimen- 
sion so that the system is effectively two dimensional. P is the location of a 
general field point. 

where E,, is the z component of the scattered electric field at 
the edge and faces :of the crack. The integration is performed 
twice over the crack face at x=0+ for convenience. This 
operation is equivalent to integrating over the two crack 
faces separately. 

The solution for the field scattered by an insulating half- 
plane in a conducting medium may be calculated by the 
Wiener-Hopf technique,3 yielding the famous result derived 
originally (in a different way) by Sommerfeld.4 Cylindrical 
coordinates centered on the edge of the crack will be used for 
convenience (X = r sin 0, t + d = r cos 0). The crack face at 
x=0+ corresponds to 8=0. The solution for the total mag- 
netic field in the presence of an insulating half-plane (H,) is 
given by 

HOeikr 
He(r, f’) = 2 C~(-td+yml, 

where’ w(z) =exp( -z’)erfc( -iz), 

~,=&ZCOS~ e+i v 
i i 

and 

1 1 
12=JfZA0~- e--T. 

( i 2 2 

Near the faces of the crack it is found that 

~f-w,z) 1 aHe&-, 0) 
dx %(z+ de 7. 

(6) 

(7) 

which becomes exact as the crack face is approached. Using 
this approximation, Eq. (3), and the following relations6 

dw(z) 
-= -2zw(z) + dz 

the electric field on the crack face can be found 

ikHo 
-7 

&k(z+d) 

E,,(O+ ,z> = - M-z zX(z+d)l+~ Jiko . 

ia 

For large (z+d) (in practice greater than approximately 24 

ikH0 
E,(O + ,z) = - 

CT (9) 

since erf[ - id-]-+ 1 and eik(tfd)l~~-+O as 
(z+d)+m. The field given by Eq. (9) is the uniform part of 
the field referred to earlier and gives rise to Zf. Substituting 
Eq. (8) into Eq. (5) gives 

Z,+Z,= - i (7) ‘ir,:ik( erfl-iJik(2+d)] 

i &k(r+d) 
\ -I-- 

I J;; 
dZ. (10) 

The integral in E . (10) can be evaluated by the change of 
-?---- variable u = - i ik(z + d) , giving 

(2ikd- l)erf(--iJikd) 

f- &iii eikd . 
: 1 

(U> 

Since 1 kdl is assumed large, erf( -i @) -1 and @cikd 
=O. Substituting these approximations into Eq. (11) gives 

Zf+Ze= - k T 2[2ikd- I]. 
i 1 

It remains to calculate Z,. The solution for the total 
magnetic field in the corner of a conductor (H,) can be 
found by using the method of images, in which the Green’s 
function which vanishes on the conductor surfaces (i.e., the 
air-conductor interface and the crack face) is found.7 The 
result is, for a corner defined by boundaries at z=O, ~20, 
and x=0, z<O, 

H,(x,z) = - iHo[F(x,z) +F(z,x)], 

where 

(13) 

F(x,z) = ; I xH$,l’(kd=)du. 
0 

The zero-order Hankel function of the first kind is repre- 
sented by Ho . (‘) As a consequence of the choice of coordinate 
system, the z coordinate in Eq. (13) is implicitly negative. 
The other comer in this problem (defined by z=O, x=&O, and 
x=0, z<O) is a mirror image of the first and provides the 
same contribution to the impedance. The impedance change 
will be calculated for one surface of the comer only (x=0, 
z<O) since the contribution from the other surface is identi- 
cal. The electric field on x=0, z<O must be found. Using E?q. 
(3) the electric field is found from Eq. (13) 
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E_(O,,z)=-$O . i f [~(x,z) fwv)l 
i 

. (14) 
*=o+ 

The above may be manipulated by noting that the integral 
satisfies the Helmholtz equation and that as a consequence 

2 

g e&x) = $T 
I 

;Hf)(kpTT)du 

= - (g+kz) ~~H~‘)(k&7-2)du. 

Substituting Eq. (15) into Eq. (14) gives 

E,,(O+,z)=------- Hp(kU)dU 

(l-3 

(16) 

which can be evaluated to give an analyticalexpression for 
the tangential component of the electric field at the air- 
conductor interface’ 

ik2zHo 
E,,(O+ ,z) = - u Hh’)(kz) + ” [3Yo(kz)H\“(kz) 2 

-Sfl(kz)H~)(kz)] , (17) 

where Xi; is the Struve function of ith order. The tangential 
component of the electric field at the conductor surface, 
E,(x,O), would be obtained simply by replacing z by x in 
the right-hand side of Eq. (17). As with the perturbation of 
the fields by the crack edge, the field perturbation by the 
corners has a finite range, which is also of the order of a few 
skin depths. It can be shown that, sufficiently far from the 
corner, the field value approaches that of the incident field. 
From Eq. (16), 

lim E&O+,z)=- 
ikHo 

Hb’)(ku)du= - (1% z-b- CT ’ 

where standard integrals’ have been used to give the value of 
the incident electric field on the conductor surface, ikHo/u. 
In practice the field is close to this constant value beyond 
approximately 36 from the corner. In order to calculate 2, 
only the perturbed part of the field, E@), must be considered. 
This is achieved by subtracting Eq. (18) from Eq. (16) to 
give 

.1?@(0+ ,z) = - !bf?k?! 
I 

mH$l)(ku)du 
(+ z 

(19) 

Equation (19) represents the tangential component of the 
scattered electric field along one semi-infinite surface of a 
cornerlike conductor (x=0, tG0). Integrating the Poynting 
vector formed by Eq. (19) and the total magnetic field along 
this surface provides the contribution to the impedance 
change by only one boundary of the corner. The impedance 
change due to the entire corner is found by multiplying the 
result for one face by a factor of 2. Since in the case of a 
surface-breaking crack there are two corners, the impedance 

change due- to one boundary is multiplied by a factor of 4 to 
tind 2,. Integrating the Poynting vector over the crack face 
at x=0+ and multiplying by four gives 

Zc=i (~)‘4ik’f~~~Hb”(k.)d~ dz. i-m 

The limit of integration over the crack face is made infinite 
for mathematical convenience even though the crack itself is 
finite. This is permitted since the scattered part of the electric 
field on the crack face is very small beyond approximately 
36from the corner. Evaluation of Eq. (20) becomes tractable 
when the following representation of the Hankel function is 
used:” 

&a cash t& 9 (21) 

where the path of integration is a hyperbola in the complex 
plane. Substituting this form into Eq. (20), changing the or- 
der of integration with respect to u and t, and integrating 
with respect to u yields 

&=;(~)‘~I,“l_b~&dze (22) 

The evaluation of Eq. (22) is straightforward when the order 
of integration is changed. The result is 

(23) 

III. DISCUSSION AND CONCLUSION 

Equations (12) and (23) together give the total imped- 
ance change for a crack of depth greater than four or five 
skin depths (the sum of the effective ranges of influence of 
the edge and corners) in the high-frequency limit 

(24) 

The first term in Eq. (24) may be thought of as being the 
contribution from the faces of the crack since it depends on 
their combined length, 2d, and otherwise looks like the im- 
pedance per unit length of a plane conductor surface. The 
second term embodies the effect of the presence of the crack 
edge and the third the effect of the corners. These latter two 
agree with terms used in calculating an approximate expres- 
sion for the impedance of an open, surface-breaking crack” 
(1.0 and -2.56, respectively) and also with the appropriate 
cases of a solution for arbitrary corner angle found using the 
Kontorovich-Lebedev transform.‘2 

The real part of the impedance change is given by 

It can be seen that the edge and corners effectively reduce 
the depth of the crack by (l/2-417~)s. This improves upon 
the value of -0.78Scalculated numerically by Kahn et aLsl’ 

In this paper a number of analytical results have been 
presented which were formerly found numerically. In Eqs. 
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(8) and (17) expressions for the electric field on the conduc- 
tor surface near the edge and corner of a perpendicular 
surface-breaking crack in a normally incident, uniform elec- 
tric field are given. The results are valid in the high- 
frequency limit in which the fields perturbed by the crack 
edge and corners are effectively decoupled. The exact values 
of the contribution to the change in probe impedance due to 
the presence of the crack edge and corners are given in Eqs. 
(12) and (23), enabling the total impedance change due to the 
presence of the crack to be given for a crack of depth greater 
than four or five skin depths [Eq. (24)]. 

In conclusion it should be noted that this form of con- 
strutted solution can be developed further, for example by 
the introduction of terms accounting for the scattering be- 
tween the edge of the crack and its image. The Wiener-Hopf 
method of problem solving lends itself to the determination 
of approximate values for these terms. 
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