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Time domain half-space dyadic Green’s functions
for eddy-current calculations
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The field due to an impulsive current dipole embedded in a half-space conductor adjoining a
nonconducting half space is given by an exact solution of the quasistatic field equations. This
solution has been used to construct a half-space dyadic Green’s function containing a term for an
unbounded conductor plus terms representing the field reflected at the interface between conducting
and nonconducting regions. The resulting kernel can be used in the formulation of time-dependent
scattering problems to express the electric field in a conductor as an integral over an electric dipole
distribution. © 1999 American Institute of Physids50021-897@9)08422-4

I. TIME DOMAIN INTERACTION the transformation can be carried out analytically.
) ] ) ) ) In eddy-current problems, the unbounded domain dyadic

The calculation of eddy-current interaction with an inho- e me| for a uniform isotropic conductor can be expressed in
mogeneity in an otherwise uniform conductor has applicateyms of a scalar Green’s function satisfying the diffusion
tions in a number of areas including nondestructive evaluagqation, as shown in Sec. Il. For completeness, a derivation
tion (NDE) and geophysics. In common with Other ot he scalar Green's function is given in Appendix A. This
electromagnetic scattering problems, the aim is to determing,,ction is simply a Gaussian distribution in three dimen-
the scattered field when the unperturbed field and scatteret < as in the analogous problem in heat conduction in
are predefined. In NDE, the perturbation is typically due to &y ich the temperature distribution arises from an impulsive
cavity or a crack_m a metal and in geophysics it may be d“%ingular heat sourceThe half-space dyadic Green'’s func-
to a body of ore in the earthin general, the problem can be {ion'in Sec. Ill, consists of the unbounded domain dyad plus
formulated by representing the effect of the scatterer agyq terms representing the partial reflection at the air—
equivalent to an induced source distribution. The source defsonqyctor interface. All three contributions are expressed

sity is then found by solving an integral equation. Here apgre expiicitly in terms of standard functions and their de-
dyadic integral kernel is derived for solving time-domain . atives.

eddy-current scattering problems for cases in which a scat-
terer is embedded in an otherwise homogeneous isotropic
half-space conductor adjoining a nonconducting half space.
Numerical solutions of time-harmonic eddy-current !l. FIELD IN INTEGRAL FORM
problems can be found with the aid of volume-element andy. Ejectric source in a conductor
boundary-element schemes. In the volume and boundary in- ) o
tegral formulations, a dyadic integral kernel transforms an ~Fundamental solutions of the quasistatic Maxwell equa-

electric source in the conductor into the corresponding elecions can be obtained with either a singular impulsive electric

tric field 23 The success of these calculations depends in pafUrent dipole source or a magnetic dipole source in a homo-
on an ability to express the dyadic Green’s functioonve- ~ 9eneous conductor. Here the field due to a current dipole is

niently in terms of standard analytical functiSnghich can ~ considered in order to find an integral kemnel that transforms

be computer coded using polynomial approximations. a tlmg—dgpendent dlistnbuted elegtrlc SOUR{@ ,.t_) |r_1to the
Here an integral kernel is derived for carrying out simi- electric field. Assuming the.matenal permeab|lllty.|s equql tp

lar calculations for transient excitations. The derivationthat of free space, the required electromagnetic field satisfies

makes use of the inverse Laplace transform to obtain the GH(r,t)
time-domain solution from the relevant frequency-domain  VXE(r,t)=—pug
expression. In contrast to the general treatments of the un-

bounded domain solutioh’ the quasistatic approximation is and

assumed throughout, which means that the displacement cur-

rent is neglected. This approximation simplifies the transfor- vV XH(r,t)=0E(r,t) +P(r,1t). (1b)
mation to the time domain, particularly where terms that aCrhe electric field, vanishing fot<0 and vanishing as|
count for reflection from the interface are involved, because | ., for all t, can be expressed in terms of the electric—
the integrands of the inverse Laplace transform contain Onl¥,\lectric dyadic Green’s functiorg(ee)(r,r’,t,t’), represent-
one branch point in the quasistatic limit. As a consequencéng he electric field arising from an impulsive current dipole
atr’. With G(M(r,r’ ,t,t') as the corresponding magnetic
dElectronic mail: j.bowler@cnde.iastate.edu field due to the singular electric source, these dyads satisfy

at (13
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d J 1
VXGEI(rr ) =—uo-GM(r,r' t,t") () géee’(r,r',t,t’)=—(uo—1— —VV)fﬁ(r,r’,t,t’), ©)
ot ot (0]
and where ¢(r,r’,t,t’) vanishes fort<t’, vanishes asgr—r’|

VXGMI(r 1 1t =G (r 1t )+ TS(r—1") —oo for all t and satisfies the scalar diffusion equation

Xo(t—t'), ) (VZ—MOUO%)qb(r,r’,t,t’)=—5(r—r’)5(t—t’). (10)

where Z=xx+yy+2zz is the unit tensor expressed here in
terms of unit vectors.

From the solution of Eqs2) and (3), the electric field
due to the current dipole distribution is given by the super

osition principle as
i e b(r r’tt’)=3\/ﬂexq—,ucr|r—r’|2/4(t
8N Br—t)3 oo

t
E(r,t)=fofﬂg@e(r,r',t,t’).P(r’,t')dr’dt, (4

The subscript 0 denotes the unbounded domain solution.
Equation (10) can be solved using the Fourier—Laplace
transform to give(see Appendix A

—t")JH(t—t"), (12)
whereP(r,t) occupies a source regidn and has the prop- ) _ )
erty P(r,t)=0 for t<0. ThusG®9(r,r’ ,t’,t') transforms a WhereH(t) is the Heavyside step functioft(t)=1.0 for a

time-dependent electric source into the corresponding eledlon-negative argument and is otherwise zero. Equatian

tric field. Similarly, the magnetic field is given by is a Gaussian distribution in three dimensions with the quan-
. tity a(t—t')=2(t—t")/ ugoo representing a length param-
H(r t)= (MO (r ¢ t.t7)-P(r’ t')dr'dt’. 5 eter characterizing the spread of the function in space. From
Y fo fng ( ) ) © here on, the fact that is time dependent will not be shown
explicitly.

In order to find an equation for the dyadic kernel
G©9(r,r’,t,t"), the magnetic—electric dyad is eliminated
from Eqgs.(2) and(3) to give

From the curl of Eqs(9) and (2), it is found that the
magnetic—electric dyadic Green’s function is

GMI(r,r t,t" ) =G r r' t,t")=V

J
(e® ’ ' __(e9 ’ ’
VXVXG®9(r,r' tt )+Moaﬁtg (r,r',t,t") X[Th(rr" tt')]. (12)

d , ) The time integral of Eq(11) represents the solution for a
- _“0515“” )o(t—t"). (6)  current-dipole source whose time dependence is a step func-

tion in time. This solution is given by
The solution vanishing fot<t’ and vanishing asr—r’|
—oo for all t will be derived first for an unbounded homo- erfc( |r—r’|)
geneous conductor and second for a half-space conductor. a
The approach taken here parallels that in the text by Felsen <I>(r,r’,t,t’)=f G(r,r’ tt)d(t-t")= m
and Marcuvitz who consider radiating fieltl#s a first step, 4 (13)
the relationship between the electric—electric dyadic Green’s
function and the scalar Green's function for the three-The integration of Eq(11) with respect to time can be car-
dimensional diffusion equation is established. ried out by making the substitution {=1/a
=1Juooo/(t—t') and integrating with respect to(see Ap-
pendix A for an alternative derivation

B. Green'’s dyad for an unbounded domain
thatNote that by taking the divergence of @), itis found HALFE—SPACE CONDUCTOR
@) The electric—electric half-space dyadic Green'’s function

V-GE(r ' t,t)=—V(r—r')st—t"), : ; o .
7oV -G ) ( )& ) for a source in a conducting region is a solution of E).
for an unbounded domain in whiech= 0. From Eq.(7) and  and satisfies continuity conditions at the interface of the

the identityV X Vx=VV.—V?, Eq.(6) becomes semispaces ensuring that the tangential electric and magnetic
fields are continuous. A derivation of the required dyad using
d o
(Vz—MoUo— GE9(r,r' t,t) scalar decomposition into transverse electfiE) and trans-
at verse magneti€TM) field components is given in this sec-

9 1 tion. It is based on an identity that involves derivatives de-
=\ po=Z— —VV|S(r=r")o(t—t"). (8) fined with respect to a preferred direction; the direction is
normal to the interface. Initially, this identity is used to ex-
It is evident by direct substitution into E¢B) that a solution  press the unbounded-domain Green’s function in the form of
vanishing agr—r’|—c in an unbounded domain is given a scalar decomposition. Then the scalar representation is
by adapted to deal with a half-space conductor.
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With the normal to the conductor—air interface as theare introduced. By substituting Eq(16) into VXV
reference direction, the transverse gradient is writteWas X G©9(r,r’,t,t’)=0 for z>0 and Eq/8) for z<0, it can be

=x(a19x) +y(aldy). This gradient is contained in an iden- shown that

tity V2G(r,r' t,t')=0, z>0, (19
— ( MOIi_ iVV) Vt2 for the air region and
ot (0]
J
1 .. 3 3 (Vz—,uoao—)G(r,r’,t,t’)=—5(r—r’)5(t—t’),
:a_o(zzvt2+vtvt)(vz_“°0°ﬁ ~ Koy at
1 z<0, (29
X(VXZ)(VXZ)_U_O[VX(VXZ)][VX(VXZ)]v for the conducting region, wher@(r,r’,t,t") of Egs. (18)
and(19) can represent either TE or TM scalar Green'’s func-
14 tions.
similar to one given by Felsen and MarcuvVitsee page 18 In order to ensure continuity of the tangential electric

and proved in the same way. Let Hd4) act on the function and tangential magnetic fields at the interface, it is required
Uo(r,r',t,t") where ¢(r,r',t,t')=V2U(r,r’,t,t’). Then, thatzxG®(r,r’,t,t") andzxVxG®(r r’,t,t') be con-

from Eqgs.(9) and (10), tinuous there. Hence, using Ed.6), one concludes that
(ed S 1(.. V.V, ) ) o JdG’ o d dG” 20
Gy o(r,r' )——0_—0 zz+ Vtz o(r—r")o(t—t") oG an 5z

9 . . are also continuous at the interface.
+MOE[V><Z][V’szO(r,r’,t,t’)] Following a similar procedure to that used in deriving
the unbounded domain solution, in Appendix A, the half-

1 - space dyadic Green’s function is found by taking a Laplace

- U_O[VXVXZ] transform with respect to time and Fourier transforms with
respect to thex andy coordinates. By changing to cylindrical

X[V XV XZUg(r,r',t,t")], (15 coordinates and integrating with respect to the azimuthal

angle, the Fourier transforms reduce to a Hankel transform.

whereV' is defined in terms of source the coordinatés This procedure, applied to Eq&L8) and (19) gives

y’, andz’'. Equation(15) is an alternative to Eq9) as a
representation of the unbounded domain dyadic Green’f 92 2)

function. — —«°|G(k,2,2',5)=0, z>0, (21)

For a domain divided at the plaree=0 into two semi- 7z
infinite regions, one conductingr& o, z<0) and one non-
conducting ¢=0, z>0), the electric—electric dyadic

Green'’s function may be written in the form

2

E—(K% wo0oS) |G(k,2,2' ,s)=—8(z—2'), z<O0,

(22)
1(.. V\V
GEIr,r )=~ —| 22+ — | 8(r—r")8(t—t") where
0o Vi
- 1 (= (=
9 ~ . G(K,z,z’,s)=—J f G(r,r',t,t")
+ oo [VXZIV X207 (1,1 1) 2mJo Jo
1 xXexd —s(t—t")]Jo(kp)p dp d(t—t')
— —[VXVXZ] (23
0o

e with p2=(x—x")2+ (y—y’)?. With the Bromwich integra-
X[V XV XzU'(r,r',t,t)].  (16)  tion contour denoted by Br, the inverse transformation is
It will be assumed that the singular source is in the conductof//tten
and thereforez’ <0. The functionU’ represents the trans- 1 .
verse electric field antl” the transverse magnetic compo- G(r,r' tt)= f f G(k,2,2',S)
nent. Note that Eq(16) applies for allz and that the factor (2m)%iJo Jer
1/o refers to the conductivity of the conducting region. The .
scalar Green'’s functions XEXHLS(t=t") o kp) k drc ds. (24)

G'(r,r' ,t,t")=V2U'(r,r' t,t") (17a

The solution of Egs(21) and(22), vanishing agz|—«, has
the form
and

1
G"(r,r t,t)=VEU"(r,r' t,t") (170 Glk,2.2',8)= 2o T(k)exd —«z+yz'], 2>0, (25
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- 1 og (¢ T'"—1
G(k,2,2',5)= 5—{exd — y|z—2'[] V(r,r ) = — 2 of f exs(t—t’

2y ( ) (2m)%iJo Jer 2yx s(t=t)
+y(z+2')]Jo(kp)dx ds. (33
where y= yx“+ uooes, T in EQ. (25 is the transmission oy the transverse electric reflection coefficient, given by

coefficient and in Eq. (26) is the reflection coefficient. By Eq. (28), and Eqs(A11) and (A7), Eq. (33) can be written
using the continuity conditions, Eq20), the reflection and

+I'(k)exd y(z+2')]}, z<0, (26)

transmission coefficients are found to be 1 > 1/1 1
V(r,r' tt')= f f —|—=——lexds(t—t")
2y (2m)?iJo Jers\k vy
T=2 T'= , (27
Yt K —y|z+2'|13o(kp)k dr ds
YK 19
I'=-1, andI'"= . 28 = — "tot!
p (28) zﬂ_aé,A(a,p,{) 20(r,r" t,t), (34
Equations(27) and (28) complete the statement of the half- where;=|z+2'| and the functiom\ («,p,¢) introduced here
space singular solution in the form given by Ej6). has the time derivative\(«,p,{), given by
The half-space dyadic Green’s function can be expressed
in an alternative form derived from Eq&28) and (26). In (@.p.0)= IA(a,p,0)
order to obtain this expression, note that the TM potentiaf\ " ot
may be written as 1 (er 1
G'(k,22',9)=d(k,2.2',8)— d(x,2,-2',5), z<0, - 2_77iJ0 JBFy
(29)
Xexgs(t—t")—y]J dkds
and the TE potential as s )=y olxp)dx
L [ [ sttt
=~n ’ _ ’ ~ ’ " =— = —eXQ S(1l—
G"(x,2,2',5)= ¢(x,2,2',5)+ Pp(x,2,—2',5) + 2—7(F -1 27 Jo Jei\i+ pgoros
xex y(z+2")], z<O0, (30) — VK + 1gos{1do(kp)dx ds
where ¢(«,z,2',s) is given by Eq.(A4) of Appendix A. :_i OCEXH:—Kz(t—t’)//.LOO'OJJO(Kp) i
Equation(30) expressess”(«,z,z’,s) as the sum of three 2mi Jo
terms: a free space term, an image term and a term that L
accounts for the fact that the reflection at the interface is ,
X -t = :
partial rather than total. The electric—electric dyadic kernel fBr\/MOUOSquS(t t') = Vmooosc]ds

can be expressed similarly as the sum of three terms. It is o _
constructed by taking the inverse Hankel—Laplace transforrir valuating integrals with respect t and s by means of
of Egs.(29) and(30), substituting the result into E¢16) and formplas 6.618 from Ref. 10 and 29.3.84 from Ref. 11, we
using the identity, Eq(14). This gives obtain
2 2
pt2{
Io(p2/2a2)ex;{ — o

(¢

(39
wherel o(x) is the zero-order modified Bessel function. Note
whereGy(r,r’,t,t") is the free space dyadic Green'’s function in passing that an alternative derivation(86), in which the
and the two remaining terms in E(B1) are due to reflection integration ovelx is done as an initial step, makes use of the

at the surface of the material. The first of these is the imagiverse Laplace transforth
term;’ 1

2mi

14
(ee) ’ 1y — ’ ’ : ’ ’ . NMa,p,0)=—
G L) = Golrr L) G L)+ = 208 (a,p,) =3

XZ[V' X ZV(r,r' t,t")], (31

3 1 lo(ayvs—by/s)Ky(ays+bys)est ds
gi(rvr,ltat,):_ ,U/OE ,+O'_OVV, (,b(l’,r",t,t’), Br

(32

3.2_ 2

1

= Eexr{—(a2+ b?)/2t]1
where r"=r'—2zz' is the image point andl’ =xx+yy
—27. The image term in the form given in E®2) is derived ~ Which produces the same result. Thus the time derivative of
using an identity found by operating with Eq14) on  V(r.r'.t.t") is given by
7 </>(r,r”,t,t’)_. _ _ _ Vvt 1 9

The functionV(r,r’,t,t"), which appears in Eq31), is pr =5 at
defined as the inverse Hankel-Laplace transform of the third m
term in Eqg.(30) and is given by with X\ (a,p,{) given by Eq.(35).

Ma,p,{)=2¢(r,r",t,t’), (37
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Further comment on the functioh(«,p,{) is given in - © oo fo
Appendix B. The half-space magnetic—electric Green’s func- ~ #(«.2,2',8)= j_xf_mjo o(r,r',t,t’)
tion, derived in Appendix C, facilitates evaluation of the

magnetic field both in the conducting and the nonconducting Xexd —s(t—t")—iu(x—x")

region. —iv(y—y")]dx dy dt—t’). (A3)

Equation(A2) has the solution
IV. DISCUSSION AND CONCLUSION

~ 1
The derivation of the half-space time-domain dyadic $(x,2,2 ,s)zzexp[—ﬂz—z 11 (A4)

Green’s function for an electric source in a conductor is a . _ N
valuable step in the development of a comprehensive theory€re ¥=V«“+ uoays, taking the root with a positive real
of transient eddy-current probe—flaw interaction. Because thBart: Formally carrying out the inverse transformation we
result can be expressed in terms of standard analytical funbiave
tions, it is in a convenient form for numerical calculations. 1 o 1
In a typical scattering problem, formulated using integral 4y y/ t,t")= J f f —exd —v|z—7'|
methods, the flaw field is determined by an integral equation. (2m)%1 ) =) -2 JBr2y
Special limiting cases can be defined in the time domain by
comparing the characteristic dimension of the scatterer
with the diffusion lengthe. In the initial epoch, the condition +iv(y—y’)]du dvds, (A5)
a<c holds[recall thata(t—t")=2(t—t")/ nooo] and ap- ) )
proximations can be made taking advantage of the fact tha¥here Br denotes the Bromwich contour for the inverse
alc is small. Conversely, the tail of a transient signal corre-Laplace transform. The integrals over spatial frequencies
sponds to the phase whese>c. Approximations made ac- May t_>e carrieq out first by transforming to cylindrical polar
cordingly in the long-time limit take advantage of the fact coordinates using
that ¢/« is small, for example the exponential in Ed.1)
may be expanded as a power seriesRife and a choice
made as to how many terms are retained. These approxima- =, sing, y—y’=psing.
tions are valuable in predicting limiting behavior but for in-
termediate times, a general numerical scheme may be necdstegration with respect t@ and application of a standard
sary. integral expression for the zero-order Bessel function of the
The standard numerical schemes for solving integrafirst kind, see formula 9.1.21 in Ref. 11, gives
equations are usually based on the moment méthardthe

+s(t—t")+iu(x—x")

U=k cosf, x—x'=pcosp,
(A6)

Nystrom method™* In applying these procedures using S )= 1 fmf 1 ext — y|z—7'|
boundary or volume elements, a matrix is generated by inte- o (2m)%iJo Jer2y Y

grating the Green’s kernel over elemental volumes or areas.

The half-space kernel derived here is in a suitable and con- +8(t=t")Jo(xp)x dr ds. (A7)

venient form for carrying out these calculations. The relationship

fm; exd — ayu?+k?]J(Bu)udu
APPENDIX A: UNBOUNDED DOMAIN SCALAR 0 Ju2+K? 0

GREEN’'S FUNCTION
exd —kya?+ B?
In the main text it is shown that the unbounded domain = H Al (A8)

dyadic Green'’s function can be expressed in terms of a scalar va©t+p
function satisfying the equation.

found from the standard form 6.612 of Ref. 10, gives

J
(VZ—MOUO—) d(r,r' tt)=—58(r—r")s(t—t"). C 1 [ exd—VeoooSRl (i 1y
at (rr’ tt')y=-— e ds
(Al) 27T| Br 47TR
The solution vanishing for<t’ and asr —r’|— for all t 1 o070 )
is obtained by taking the Fourier transform with respect to =38 Wexﬂ[—ﬂoaoR 14(t
andy and the Laplace transform with respect to time. In this &
way it is found that —t")H(t—t"), (A9)
92 whereR?=(x—x')?+(y—y')2+(z—2')2. In Eq. (A9) we

2 (K2+'“0‘705)1 #(k,2,2',5)=—-08(z=2"), (A2)  have used a formula 29.3.83 from Ref. 11 to obtain the result
given as Eq.(11) in the main text. Let a(t—t")

wherex?=u?+v? and =2\J({t—t") wooo, then

Downloaded 10 May 2004 to 129.186.200.45. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 86, No. 11, 1 December 1999 J. R. Bowler 6499

It is found that

1
(rr' tt)=———exp —R¥a®H(t—t").
¢ ,(L00'07T3/2a’3 " . IA(a,p,0) [~ el _ 1
(A10) lim o J,° Jo(Kp)dK—a (B5)
The corresponding integrated solution is given by and
D(rr' tt)= o tHdt—t’ _ 1
(r.r.tt) f Hr.rittat-ty lim & (r,r tt)= ——, (B6)
\/— a— 0 47TR”
1 exp(— oSSR '
:ﬁf R y 'L;OR 0277 es(t-t) gs where R"=\/p?+ 2. A conclusion drawn from Eqs(B6)
e 7 and(34) is thatV(r,r’,t,t") vanishes in the static limit.
R
erf ;
= AR (A1l)  APPENDIX C: EVALUATION OF THE MAGNETIC

FIELD

which is Eqg.(13) of the main text. o
From the curl of Eq(31) and Eq.(2), it is concluded that

the half-space magnetic-electric dyadic Green’s function is

given by
APPENDIX B: A TERM IN THE HALF-SPACE e
GREEN'S FUNCTION GMr,r' 4t =VX[Zp(r,r' t,t')]+V
The time integral o (a,p,{) to giveA(a,p,g) cannot. _ X[T' (r " tt')]— VXV
be performed exactly, therefore the function must remain in HoO0
a suitable integral form. This is written - -
XzZ[V'XzV(r,r' t,t")], (Cy
A
(a.p.0) for z<O.
1 [~ 1 . In order to evaluate the magnetic field in the region
=- mfo fBry_squs(t_t )= v{1Jo(xp)drds above the conductor, the curl of EG.6) is taken and again
Eq. (2) is used to obtain
1 (= - -
=——| exd—«%(t—t") pwoooldo(kp) GMe(r r' t—t')=—[VXVXZ][V'XzU"(r,r'",t,t')],
2mi Jo
(C2
1 for z>0 where
xJ —————-ex — Js{+ (t—t")s/ woop]ds de
Bry/s(s— K?)

21 P4\ — 1 * 1 Y
Vi )_(277)2i fo Lr(yﬂ) expLs(t=t)

—kz+yzZ'1Jo(kp)kdrds.  (C3)

It is convenient to define

» ] { ak
= | e &¢ 2| _aKkl
JO P e erfc(a 5 e

wertd £+ 2%

er E 7

where formula 29.3.90 from Ref. 11 has been used. Differ- X060 = Z_ﬂfBrK+ y
entiation with respect tg gives

Jo(kp)dk, (B1)

exp(— y{+st) ds, (C4

and use formula 28.3.88 in Ref. 11, to express @) as
(9A(01,P,§):lf°° e_ngl’f é_ﬂ _ng VtZU//(r,r/,t_t/)
2 @ 2

4 0
! Oc( "t—t)e *Jy(kp)kd (CH
aK =—| x(k,—2,t—t")e ~ kp)k dk,
><erfc(§+7 Jo(kp)d. (B2) 2mJo °
) o ) _ Where
After a long time, the static limit is reached. Relationships 5 )
valid in this limit are found from the properties of the 1 Moo MoOoL” KL
. x(k,l,t)= exp — -
complementary error function Moo at 4t MoOo
lim erfo(x)=0 (B3) Kt o
- — ke erf + £\ [Hoo . (C#6)
M0o00 2 t
and The magnetic field in air for a singular electric source in the
lim erfo —x) =2. (B4)  conductor has the form, E4C2), whereU"(r,r’,t—t’) is
X—o0 given by Eq.(C5) with Eq. (C6).
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