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The inverse eddy current problem can be described as the task of reconstructing an unknown 
distribution of electrical conductivity from eddy-current probe impedance measurements 
recorded as a function of probe position, excitation frequency, or both. In eddy current 
nondestructive evaluation, this is widely recognized as a central theoretical problem whose 
solution is likely to have a significant impact on the characterization of flaws in conducting 
materials. Because the inverse problem is nonlinear, we propose using an iterative least-squares 
algorithm for recovering the conductivity. In this algorithm, the conductivity distribution 
sought minimizes the mean-square difference between the predicted and measured impedance 
values. The gradient of the impedance plays a fundamental role since it tells us how to update 
the conductivity in such a way as to guarantee a reduction in the mean-square difference. The 
impedance gradient is obtained in analytic form using function-space methods. The resulting 
expression is independent of the type of discretization ultimately chosen to approximate the flaw, 
and thus has greater generality than an approach in which discretization is performed first. The 
gradient is derived from the solution to two forward problems: an ordinary and an “adjoint” 
problem. In contrast, a finite difference computation of the gradient requires the solution of 
multiple forward problems, one for each unknown parameter used in modeling the flaw. Two 
general types of inverse problems are considered: the reconstruction of a conductivity 
distribution, and the reconstruction of the shape of an inclusion or crack whose conductivity is 
known or assumed to be zero. A layered conductor with unknown layer conductivities is treated 
as an example of the first type of inversion problem. An ellipsoidal crack is presented as an 
example of the second type of inversion problem. 

I. INTRODUCTION 

In this article, we develop a general theory for the 
reconstruction of flaws from eddy current impedance data. 
Here, the term “flaw” or flaw function is used to signify an 
arbitrary conductivity distribution, or. the departure of the 
conductivity from a known background. It is well known 
that the reconstruction of an unknown conductivity varia- 
tion from eddy current data is a nonlinear problem, since 
both the conductivity itself and the electromagnetic field at 
the flaw are simultaneously unknown. If the conductivity 
variations are small, the inverse problem can be linearized 
by replacing the fields inside the conductor with the fields 
in the absence of the flaw (the Born approximation).’ In 
many cases, however, the weakly varying conductivity as- 
sumption is poor-a crack is an obvious example-and any 
realistic approach must take account of the inherent non- 
linearity of the problem. Here we propose using the least- 
squares criterion as the basis of an iterative scheme for 
reconstructing the flaw function.2 

In the least-squares approach, a flaw function is sought 
that minimizes the mean-square difference between the ac- 
tual measurements and the predicted measurements de- 
rived by solving the forward problem using the current 
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estimate of the flaw conductivity. Thus, an iterative scheme 
proceeds by updating the Saw function at each iteration in 
such a way that the mean-square difference or error be- 
tween the measured and predicted data is driven to zero, or 
to a minimum in the presence of noise and model inaccu- 
racies. 

The mean-square error may be regarded as a func- 
tional over the function space comprised of all possible 
flaw functions and our task is to select the flaw function 
that minimizes this functional using some suitable descent 
algorithm. Possible descent algorithms include the method 
of steepest descent, the conjugate gradient algorithm, and 
the Levenberg-Marquardt algorithm. A key requirement 
of any such algorithm is the ability to compute the gradient 
of the mean-square error at each iteration. The gradient 
tells us in what “direction” to update the current flaw 
estimate in order to guarantee a reduction in the mean- 
square error. A straightforward but tedious approach to 
computing the gradient is to first discretize the flaw func- 
tion in some convenient way, for example by dividing it 
into small blocks or other basis elements, and then to com- 
pute the partial derivatives of the measurements with re- 
spect to each basis element by taking finite differences. This 
procedure is computationally expensive since a flaw func- 
tion broken into N blocks would require the solution to N 
separate forward problems to obtain the N components of 
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the impedance gradient. Moreover, N solutions need to be 
recomputed at every iteration. 

An alternative to finite differences is used by some geo-- 
physicists to develop nonlinear inversion schemes for elec- 
tromagnetic survey data. In their approach, the conductiv-. 
ity is modeled using a number of undetermined parameters 
(say N). The field equations are then differentiated explic; 
itly with respect to these model parameters. This general ” 
procedure has been applied both to t&-dimensional prob- 
lems3 and in three dimensions.“The resulting equations for 
the field derivatives are of similar form to the forward 
problem field equations and can, be solved in the same way, 
but we now have N additional equations that must be 
solved for each observation at every iteration. 

Below we use function space methods to derive an ex- 
plicit expression for- the gradient in terms of the solutions 
of two forward problems. instead of N.forward problems. 
The two forward problems correspond to an “ordinary”. 
forward problem and an “adjoint” problem defined below. 
In certain cases, forexample a’blanar layered structure of 
unknown conductivity, the ordinary and adjoint problems 
are identical, in which case oniy-one forward solution need 
be computed per iteration. The analysis does not require 
discretization, and thus is’mdependent of the type of dis- 
cretization chosen at a-later stage. In addition, since the 
gradient is obtained analytically, it is exact, in contrast to 
the gradient obtained through a finite-difference computa- 
tion. 

The article is organized as follows: We begin with a 
brief review of the forward problem (Sec. II). A more 
complete discussion of the forward problem and its numer- 
ical implementation can be found in Ref. 5. The inverse 
problem is then formulated in continuous space using the 
least-square error criterion and an explicit expression for 
the gradient of the mean-square error is derived (Sec. III). 
The expression for the gradient is a central result of the 
paper. The&role the gradient plays in the formulation of 
two types of flaw reconstruction problems is then de- 
scribed: in the first problem, the flaw function to be recon- 
structed is assumed to be an arbitrary volume distribution 
of conductivity (Sec. III); in the second, the flaw is as- 
sumed to be a void pr crack inside, of which the conduc- 
tivity vanishes (Sec. IV) ;.In the latter problem, the shape 
of the flaw boundary is to be determined. Since the 
.continuous-space formulation is both more compact and 
more general, the analysis is carried out without discreti- .,.. . .i i .-. 
.zation up to this point. Intt numerical implementation of . ..;-.-- : 
the theory, however, a discrete representation of the flaw is * 
ultimately required, and we show how the continuous- 
sfiace results can’ be employed in deriving inversion algo- 
rithms for a flaw (or flaw surface) approximated by a flnite 
number of undetermined parameters ‘(Sec. V) . 

To illustrate how the theory can be used in solving 
specific problems, the gradient of the mean-square error is 
derived explicitly, for a layered conductor and a surface- 
breaking hemispherical flaw. The latter is an example of a 
parametric flaw model where a small number of free pa- 
rameters are used to define the conductivity distribution or 
the flaw shape. For.the case of the layered conductor (Sec. 

VI), we consider two possible, parameterizations. In the 
first, the layer thicknesses are assumed known, and the 
conductivities of the individual layers are to be determined. 
In the second parameterization, the layer thicknesses are to 
be determined, but. the layer conductivities are assumed 
known. As a final example of Sec. VI, we consider a single 
layer overlying a substrate of known conductivity. Here we 
wish to determine the thickness and conductivity of the 
layer. We conclude with a simple illustration of an explicit 
impedance gradient calculation in which the radius of a 
hemispherical surface indentation is varied and the deriv- 
ative of the impedance determined in the low frequency 
limit (Sec. VII). 

In the above problems, it is assumed that impedance 
data may be recorded as a function of frequency or probe 
position, or both, whichever is appropriate. In fact the 
present formulation is sufficiently general to accommodate 
other probe variables or a combination of such variables. 

II. THE FORWARD PROBLEM 

Let the flaw function be defined by u(r) =[a(r) -a,,]/ 
ao, where a(r) is a spatially varying conductivity and a0 is 
the host conductivity. If the flaw is assumed to be a void or 
crack, o(r) vanishes inside the flaw, in which case u(r) 
= - 1 inside the flaw and is zero outside. If the flaw rep- 
resents an arbitrary conductivity distribution, we assume 
for convenience that a(r) --a0 outside of some bounded 
domain V, so that u(r) =O outside of V; Thus, volume 
integrations involving the flaw function vanish outside of 
V. Whether the conductivity is continuous or discrete, we 
refer to V as the volume of the flaw region. 

Assuming time-harmonic excitation [exp ( - iat)]. and 
neglecting the displacement current, Maxwell’s equations 
read 

VXE(r) =hpoH(r) 

VxH(r) =o(r)E(r) =aoE(r) +P(r), 

where 

(0 

P(r) =[a(~) -ao]E(r) =aov(r>E(r>. (2) 

In ( 1 ), P(r) may be interpreted as an effective current 
dipole density at the flaw due to the variation a(r) -u. of 
the conductivity from that of the host oc. With the aid of 
Green’s theorem, the required solution of Maxwell’s equa- 
tions may be expressed in integral form as 

E(r) =Ecfi(i) +hpo 
s 

G(rlr’)*P(r’)dr’, (3) 
V 

where the integration is over the volume of the flaw. In 
(3), E(‘)(r) is the “incident field” produced by a primary 
source in the absence of the flaw, and G(r 1 r’) is the dyadic 
Green’s function obeying’ 

VxVxG(rlr’)-kZG(rlr’)=S(r-r’)I. 

In this equation, k2=impOcro, S( r -r’) is the three- 
dimensional (3D) Dirac delta function and I is the unit 
dyad. Multiplying (3 ) by vou(r ) , we obtain in view of (2)) 
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P(r) =P”?(r) +v(r>/2 
s 

G(rjr’)*P(r’)dr’, (4) 
V 

where 

P”)(r)~~ov(r)E(‘~(r). (5) 

For unit source current, the probe impedance 2 due to the 
flaw is given by 

Z=- 
s 

E@‘(r’)*J(r’)dr’, 
coil 

where the integration is over the sensing coil, J(r) is the 
current density in the source coil and EcS) (r) rE(r) 
-EC”(r) is the “scattered field” due to the flaw given by 
the integral on the right of (3). The application of a reci- 
procity theorem relating the scattered field at the coil to 
the incident field at the flaw shows that the impedance may 
be expressed as’ 

Z=- 
s 

E(“(r’)*P(r’)dr’, (6) 
v 

where the integration is over the volume of the flaw. 
The forward problem may be defined as follows: given 

the flaw function v(r) and the incident field E(‘)(r) pro- 
duced by the primary source, compute the impedance Z. 
To accomplish this, the linear integral Eq. (4) is solved for 
the polarization P(r), which in turn is substituted into (6). 
Further details on the above formulation of the forward 
problem and its numerical solution are contained in Ref. 5. 
A discussion of reciprocity theorems can be found in Ref. 
6. 

Ill. RECONSTRUCTION OF AN ARBITRARY 
CONDUCTIVITY DISTRIBUTION 

Suppose v(r) is an estimate of the true flaw function 
vtrue(r). Then, on the basis of the estimate i(r),. we solve 
the forward problem to obtain the predicted measurement. 
Here the measurement is the impedance change due to the 
flaw Z detected by a probe sensor at the probe position r. 
at an excitation frequency w. For brevity, the predictions 
and measurements are expressed as a function of the vector 
m= ( ro,w), where m varies over some observation domain 
M. 

Denote the predicted impedance by z[m,v], which is a 
functional on the space of functions v(r). Let Zobs( m) de- 
note the observed impedance, so that Z[m,v,,ue] =Zobs(m) 
in the absence of noise and modeling uncertainties. (In the 
following, we generally use square brackets, [ 1, to signify a 
functional relationship as opposed to a function.) Now 
define the mean-square difference between the predicted 
and measured impedances as 

g[vl= M J W(m) IZ[m,vl -Zob,(m) j2dm, (7) 

where W(m) is a real, positive weighting function that 
could reflect probabilistic information about the measure- 
ments. If the measurement space is discrete, then (7) is 
replaced by a sum. 

We pause to point out that it may be useful at this 
stage to regularize a potentially ill-conditioned problem by 
imposing an a priori constraint of some form, in addition to 
minimizing the mean-square error (7). In the case of a 
discrete flaw, one could, for example, attempt to select the 
flaw that simultaneously minimizes (7) and minimizes the 
flaw surface area or the flaw volume. One strategy is to add 
a penalty functional to (7), for example to minimize a 
functional of the form @?[v]+L Vol[u] or %‘[v]+il Sur[v], 
where Vol [v] and Sur[v] are, respectively, expressions for 
the flaw volume and the flaw surface area, and /z is a 
weighting parameter. Various types of smoothing con- 
straints are also possible. 

Now consider an iterative algorithm which, given the 
(n-1)th estimate, vnel(r), of v&r), generates the nth 
estimate by means of 

u,(r) =--=4-l(r) +~$v,Cr), (8) 

where (Y, is a constant depending on n and the function 
h,(r) may be regarded as an incremental change in 
v,- I (r) . To find the variation Sv( r) (dropping temporarily 
the subscript n) that maximizes the reduction in mean- 
square error when the current estimate is v(r), we write 
the Gateaux differential of g[b], denoted by dS?[v,Sv], and 
defined as the change in 8 resulting from the change Sv in 
v, as follows7~* 

~[v+~&l]-8[v] 
d~[v,Sv]rlim------ 

P-0 P 

=$ ~[v+BSvl~ * 
p=o 

Here, and henceforth, the boldface d is used to denote a 
functional differential resulting from the variation of some 
function, where the variation is denoted by the symbol 6. 
In the present section, the function to be varied is the 
(continuous) flaw function v(r); in the next section, we 
vary the boundary of the flaw function. 

The functional gradient of 8?[v] with respect to v, de- 
noted by V~?[V], is related to the differential dkT[v,6v] by 

dg [ v,Sv] = 
s 

V~[v(r)]Sv(r)dr. (10) 
V 

Note’that dE4 may be thought of as the continuous-space 
analogue of the discrete-space directional derivative, where 
(10) is analogous to the dot product of the gradient Vg 
and the “vector” au(r). 

Equation ( 10) shows that the largest decrease in the 
mean-square error is obtained by selecting the direction 
h(r) = -aV5Y[v], a being a constant; thus, (8) becomes 

u,(r)=u,-l(r)-~,V~[~n-l(r)l. (11) 
This is the steepest descent algorithm. Here on is a “step- 
size” parameter which tells us how far to advance in the 
direction Vg to obtain the next update v,. For nonlinear 
problems, the parameter a, is typically determined by 
means of a one-dimensional (1D) line search that mini- 
mizes 8 [u,- i -ar,V%‘:,- i] with respect to a, while holding 
v,,-1 and Vgn-, fixed. Such a search would normally re- 
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quire several more solutions to the forward problem. How- 
ever, if the shape of the surface 8[v] is approximately qua- 
dratic, an approximate, but explicit, formula for a,, can be 
derived that requires no additional solutions to the forward 
problem, resulting in a significant savings in computing 
time. A derivation of the formula for a, is given in Appen- 
dix A. 

The conjugate gradient algorithm is similar in form to 
(ll), and also employs the gradient V@T’, but can be shown 
to accelerate convergence, often significantly, with rela- 
tively little additional computational expense.‘-l2 This al- 
gorithm updates the previous flaw estimate v,- r(r) as fol- 
lows: 

u,(r) =vn-dr) +adArL 

where 

(12) 

f,(r)=-v~[v,_1(r)l+s~~-,(r), (13) 

with the initial condition fl (r) = -V%‘[v,(r)]. Here a, 
plays a role similar to the step-size parameter in the 
steepest-descent algorithm. Explicit formulas for the pa- 
rameters an and /3, are given in Appendix A. 

The Levenberg-Marquardt algorithm1’Y’2 is a modifi- 
cation of the Gauss-Newton method and as a quadratic 
scheme, has the potential for very rapid convergence, but 
the price paid is the need to invert a system of linear equa- 
tions at each iteration. For a large number of unknowns, 
this may be impractical, in which case the recommended 
method is the conjugate gradient algorithm. The point to 
appreciate, however, is that all of the above algorithms- 
steepest descent, conjugate gradient, or Levenberg- 
Marquardt-require the ability to compute the mean- 
square error gradient VFF[v(r)] at each iteration. We now 
turn to the derivation of this gradient. 

Substituting (7) into (9) and taking the limit, gives 

d8[v,Sv] =2 Re 
s 

WN {Zlwl -Zobs(m) \* M 
XdZ[m;v,Sv]dm, (14) 

where Re means real part, * denotes complex conjugate, 
and dZ is the Gateaux differential of the impedance Z. In 
the equations of the previous section, the dependence on 
the observation parameter m is not explicitly shown. Ex- 
cept in equations like (14) where there is an integral over 
the observation domain, we will usually continue to sup- 
press this dependence for brevity, but one must keep in 
mind that the impedance Z and all field quantities EC’), E, 
PC’), and P depend on m. 

The impedance Z[v], defined by (6), is a functional of 
v (r ) , The functional differential of Z[v] is defined as in (9) 
with Z[v] replacing %‘[v]. Thus by definition 

dz[ v,Sv] GE 
s 

VZ(r)Sv(r)dr. (15) 

To relate the functional gradient of the mean-square 
error W[v] to the functional gradient of the impedance 
VZ[v] (15) is substituted into (14) and the orders of inte- 
gration interchanged to yield 
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d%’ [ v,6v -J(2Relnr W(m) lzlmvl -Z,b,(m> )* 

XVZ(m,r)u!m au(r)&. 
) 

,g this to Eq. (10) shows that 

r 

Comparj 

Vg(r) =2 Re 
J 

W(m)(Z[m,vl-zobs(m))* 
M 

XVZ(m,r)dm, (16) 

where we have indicated explicitly the dependence of VZ 
on m. 

To compute VtY (r) from ( 16), a formula for the func- 
tional gradient of the impedance, VZ(r) is needed and is 
here derived from the equations of the forward problem. 
Below, all integrations are over the flaw region, unless 
noted otherwise. Taking the differential of (6) gives 

dZ=- E”3(r’)*dP(r’)&’ 
f 

(17) 

Similarly, the differential of Eq. (4), after substituting Eq. 
(5) for P’“(r), is 

dP(r) =Sv(r)aoE”‘(r) +Sv(r)k2 
s 

G(rlr’)*P(rI)dr’ 

+v(r)k2 G(r 1 r’)*dP(r’)dr’ 

=Sv(r)aoE(r) +v(r)k2 G(rjr’)*dP(r’)dr’, 
J 

(18) 

where the second line follows on substituting E(r) from 
(3). To obtain an equation for dZ in which the differential 
dP does not appear, we proceed as follows. Define i?(r) as 
the solution to 

Ec’)(r’) =E(f) -k2 
s 

&r’Ir).E(r)v(r)dr, (19) 

where e is the adjoint of G; that is 

(20) 

with ’ denoting transpose of the dyad. 
Note that ( 191 is similar in structure to (4) as can be 

seen by defining P(r) =aoE(r)v(r), multiplying (19) by 
aov(r’) and interchanging r and r’ to give 

F(r) =P(“(r) +v(r)k2 
f 

iYi(rlr’)*F(r’)dr’. (21) 

(21) differs from (4) only in that it contains the adjoint 
dyad. 

Now substituting (19) into ( 17), interchanging orders 
of integration and using (20) gives 
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dZ= - 
s 

E(r’)*dP(r’)dr’ 

G(r I r’>.dP(r’)dr’ dr ] 

-v(r)k2 
s 

G(rlr’)*dP(r’)dr’ dr. 
I 

(22) 

The quantity in brackets is seen from ( 18) to be 
Gv(r)aoE(r). Thus (22) reduces to 

dZ[ v&l = --o. 
I 

a,(r)*E(r)Gv(r)dr. (23) 

Comparing (23) and ( 15) shows that the functional gra- 
dient of the impedance is given by 

VZ(r) = -uo@r)*E(r). (24) 

This is a key result. VZ(r) gives the differential change in 
the impedance due to a differential change in the flaw func- 
tion IJ at the point r in the flaw. For an arbitrary variation 
in the flaw au(r), the total differential change in the im- 
pedance dZ is given by the integral of b(r) over the gra- 
dient, as shown by (23). 

From (24) we see that the computation of the func- 
tional gradient VZ requires the numerical solution to two 
“forward problems,” defined, respectively, by (4) and its 
adjoint (21) [or equivalently ( 19)]. Once VZ is computed, 
the gradient of the mean-square error, VSF, is obtained 
from ( 16), which in turn can be substituted into the de- 
scent algorithm of one’s choice to reconstruct the flaw. 

The above derivation can be expressed more abstractly, 
and compactly, using an operator formalism (Appendix 
B). 

IV. RECONSTRUCTION OF A HOMOGENEOUS FLAW 

In the above, the flaw function is defined by v(r) 
= [a(r) -ao]/ao, where u(r) is regarded as an arbitrary 
distribution of conductivity. In dealing with potentially ill- 
conditioned problems, it is helpful if the number of degrees 
of freedom allowed by the proposed form of the flaw func- 
tion can be restricted in some way, for example, by using a 
priori knowledge. In this section, we consider the problem 
of ilnding the shape of a flaw in the form of a void or crack 
of finite volume having a conductivity that is known to be 
zero. Thus a(r) =0 inside the flaw and a(r) =a0 outside, 
or v(r) = - 1 inside the flaw and v(r) =0 outside. 

Our ultimate task is to find the shape of the flaw 
boundary, but initially we need to determine the mean- 
square error gradient with respect to a variation in the 
position of the boundary. The gradient can then be substi- 
tuted into any of the descent algorithms discussed in the 
Introduction to find the best estimate of the position of the 
flaw surface. We consider a variation over a regular surface 
So which, for an embedded flaw, can be its entire bounding 
surface. In the case of a surface breaking flaw, as shown in 
Fig. 1, it is only necessary to consider a variation at the 

FIG. 1. Homogeneous volumetric flaw whose boundary is varied from 
that indicated by the dashed outline to the location shown as the shaded 
region. 

conductor tlaw interface and not the interface with air. We 
remark that our approach can also be adapted to the prob- 
lem of reconstructing the shape of an inclusion with a con- 
stant, but known, interior conductivity. 

We represent the flaw surface by the equation s(r) =O, 
in order that the flaw function may be written as 

u(r) = --Ht&) I, 

where H(u) is the Heaviside step function: H(u) = 1 for 
u>O and H(u) =0 for u < 0. s(r) is greater than zero inside 
the flaw and less than zero outside. For a variation of the 
boundary, the change in the flaw function is 

h(r) = -{H[s(r).+Gs(r)] --H[s(r)]). 

Clearly h(r) is nonzero only in the region between the 
surface of the original flaw and the surface after the vari- 
ation. Later, we shall consider an infinitesimal variation, 
but to understand and interpret Eq. (23) in the present 
circumstances, consider for the moment that the change in 
the position of the boundary is due to a small but finite 
contraction of the flaw region. (23) then reduces to an 
integration over the domain of contraction, illustrated in 
Fig. 1 as the region between the surface outlined by dashed 
lines and the shaded surface. 

E(r), as given by (19), is the adjoint field due to the 
original flaw. In the contraction region, this field is inside 
the unvaried flaw. E(r), on the other hand, is derived from 
the term in brackets in (22) and therefore represents the 
external field of the varied flaw. This difference between 
internal and external fields is important because there is a 
jump in the normal component of the electric field at the 
surface. Indeed, because the conductivity within the flaw is 
here taken to be zero, the normal component of the exter- 
nal electric field at the surface, like that of the correspond- 
ing current density, is zero. Therefore, in the limit of an 
infinitesimal variation, the tangential field, E,(r) can re- 
place E(r) in (23 ), because the normal component is zero. 

For a homogeneous flaw of the type considered in this 
section, the equation analogous to (23) is 
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dZ(s,&) = --a0 
s 

@r)*E(r)du[s,Ss]dr, (25) 

where &s(t) is an arbitrary variation of the flaw surface 
here written as a function of the variable t, a two compo- 
nent vector representing surface coordinates on the unvar- 
ied flaw. In Eq. (25), u(r) can itself be regarded as a 
functional of the flaw surface s(t), that is, v= z+]. .We have 
indicated this by writing du, instead of Su, in (25). 

By definition, the functional gradient of the impedance 
with respect .to the flaw surface, VJ( t), is related to the 
functional differential dZ[@] by 

dZ[s,&] = 
s 

vs z(t)ss(t)dt. (26) 
SO 

An infinitesimal variation of the flaw function is given by 

d 
dv[s,Ssl =‘dp u(s+PSs> p=. 

-d H(s+lJSs) 
= dp B=O 

= --&s(r) )&s(t), 

where S(z) is the 1D Dirac delta function. Substituting 
this result into (25) and recalling that the normal compo- 
nent of the external field is zero, gives 

dZ[s,&] =no @r)*E(r)S[s(r)]S$t)dr 
J 

=ffo 
s 

&(t,s).E,(t,s)&(t)dt. (27) 
SO 

Comparing (27) and-(26) shows that 

V,Z(t) =ao&(t,sW 1.E,(t,s(t) > =&*E,I,,, surface, 
(28) 

which is the “flaw-surface” analogue of (24). 
Finally, if we replace u and Su by s and Ss in (14), 

substitute dZ from (26) and interchange orders of integra- 
tion, we obtain a mean-square error gradient similar in 
form to (16) 

V%(t)=2Re W(m) (z[m,sl -Z&d )* 

xV,Z(m,t)dm, (29) 

where VZ(m,t) is defined by (28) .The updated formula 
for the steepest descent algorithm, for example, would now 
read 

s,(t)=s,-,(t)--a,V$[s,-l(t)l, 
instead of ( 11) . 

(30) 

V. FINITE NUMBER Oi FLAW PARAMETliRS 

Until now, the flaw function u(r) or its boundary s(t) 
was assumed to be an arbitrary function in an infinite- 
dimensional function space. In a numerical implementa- 
tion, however, parameterization of the flaw function at 

some stage is required; that is, the flaw function must ul- 
timately be approximated, or modeled, using a finite num- 
ber of variables. These variables could, for example, repre- 
sent the mean conductivities within small boxes, or other 
basis elements, in terms of which the true conductivity is 
approximated; or, perhaps, they could define the geometric 
shape of a flaw boundary. The inverse problem then re- 
duces to the task of determining this finite set of numbers. 
In this section, we derive the form of the mean-square 
error gradient V%‘:, when the flaw function is parameter- 
ized in this way. 

Let p be a vector whose components are the flaw pa- 
rameters. In (23) we now replace 6u with 

av(r) 
dv[pJpl= I$ F @is I 

(31) 

which is the change in the flaw function due to the varia- 
tion in the parameters, 6pi. Equation (23) then becomesi 

au(r) 
dZb&l= --ob c [ s f~r)*E(rIap_ dr sPi* (32) 

i I 
] 

(33) 

where ( VZ) iz aZ/ap, 
Equation (33) is the discrete analogue of (15). From 

(32) and (33) the ith component of the gradient of the 
impedance is seen to be 

(VZ)i= --a0 J @(r)*E(r) y dr. 
I 

(34) 

Now, the differential change in the mean-square error is 

dEF[p,Sp]- 1 tVg)iapi. 
i 

(35) 

Substituting (33) and (35) into (14), we obtain for the ith 
component of the mean-square error gradient 

(VP)i=2 Re 
s’ 

W(m) 
M 

X tZ[wl ---Zobs(m) )*(VZ(m) )idm, (36) 

which is the discrete analogue of ( 16). The update equa- 
tion for the method of steepest descent now becomes 

p;=p;-1 -a,(VP-l)i, (37) 

where n indexes the iteration number. Equation (37) is the 
discrete flaw space analogue of ( 11) . 

As an example of a finite parameterization of the flaw 
function u(r) let us write 

N 

u(r) = IX Ci 4 i(r), 
i=l 

(38) 

where 4i(r), i= l,... ,N represent some convenient set of 
linearly independent basis functions and the c/s are expan- 
sion coefficients. For instance, if u(r) is sampled at a set of 
discrete points ri, i= l,... ,N, the basis functions may be 
written +i(r) =&r-pi), where S(r) is the 3D Diiac delta 
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function. In the next section, we consider a layered con- 
ductor, in which case the basis functions are piece-wise 
constant between the layer boundaries. 

If we let the coefficients in (38) play the role of the 
parameters, that is Pi=ci, then substituting (38) into (34) 
yields 

(VZ)i=--0 J g(r)*E(r)$Jr)dr, (39) 

for the components of the gradient of the impedance. 
In the latter example, the expansion coefficients ci were 

regarded as the unknowns. In some problems, the basis 
functions may themselves be functions of the parameters, 
and thus can vary. Normally, either the coefficients ci are 
allowed to vary or the basis functions $i are allowed to 
vary, but not both (an exception is case 3 of Sec. V). Both 
of these situations are illustrated in the next section in the 
example of a layered conductor. In that section, two prob- 
lems are treated. In the first, we assume the layer thick- 
nesses are known, and the conductivities of the individual 
layers are to be determined. This corresponds to unknown 
c, (the normalized conductivities) and known basis func- 
tions CJ$. In the second problem, the normalized conductiv- 
ities (ci) are assumed known, and the layer thicknesses are 
to be determined. In this case, the coefficients c,are known, 
but the basis functions 4 i are allowed to vary. 

One could formulate a problem in which both the con- 
ductivities and the layer thicknesses are simultaneously un- 
known, but for more than a single layer, this leads to a 
nonunique solution. This is a consequence of the fact that 
different combinations of thicknesses and conductivities 
can give rise to the same set of impedance measurements. 
Under these conditions, a unique reconstruction of the 
thicknesses and conductivities is not possible. The latter, 
therefore, is an example of a poor parameterization of the 
flaw function. The general issue of choosing an effective 
flaw parameterization is related to the fundamental prob- 
lem of estimating the sensitivity (or lack of sensitivity) of 
the measurements to variations in the flaw parameters. 
This sensitivity can be checked by computing, for example, 
the singular values of a matrix symbolically denoted 

where VZ(m,p) is the gradient of the impedance. As be- 
fore, p signifies any vector of parameters used in modeling 
the flaw. Note that d,,,s is just the matrix of partial de- 
rivatives of the measurements with respect to the unknown 
parameters, i.e., Jmr P,-=- -aZ( mj)/apP If this matrix is sin- 
gular, or nearly singular, then the measurements are inca- 
pable of uniquely recovering the flaw parameters. In fact, a 
test of this type applied to any proposed measurement 
scheme-carried out by computing the singular-value de- 
composition of VZ(m,p) on a number of conceivable 
flaws-is an extremely effective way of evaluating the sen- 
sitivity of the generated data to variations in the flaw pa- 
rameters, and hence the potential success of an inversion 
method in recovering the flaw parameters. Such a test 
would also reveal potential nonuniqueness problems in a 
proposed flaw parameterization, if VZ( m,p) is singular, or 

ill-conditioning problems of an inversion scheme, if 
VZ(m,p> is,nearly singular (that is, if VZ(m,p) has a large 
condition number). 

VI. EXAMPLE: A LAYERED CONDUCTOR 

As an illustration of the preceding theory, consider a 
conductor composed of N parallel layers, where the con- 
ductivity of the ith layer is a, The z axis is assumed normal 
to the layer boundaries, and the boundaries of the ith layer 
are at depth coordinates z, and Zi+ i. The conductivity dis- 
tribution a(z) may then be expressed 

N 

u(Z) = C Ui Layeri( 
i=l 

where 

(4.0) 

Layeri(Z> EH(Z-Zi)--H(Z-Zi+l), (41) 

and H(z) is the Heaviside step function. Thus, Layer 
i(Z)=1 for Zi< Z<Zj+l and Layer i(Z)=0 otherwise. The 
flaw function is defined as V(Z) =[a(~) -ao]/oo, and 
hence, from (40) 

N 

V(Z) = C Cj Layer-j(Z), 
i=l 

where 

(42) 

Uj-UO 
c.z- I 

=o * 
(43) 

Here, the constant a0 could represent the mean conductiv- 
ity of the layers or, perhaps, the conductivity of an under- 
lying substrate. For convenience, we will refer to c[ defined 
by (43) as the “normalized conductivity.” 

Now consider three problems: in case 1, the layer 
thicknesses are assumed known, and the conductivities are 
to be determined, in case 2, the conductivities are assumed 
known, and the layer thicknesses (or equivalently, the co- 
ordinates Zi of the boundaries) are to be determined; in 
case 3, assume a single layer of unknown conductivity and 
unknown thickness on a substrate of known conductivity. 
The layer thickness and conductivity are to be determined. 

In the above probiems, -we propose using multifre- 
quency impedance measurements to determine the un- 
known parameters, in which case the components of the 
measurement vector m in (36) are the frequencies w; then 
(36) becomes 

(Vg.)i=2 Re 
s 
- w(a) (z[@,Pl --z&s(~) )* 

l-l 

X(VZ(W>)ida, (44) 

where fi denotes the frequency range over which the im- 
pedance is measured. In case 1, pG{ci) are the normalized 
conductivities; in case 2, p={q} are the coordinates of the 
layer boundaries; in case 3, p={c,d) are the normalized 
conductivity and thickness of a single layer on a substrate. 
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A. Case 1 

Here the wish to find the unknown normalized con- 
ductivities Ci assuming the boundary coordinates zi are 
given. This problem fits the scheme of the last section. 
Letting c denote the vector of coefficients c, the differential 
of (42) is 

N 

dv [ c,Sc] = C Sci Layeri( 
i=l 

(45) 

and comparing this to (3 1) shows that au(r)/&, 
=Layer,(z). Then, from (34), the components of the gra- 
dient of the impedance are 

(VZ)i= -CO 
JJJ 

E (&Y,Z) 

.E(x,y,z)dxdy. (46) 

[We could have obtained the same result by substituting 
the basis function pi = Layeri directly into (39).] 
The gradient of the mean-square error (V8?)[ follows on 
substituting (46) into (36)) and the steepest-descent up- 
date is then given by (37). 

B. Case 2 

Here the normalized conductivities ci are given and the 
boundary coordinates Zi are to be determined. The ap- 
proach for deriving the gradient of the impedance is similar 
to that of Sec. IV for the reconstruction of a flaw surface. 
Letting z signify a vector whose components are the num- 
bers z, the differential of (40) is 

dv[ z,&] = 5 ci dJkymi(z). 
i=l 

(47) 

From (41) 

dLayeri(z) = --S(Z-Zj)SZj+S(Z-Zi+I)SZi+l, (48) 

and substituting (48) into (47) yields 

dv[ZpSz] = i$l ci[ -s(z-zi)~zi+S(z-zi+1)Szi+1]. 

By defining cer0 and cN+ t ~0 and relabeling indices, this 
may be written 

N-k1 
dv[z,Sz] = C (Ci-I-ci)S(z-zi)Szp 

i=l 
.(49) 

Substituting (49) into (25) now gives the incremental 
change in impedance due to the incremental change 6z in 
the boundary coordinates z 

N+l 
dZ[z,Sz]=-uo C (ci-l-ci) 

i=l 

X 
(JJ 

E (xyy,zi) + E (x,y,zi) dxdy 6zi 

N+l 

G izl (Vz)i~zi* 

which shows that the ith component of the gradient of the 
impedance is 

(VZ) j’ - (Oj- 1 -oj) m  m  
X J J ~.(xS,zi).E ixJltzi>dXdY, (50) 

--oJ --m 

where, from (43), CTi- l-of was substituted for oc(ci-t 
-ci) . Substituting (50) into (44) gives (Vg ) i, and the 
steepest-descent update becomes 

+q’ -cL,(vzP-‘)j. (51) 

C. Case 3 

Here we consider a single layer of unknown thickness 
d and unknown normalized conductivity c on a substrate of 
known normalized conductivity c,. Equation (42) then be- 
comes 

v(z) =c Layer(z) +c, Layer,(z), (52) 

where Layer(z) and Layer,Jz) represent, respectively, the 
overlying layer and the substrate 

Layer(z) =H(z) --H(z-d), (53) 

Layer,(z) =N(z-d). iw 
Assuming c, is known, the variation of (52) is 

dv[c,d;&,8d] =6c Layer(z) +c dLayer(z) 

+c, dlayer,iz). (55) 

From (53) and (54), dLayer(z)=S(z-d)Sd and 
dLayer,(z) = -S(z-d)Sd, and (55) becomes 

dv[c,d;Gc,Sd] = [H(z) --H(z-d)]Gc 

+ [ (c-c,)S(z-d)]Gd. 

Now substituting this into (25), and comparing to 

dZ[c,d;Sc,Sd] z(VZ)&+ (VZ)&d, 

we obtain for the components of the gradient of the im- 
pedance 

09 

ivz>,= ---a0 J- dzSl‘av,z) -E(x,y,z)dxdy, 
- _  

-02 

. . 

(vz),= - (u-q)Jj ~(xy,d).E(x,y,d)dxdy, 
--m 
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VIII. CONCLUSIONS where, from (43 ) , the relation a, (c- c,) = cr- a, was used. 
From (44), the corresponding components of the gradient 
of the mean-square error are 

(Vf9),=2Re 
s 

W (wW[w,4 -z”bsb)I* 0 

x W (~> Id da 
and the steepest descent update becomes 

c”=c”-l --a,(VP’),, 

d’*=d”-‘--~,(v~‘“-‘)d. 

VII. EXAMPLE: A HEMISPHERICAL FLAW 

In the low frequency limit the electric field in the con- 
ductor may be expressed as the gradient of a scalar poten- 
tial satisfying the Laplace equation. For simple flaws such 
as a hemispherical indentation in the surface, this allows us 
to make use of known static solutions to evaluate the im- 
pedance. In fact, a solution found from the Laplace equa- 
tion may be regarded as the first term in a more general 
solution expressed as a power series expansion in ka where 
a is of the order of a characteristic linear dimension of the 
flaw. We shall evaluate the first nonvanishing term in the 
impedance series for a nonconducting hemispherical flaw 
or radius a in a uniform field and show that (26) and (28) 
give the correct derivative of the impedance with respect to 
the radius. 

Imaging theory allows us to reflect the hemisphere in 
the surface plane to get a complete sphere. Adapting the 
solution for a dielectric sphere in a uniform field14 we find 
that the external field is that of a dipole and the internal 
electric field is a constant given by 

E=$Ec, (56) 

where Ee is the unperturbed field due to unit current in the 
probe. From (6) the flaw impedance 

Z=-rra3u&, (57) 

is found by integrating over the hemisphere. 
From (26) and (28) 

az 
aa""" so s Ef(t)dt, (58) 

there being no difference between the ordinary and the 
adjoint problem in the low frequency limit. 0 is a polar 
angle defined with respect to an axis in the direction of the 
incident field through the center of the sphere. Then Et 
=3/2Eo sin 0 and 

az 9 
Z==S n-a%& 

s 
?r sin3 6d 8= 3s-a2a&. (59) 

0 

Differentiating (57) with respect to a gives the same result 
and provides a simple check on (26) and (28). 

Because of the inherently nonlinear nature of the eddy- 
current inverse problem, an iterative algorithm of some 
kind seems to be the most promising approach for general 
problems. We have shown how to develop such an algo- 
rithm based on the mean-square error criterion. A crucial 
part of this development is the derivation of the gradient of 
the mean-square error, which in turn is expressed in terms 
of the gradient of the impedance. The latter gradient not 
only plays an essential role in the least-squares algorithm, 
but also provides information about the sensitivity of the 
measurements to variations in the flaw parameters. This 
gradient has been derived in continuous space before the 
choice of discretization is made. A straightforward, but 
very costly, approach to computing the impedance gradi- 
ent is to discretize first and then compute numerically the 
partial derivatives of the flaw parameters by means of finite 
differences. This method would require the solution to a 
separate forward problem for each parameter. The ap- 
proach here is far less costly since the gradient is obtained 
from the solution to a single forward problem and its ad- 
joint problem. Moreover, because the gradient is derived 
analytically via infinitesimal differences, it is exact, in con- 
trast to a finite difference computation. The essential trick 
used in deriving the gradient of the impedance is to exploit 
the symmetry of the adjoint problem, thereby eliminating 
the contribution due to the incremental change in the in- 
ternal fields. This results in an expression for the variation 
of the impedance solely in terms of the variation of the 
flaw-the variation of the fields do not appear. We empha- 
size that this result, though based on a continuous-space 
formulation, can be exploited in deriving the gradient of 
the impedance for any desired discretization or parameter- 
ization of the flaw. Several simple flaw examples have been 
given illustrating methods of reducing the problem to one 
whose solution lies in a finite dimensional parameter space. 

It is tinally worth remarking that other cost criteria 
besides the mean-square deviation are possible. An alter- 
native criterion is the mean-absolute,deviation, which may 
be less sensitive to large or anomalous errors in the data. 
Whatever cost criterion is used, however, the gradient of 
the impedance still needs to be computed. In this sense, the 
usefulness of our results, such as Eq. (24) for VZ, is not 
confined to the particular choice of the mean-square error 
criterion. 

A future objective will be to test the inversion meth- 
odology described above on experimental impedance data 
derived from artificial flaws, initially of very simplegeom- 
etry (e.g., a layered system) and then of more complex 
shape. 
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APPENDIX A I- 

We derive here an explicit formula for the step-size 
parameter an in the steepest descent update Eq. ( 11) . An 
essentially identical derivation can be used to obtain the 
conjugate-gradient step-size parameter a,, in (12). This 
formula is also given below. We conclude the appendix 
with review of the conjugate-gradient algorithm. 

Begin by writing ( 11) as follows 

u(a)=un-I-aVg[[u,-l], (Al) 

where here v(a) should be regarded as a function of the 
scalar a with v,-t and Vg[v,-,] held fixed. The optimum 
a, denoted a,,, is then the value that minimizes the mean- 
square error %‘[v(a)]. The next update is then v,=v(a,>, 
while the previous update was v,- , = v(O). Thus, holding 
u,-t and W constant, the variation in v(a) due to a 
change in a is from Eq. (A 1) 

Sv= -SaVg. (A21 

By substituting (A2) into ( 15>, we. obtain the incremental 
change in the impedance due to the change Sa 

dZ[aJa] 7 -Sa 
I 

VZ(r)VP(r)dr=g&, 

which implies 

az -=- da s VZ(r)W(r)dr, 

where VZ(r) and VO(r) are given by (24) and (16), 
respectively. Similarly, for the discrete case 

az 
z=- T (VZ)i(V8))i, (A4) 

where (VZ)i and (VS’)i are given by (34) and (36), re- 
spectively. 

Thus far, we have made no approximations. We now 
wish to find an estimate of the a that gives the greatest 
reduction in the mean-square error in the direction of V8. 
Write Z(a>=Z[v(a)], so from (Al), Z(O)=Z[v,+J 
=Z,- t, and expand Z( (r) in a Taylor series about a=0 

az,- 1 
Z(a) =Z,-l+a aa -++(a')."- 

Although a may itself not be small, we shall neglect the 
second-order term ~9 (a’) in (A5) because this term can 
be shown also to be second order in the-scattered field due 
to the flaw, whereas the term first order in a in (A5 ) is first 
order in the scattered field. If the second-order term were 
kept, it would contribute a term of one higher order in the 
scattered field (i.e., third order) than any of the terms in 
the equations that follow. (In fact, if we were dealing with 
a linear least-squares problem, i.e., if Z were a linear func- 
tion of v, then the second-order term in (A5 ) would van- 
ish, and the expression (A9) below for a would be exact.) 
Thus, dropping B (a’) in (A5) and substituting into (7)’ 
gives 

8((r)= J W(m) IZ(a)-Z,bsI”dm 
M 

= JM W(m) IZ,+I-Zob,+a %12drn 

=%‘,-l-2&P+a2Q, Lw 

where 

P=Re s W(m) (Zn-l-Zobs)* 
ah -dm aa 

Q= JM i(m) 1Fi’drn. 

(A7 

(A8 

The value of a that minimizes 8 (a) is found by differen- 
tiating (A6) with respect to a and setting the result to 
zero, giving 

a=P/Q. (A9) 

This is our approximate formula for an [where the approx- 
imation arose by neglecting the term of order d ( a2) in J%q. 
(A5)]. Some further insight may be gained by expanding 
the mean-square error g’ (a) in a Taylor series about a =0 

ag,-l 1 ,a2gnp1 
g(a)=l,.-,+aF+2a aa2 - (A101 

Comparing this to (A6) shows that &Y,+ t/da= -2P 
and a2@?,+ ,/aa2=2Q. The expression for the first deriva- 
tive a%‘:,-,/da is exact, but the second derivative is not 
exact since the second-order term in (A5) was dropped. 
However, as noted, the neglected term is of one higher 
order in the scattered field than any of the other terms and 
ignoring it should normally lead to a small error. Under 
conditions where the error is not small, a better approxi- 
mation could in theory be obtained at the expense of com- 
puting a second forward solution corresponding to a 
slightly different value of a. This new solution can then be- 
used to compute a new value of P. With two values of P, 
the first difference of -2P=iWT,-,/aa could be computed 
numerically to give an estimate of the second derivative 
$%‘:,-,/aa2=2Q directly, which in turn could be used in 
(A9). 

For the conjugate-gradient algorithm, the update pa- 
rameter a,, is also computed using formula (A9) with one 
change in the expression for dZ/da given by (A3 ) . In this 
case, the gradient V%’ in (A3) is replaced by If,, where 
f, is the search direction in the conjugate-gradient algo- 
rithm defined by the update relations ( 12) and ( 13) (see 
below also). 

We conclude with a review of the conjugate-gradient 
algorithm. For brevity, let g,(r)=VP[v,] denote the 
mean-square error gradient, where n is the iteration num- 
ber. In addition, ZHsZ[m,v,] represents the solution to the 
forward problem computed on the basis of the nth estimate 
v, of the flaw function, and Z&s(m) denotes the measured 
data. 

Similarly, let E, and En denote the predicted electric 
field and its adjoint, respectively. The nth estimate of the 
gradient of the impedance is then given by VZ,= 
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-&%(r)-E,(r), from Eq. (24). Assume that vo(r) is the 
initial estimate of the flaw function. 

The Conjugate-Gradient Algorithm. 

[n =0] (Initialization) 

EOb) =z[wOl -z&(m) 

go(r) =2Re 
s 

W(m>eo(m>*VZo(m,r)dm 
M 

f+‘(m) I e&d 1 2dm 

1 en, 

b>Ol G,= gn-,(r)2dr, s 
0 ifn=l 

Pn= G,/G,-, if n> 1, 

az,-, 
da:= VZn-l(r)fn(r)dr, 

P,=Re I 
aI-1 

M 
Wm)e~-,(m)~ dm, 

Q,= JM W(m) I$!!$i2drn, 

v,(r) =U,+l(r> +(P,/Q,V,(rL 

%(m) =z[m~urtl -Zobs(d9 

g,Ar> =2Re 

~:[u,*l= s, J+‘(m) I e,(m) 1 ‘dm, 

ntnfl; go to a 1. 

,,. <ii 

(al> 

(a51 

(alO) 

(all) 

The algorithm terminates when g [v,] is judged sufficiently 
small. 

APPENDIX B 

Here we derive the fundamental result of the second 
section, the functional derivative of the impedance given by 
(24)) using an operator formalism. Given two vector fields 
A(r) and B(r), define the innerproduct 

(A,B) s s A(r)*B(r)dr. 
V 

Let 3 represent a dyadic integral operator that operates 
on a vector field A 

9.A& s G(rlr’)*A(r’)dr’, 
V 

where G(r I r,‘) is the dyadic Green’s function. Then Eqs. 
(6) and (4) are r. 

Z= - (E(‘) p) , , 031) 

and 

p(Ly.p, U32) 

where 

~sc-v9. (B3) 

Here 3 is the identity operator. The adjoint Eq. (19) is 

E”‘&+.&, (B4) 

where 

3?=N-9”. 

The differential of (B 1) is 

dZ= -(EC”,&‘). 

The differential of (B2) is 

dPci’=d2’*P+2’dP. 

Now substitute (B4) into (B5) 

dZ=-(~*&P)=-(&2WP). 

From (B6) 

(B5) 

(I361 

dZ= - @,dP’” -d2’*P). (B7) 

But from (5), dP(‘) =o,E(‘)Gu, and from (B3), d2 = 
-Sus. Then (B8) is 

dZ=-@,(aoE(‘)+%P)6u). 

But aoE=aoE(‘) + .Y -P, so Eq. (B8) reduces to 

u38) 

dZ=-go(R:,EGv) = --0, 
s 

E(r)*E(r)Gv(r)dr. 

From this it follows that 

VZ= -coE(r)*E(r), 

which is (24). 
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