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Time domain half-space dyadic Green’s functions
for eddy-current calculations

J. R. Bowlera)
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The field due to an impulsive current dipole embedded in a half-space conductor adjoining a
nonconducting half space is given by an exact solution of the quasistatic field equations. This
solution has been used to construct a half-space dyadic Green’s function containing a term for an
unbounded conductor plus terms representing the field reflected at the interface between conducting
and nonconducting regions. The resulting kernel can be used in the formulation of time-dependent
scattering problems to express the electric field in a conductor as an integral over an electric dipole
distribution. © 1999 American Institute of Physics.@S0021-8979~99!08422-4#
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I. TIME DOMAIN INTERACTION

The calculation of eddy-current interaction with an inh
mogeneity in an otherwise uniform conductor has appli
tions in a number of areas including nondestructive eva
tion ~NDE! and geophysics. In common with othe
electromagnetic scattering problems, the aim is to determ
the scattered field when the unperturbed field and scatt
are predefined. In NDE, the perturbation is typically due t
cavity or a crack in a metal and in geophysics it may be d
to a body of ore in the earth.1 In general, the problem can b
formulated by representing the effect of the scatterer
equivalent to an induced source distribution. The source d
sity is then found by solving an integral equation. Here
dyadic integral kernel is derived for solving time-doma
eddy-current scattering problems for cases in which a s
terer is embedded in an otherwise homogeneous isotr
half-space conductor adjoining a nonconducting half spa

Numerical solutions of time-harmonic eddy-curre
problems can be found with the aid of volume-element a
boundary-element schemes. In the volume and boundary
tegral formulations, a dyadic integral kernel transforms
electric source in the conductor into the corresponding e
tric field.2,3 The success of these calculations depends in
on an ability to express the dyadic Green’s function4 conve-
niently in terms of standard analytical functions5 which can
be computer coded using polynomial approximations.

Here an integral kernel is derived for carrying out sim
lar calculations for transient excitations. The derivati
makes use of the inverse Laplace transform to obtain
time-domain solution from the relevant frequency-dom
expression. In contrast to the general treatments of the
bounded domain solution,6,7 the quasistatic approximation i
assumed throughout, which means that the displacement
rent is neglected. This approximation simplifies the transf
mation to the time domain, particularly where terms that
count for reflection from the interface are involved, becau
the integrands of the inverse Laplace transform contain o
one branch point in the quasistatic limit. As a consequen
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the transformation can be carried out analytically.
In eddy-current problems, the unbounded domain dya

kernel for a uniform isotropic conductor can be expressed
terms of a scalar Green’s function satisfying the diffusi
equation, as shown in Sec. II. For completeness, a deriva
of the scalar Green’s function is given in Appendix A. Th
function is simply a Gaussian distribution in three dime
sions as in the analogous problem in heat conduction
which the temperature distribution arises from an impuls
singular heat source.8 The half-space dyadic Green’s func
tion in Sec. III, consists of the unbounded domain dyad p
two terms representing the partial reflection at the a
conductor interface. All three contributions are express
here explicitly in terms of standard functions and their d
rivatives.

II. FIELD IN INTEGRAL FORM

A. Electric source in a conductor

Fundamental solutions of the quasistatic Maxwell eq
tions can be obtained with either a singular impulsive elec
current dipole source or a magnetic dipole source in a ho
geneous conductor. Here the field due to a current dipol
considered in order to find an integral kernel that transfor
a time-dependent distributed electric sourceP(r ,t) into the
electric field. Assuming the material permeability is equal
that of free space, the required electromagnetic field satis

¹3E~r ,t !52m0

]H~r ,t !

]t
~1a!

and

¹3H~r ,t !5sE~r ,t !1P~r ,t !. ~1b!

The electric field, vanishing fort,0 and vanishing asur u
→` for all t, can be expressed in terms of the electri
electric dyadic Green’s function,G (ee)(r ,r 8,t,t8), represent-
ing the electric field arising from an impulsive current dipo
at r 8. With G (me)(r ,r 8,t,t8) as the corresponding magnet
field due to the singular electric source, these dyads sati
4 © 1999 American Institute of Physics
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¹3G (ee)~r ,r 8,t,t8!52m0

]

]t
G (me)~r ,r 8,t,t8! ~2!

and

¹3G (me)~r ,r 8,t,t8!5sG (ee)~r ,r 8,t,t8!1Id~r2r 8!

3d~ t2t8!, ~3!

whereI5 x̂x̂1 ŷŷ1 ẑẑ is the unit tensor expressed here
terms of unit vectors.

From the solution of Eqs.~2! and ~3!, the electric field
due to the current dipole distribution is given by the sup
position principle as

E~r ,t !5E
0

tE
V
G (ee)~r ,r 8,t,t8!•P~r 8,t8!dr 8dt, ~4!

whereP(r ,t) occupies a source regionV and has the prop
erty P(r ,t)50 for t,0. ThusG (ee)(r ,r 8,t8,t8) transforms a
time-dependent electric source into the corresponding e
tric field. Similarly, the magnetic field is given by

H~r ,t !5E
0

tE
V
G (me)~r ,r 8,t,t8!•P~r 8,t8!dr 8dt8. ~5!

In order to find an equation for the dyadic kern
G (ee)(r ,r 8,t,t8), the magnetic–electric dyad is eliminate
from Eqs.~2! and ~3! to give

¹3¹3G (ee)~r ,r 8,t,t8!1m0s
]

]t
G (ee)~r ,r 8,t,t8!

52m0

]

]t
Id~r2r 8!d~ t2t8!. ~6!

The solution vanishing fort,t8 and vanishing asur2r 8u
→` for all t will be derived first for an unbounded homo
geneous conductor and second for a half-space condu
The approach taken here parallels that in the text by Fe
and Marcuvitz who consider radiating fields.9 As a first step,
the relationship between the electric–electric dyadic Gree
function and the scalar Green’s function for the thre
dimensional diffusion equation is established.

B. Green’s dyad for an unbounded domain

Note that by taking the divergence of Eq.~3!, it is found
that

s0¹•G (ee)~r ,r 8,t,t8!52¹d~r2r 8!d~ t2t8!, ~7!

for an unbounded domain in whichs5s0. From Eq.~7! and
the identity¹3¹3[¹¹•2¹2, Eq. ~6! becomes

S ¹22m0s0

]

]t DG (ee)~r ,r 8,t,t8!

5S m0

]

]t
I2

1

s0
¹¹ D d~r2r 8!d~ t2t8!. ~8!

It is evident by direct substitution into Eq.~8! that a solution
vanishing asur2r 8u→` in an unbounded domain is give
by
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(ee)~r ,r 8,t,t8!52S m0

]

]t
I2

1

s0
¹¹ Df~r ,r 8,t,t8!, ~9!

where f(r ,r 8,t,t8) vanishes fort,t8, vanishes asur2r 8u
→` for all t and satisfies the scalar diffusion equation

S ¹22m0s0

]

]t Df~r ,r 8,t,t8!52d~r2r 8!d~ t2t8!. ~10!

The subscript 0 denotes the unbounded domain solut
Equation ~10! can be solved using the Fourier–Lapla
transform to give~see Appendix A!

f~r ,r 8,t,t8!5
1

8
A m0s0

p3~ t2t8!3
exp@2m0s0ur2r 8u2/4~ t

2t8!#H~ t2t8!, ~11!

whereH(t) is the Heavyside step function:H(t)51.0 for a
non-negative argument and is otherwise zero. Equation~11!
is a Gaussian distribution in three dimensions with the qu
tity a(t2t8)52A(t2t8)/m0s0 representing a length param
eter characterizing the spread of the function in space. F
here on, the fact thata is time dependent will not be show
explicitly.

From the curl of Eqs.~9! and ~2!, it is found that the
magnetic–electric dyadic Green’s function is

G (me)~r ,r 8,t,t8!5G 0
(me)~r ,r 8,t,t8!5¹

3@If~r ,r 8,t,t8!#. ~12!

The time integral of Eq.~11! represents the solution for
current-dipole source whose time dependence is a step f
tion in time. This solution is given by

F~r ,r 8,t,t8!5E f~r ,r 8,t,t8!d~ t2t8!5

erfcS ur2r 8u
a D

4pur2r 8u
.

~13!

The integration of Eq.~11! with respect to time can be car
ried out by making the substitution j51/a
5 1

2Am0s0 /(t2t8) and integrating with respect toj ~see Ap-
pendix A for an alternative derivation!.

III. HALF–SPACE CONDUCTOR

The electric–electric half-space dyadic Green’s funct
for a source in a conducting region is a solution of Eq.~6!
and satisfies continuity conditions at the interface of
semispaces ensuring that the tangential electric and mag
fields are continuous. A derivation of the required dyad us
scalar decomposition into transverse electric~TE! and trans-
verse magnetic~TM! field components is given in this sec
tion. It is based on an identity that involves derivatives d
fined with respect to a preferred direction; the direction
normal to the interface. Initially, this identity is used to e
press the unbounded-domain Green’s function in the form
a scalar decomposition. Then the scalar representatio
adapted to deal with a half-space conductor.
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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With the normal to the conductor–air interface as t
reference direction, the transverse gradient is written as¹ t

5 x̂(]/]x) 1 ŷ(]/]y). This gradient is contained in an iden
tity

2S m0I
]

]t
2

1

s0
¹¹ D¹ t

2

5
1

s0
~ ẑẑ¹ t

21¹ t¹ t!S ¹22m0s0

]

]t D2m0

]

]t

3~¹3 ẑ!~¹3 ẑ!2
1

s0
@¹3~¹3 ẑ!#@¹3~¹3 ẑ!#,

~14!

similar to one given by Felsen and Marcuvitz9 ~see page 18!,
and proved in the same way. Let Eq.~14! act on the function
U0(r ,r 8,t,t8) where f(r ,r 8,t,t8)5¹ t

2U0(r ,r 8,t,t8). Then,
from Eqs.~9! and ~10!,

G 0
(ee)~r ,r 8,t,t8!52

1

s0
S ẑẑ1

¹ t¹ t

¹ t
2 D d~r2r 8!d~ t2t8!

1m0

]

]t
@¹3 ẑ#@¹83 ẑU0~r ,r 8,t,t8!#

2
1

s0
@¹3¹3 ẑ#

3@¹83¹83 ẑU0~r ,r 8,t,t8!#, ~15!

where¹8 is defined in terms of source the coordinatesx8,
y8, and z8. Equation~15! is an alternative to Eq.~9! as a
representation of the unbounded domain dyadic Gree
function.

For a domain divided at the planez50 into two semi-
infinite regions, one conducting (s5s0 , z,0) and one non-
conducting (s50, z.0), the electric–electric dyadic
Green’s function may be written in the form

G (ee)~r ,r 8,t,t8!52
1

s0
S ẑẑ1

¹ t¹ t

¹ t
2 D d~r2r 8!d~ t2t8!

1m0

]

]t
@¹3 ẑ#@¹83 ẑU9~r ,r 8,t,t8!#

2
1

s0
@¹3¹3 ẑ#

3@¹83¹83 ẑU8~r ,r 8,t,t8!#. ~16!

It will be assumed that the singular source is in the condu
and thereforez8,0. The functionU8 represents the trans
verse electric field andU9 the transverse magnetic comp
nent. Note that Eq.~16! applies for allz and that the factor
1/s0 refers to the conductivity of the conducting region. T
scalar Green’s functions

G8~r ,r 8,t,t8!5¹ t
2U8~r ,r 8,t,t8! ~17a!

and

G9~r ,r 8,t,t8!5¹ t
2U9~r ,r 8,t,t8! ~17b!
Downloaded 10 May 2004 to 129.186.200.45. Redistribution subject to A
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are introduced. By substituting Eq.~16! into ¹3¹
3G (ee)(r ,r 8,t,t8)50 for z.0 and Eq.~8! for z,0, it can be
shown that

¹2G~r ,r 8,t,t8!50, z.0, ~18!

for the air region and

S ¹22m0s0

]

]t DG~r ,r 8,t,t8!52d~r2r 8!d~ t2t8!,

z,0, ~19!

for the conducting region, whereG(r ,r 8,t,t8) of Eqs. ~18!
and~19! can represent either TE or TM scalar Green’s fun
tions.

In order to ensure continuity of the tangential elect
and tangential magnetic fields at the interface, it is requi
that ẑ3G (ee)(r ,r 8,t,t8) and ẑ3¹3G (ee)(r ,r 8,t,t8) be con-
tinuous there. Hence, using Eq.~16!, one concludes that

sG8,
]G8

]z
, G9 and

]G9

]z
~20!

are also continuous at the interface.
Following a similar procedure to that used in derivin

the unbounded domain solution, in Appendix A, the ha
space dyadic Green’s function is found by taking a Lapla
transform with respect to time and Fourier transforms w
respect to thex andy coordinates. By changing to cylindrica
coordinates and integrating with respect to the azimut
angle, the Fourier transforms reduce to a Hankel transfo
This procedure, applied to Eqs.~18! and ~19! gives

S ]2

]z2
2k2D G̃~k,z,z8,s!50, z.0, ~21!

F ]2

]z2
2~k21m0s0s!G G̃~k,z,z8,s!52d~z2z8!, z,0,

~22!

where

G̃~k,z,z8,s!5
1

2pE0

`E
0

`

G~r ,r 8,t,t8!

3exp@2s~ t2t8!#J0~kr!r dr d~ t2t8!

~23!

with r25(x2x8)21(y2y8)2. With the Bromwich integra-
tion contour denoted by Br, the inverse transformation
written

G~r ,r 8,t,t8!5
1

~2p!2i
E

0

`E
Br

G̃~k,z,z8,s!

3exp@s~ t2t8!#J0~kr!k dk ds. ~24!

The solution of Eqs.~21! and~22!, vanishing asuzu→`, has
the form

G̃~k,z,z8,s!5
1

2g
T~k!exp@2kz1gz8#, z.0, ~25!
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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G̃~k,z,z8,s!5
1

2g
$exp@2guz2z8u#

1G~k!exp@g~z1z8!#%, z,0, ~26!

where g5Ak21m0s0s, T in Eq. ~25! is the transmission
coefficient andG in Eq. ~26! is the reflection coefficient. By
using the continuity conditions, Eq.~20!, the reflection and
transmission coefficients are found to be

T852, T95
2g

g1k
, ~27!

G8521, and G95
g2k

g1k
. ~28!

Equations~27! and ~28! complete the statement of the ha
space singular solution in the form given by Eq.~16!.

The half-space dyadic Green’s function can be expres
in an alternative form derived from Eqs.~28! and ~26!. In
order to obtain this expression, note that the TM poten
may be written as

G̃8~k,z,z8,s!5f̃~k,z,z8,s!2f̃~k,z,2z8,s!, z,0,
~29!

and the TE potential as

G̃9~k,z,z8,s!5f̃~k,z,z8,s!1f̃~k,z,2z8,s!1
1

2g
~G921!

3exp@g~z1z8!#, z,0, ~30!

where f̃(k,z,z8,s) is given by Eq.~A4! of Appendix A.
Equation~30! expressesG̃9(k,z,z8,s) as the sum of three
terms: a free space term, an image term and a term
accounts for the fact that the reflection at the interface
partial rather than total. The electric–electric dyadic ker
can be expressed similarly as the sum of three terms.
constructed by taking the inverse Hankel–Laplace transf
of Eqs.~29! and~30!, substituting the result into Eq.~16! and
using the identity, Eq.~14!. This gives

G (ee)~r ,r 8,t,t8!5G0~r ,r 8,t,t8!1Gi~r ,r 8,t,t8!1
1

s0

]

]t
¹

3 ẑ@¹83 ẑV~r ,r 8,t,t8!#, ~31!

whereG0(r ,r 8,t,t8) is the free space dyadic Green’s functio
and the two remaining terms in Eq.~31! are due to reflection
at the surface of the material. The first of these is the im
term,4

Gi~r ,r 8,t,t8!52S m0

]

]t
I81

1

s0
¹¹8Df~r ,r 9,t,t8!,

~32!

where r 95r 822ẑz8 is the image point andI85 x̂x̂1 ŷŷ

2 ẑẑ. The image term in the form given in Eq.~32! is derived
using an identity found by operating with Eq.~14! on
I8f(r ,r 9,t,t8).

The functionV(r ,r 8,t,t8), which appears in Eq.~31!, is
defined as the inverse Hankel–Laplace transform of the t
term in Eq.~30! and is given by
Downloaded 10 May 2004 to 129.186.200.45. Redistribution subject to A
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V~r ,r 8,t,t8!52
m0s0

~2p!2i
E

0

`E
Br

G921

2gk
exp@s~ t2t8!

1g~z1z8!#J0~kr!dk ds. ~33!

From the transverse electric reflection coefficient, given
Eq. ~28!, and Eqs.~A11! and ~A7!, Eq. ~33! can be written

V~r ,r 8,t,t8!5
1

~2p!2i
E

0

`E
Br

1

s S 1

k
2

1

g Dexp@s~ t2t8!

2guz1z8u#J0~kr!k dk ds

5
1

2p

]

]z
L~a,r,z!22F~r ,r 9,t,t8!, ~34!

wherez5uz1z8u and the functionL(a,r,z) introduced here
has the time derivative,l(a,r,z), given by

l~a,r,z!5
]L~a,r,z!

]t

52
1

2p i E0

`E
Br

1

g

3exp@s~ t2t8!2gz#J0~kr!dk ds

52
1

2p i E0

`E
Br

1

Ak21m0s0s
exp@s~ t2t8!

2Ak21m0s0sz#J0~kr!dk ds

52
1

2p i E0

`

exp@2k2~ t2t8!/m0s0#J0~kr! dk

3E
Br

1

Am0s0s
exp@s~ t2t8!2Am0s0sz# ds.

Evaluating integrals with respect tok and s by means of
formulas 6.618 from Ref. 10 and 29.3.84 from Ref. 11,
obtain

l~a,r,z!52
1

2~ t2t8!
I 0~r2/2a2!expS 2

r212z2

2a2 D ,

~35!

whereI 0(x) is the zero-order modified Bessel function. No
in passing that an alternative derivation of~35!, in which the
integration overk is done as an initial step, makes use of t
inverse Laplace transform12

1

2p i EBr
I 0~aAs2bAs!K0~aAs1bAs!est ds

5
1

2
exp@2~a21b2!/2t#I 0S a22b2

2t D , ~36!

which produces the same result. Thus the time derivative
V(r ,r 8,t,t8) is given by

]V~r ,r 8,t,t8!

]t
5

1

2p

]

]z
l~a,r,z!22f~r ,r 9,t,t8!, ~37!

with l(a,r,z) given by Eq.~35!.
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Further comment on the functionL(a,r,z) is given in
Appendix B. The half-space magnetic–electric Green’s fu
tion, derived in Appendix C, facilitates evaluation of th
magnetic field both in the conducting and the nonconduc
region.

IV. DISCUSSION AND CONCLUSION

The derivation of the half-space time-domain dyad
Green’s function for an electric source in a conductor is
valuable step in the development of a comprehensive the
of transient eddy-current probe–flaw interaction. Because
result can be expressed in terms of standard analytical f
tions, it is in a convenient form for numerical calculations

In a typical scattering problem, formulated using integ
methods, the flaw field is determined by an integral equat
Special limiting cases can be defined in the time domain
comparing the characteristic dimension of the scatterec
with the diffusion lengtha. In the initial epoch, the condition
a!c holds@recall thata(t2t8)52A(t2t8)/m0s0] and ap-
proximations can be made taking advantage of the fact
a/c is small. Conversely, the tail of a transient signal cor
sponds to the phase wherea@c. Approximations made ac
cordingly in the long-time limit take advantage of the fa
that c/a is small, for example the exponential in Eq.~11!
may be expanded as a power series inR/a and a choice
made as to how many terms are retained. These approx
tions are valuable in predicting limiting behavior but for i
termediate times, a general numerical scheme may be ne
sary.

The standard numerical schemes for solving integ
equations are usually based on the moment method13 or the
Nyström method.14 In applying these procedures usin
boundary or volume elements, a matrix is generated by i
grating the Green’s kernel over elemental volumes or ar
The half-space kernel derived here is in a suitable and c
venient form for carrying out these calculations.

APPENDIX A: UNBOUNDED DOMAIN SCALAR
GREEN’S FUNCTION

In the main text it is shown that the unbounded dom
dyadic Green’s function can be expressed in terms of a sc
function satisfying the equation.

S ¹22m0s0

]

]t Df~r ,r 8,t,t8!52d~r2r 8!d~ t2t8!.

~A1!

The solution vanishing fort,t8 and asur2r 8u→` for all t
is obtained by taking the Fourier transform with respect tx
andy and the Laplace transform with respect to time. In t
way it is found that

F ]2

]z2
2~k21m0s0s!G f̃~k,z,z8,s!52d~z2z8!, ~A2!

wherek25u21v2 and
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f̃~k,z,z8,s!5E
2`

` E
2`

` E
0

`

f~r ,r 8,t,t8!

3exp@2s~ t2t8!2 iu~x2x8!

2 iv~y2y8!#dx dy d~ t2t8!. ~A3!

Equation~A2! has the solution

f̃~k,z,z8,s!5
1

2g
exp@2guz2z8u#, ~A4!

whereg5Ak21m0s0s, taking the root with a positive rea
part. Formally carrying out the inverse transformation w
have

f~r ,r 8,t,t8!5
1

~2p!3i
E

2`

` E
2`

` E
Br

1

2g
exp@2guz2z8u

1s~ t2t8!1 iu~x2x8!

1 iv~y2y8!#du dv ds, ~A5!

where Br denotes the Bromwich contour for the inver
Laplace transform. The integrals over spatial frequenc
may be carried out first by transforming to cylindrical pol
coordinates using

u5k cosu, x2x85r cosb,
~A6!

v5k sinu, y2y85r sinb.

Integration with respect tou and application of a standar
integral expression for the zero-order Bessel function of
first kind, see formula 9.1.21 in Ref. 11, gives

f~r ,r 8,t,t8!5
1

~2p!2i
E

0

`E
Br

1

2g
exp@2guz2z8u

1s~ t2t8!#J0~kr!k dk ds. ~A7!

The relationship

E
0

` 1

Au21k2
exp@2aAu21k2#J0~bu!udu

5
exp@2kAa21b2#

Aa21b2
, ~A8!

found from the standard form 6.612 of Ref. 10, gives

f~r ,r 8,t,t8!5
1

2p i EBr

exp@2Am0s0sR#

4pR
es(t2t8)ds

5
1

8
A m0s0

p3~ t2t8!3
exp@2m0s0R2/4~ t

2t8!#H~ t2t8!, ~A9!

whereR25(x2x8)21(y2y8)21(z2z8)2. In Eq. ~A9! we
have used a formula 29.3.83 from Ref. 11 to obtain the re
given as Eq. ~11! in the main text. Let a(t2t8)
52A(t2t8)/m0s0, then
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f~r ,r 8,t,t8!5
1

m0s0p3/2a3
exp~2R2/a2!H~ t2t8!.

~A10!

The corresponding integrated solution is given by

F~r ,r 8,t,t8!5E f~r ,r 8,t,t8!d~ t2t8!

5
1

2p i EBr

exp~2Am0s0sR!

4psR
es(t2t8) ds

5

erfcS R

a D
4pR

, ~A11!

which is Eq.~13! of the main text.

APPENDIX B: A TERM IN THE HALF-SPACE
GREEN’S FUNCTION

The time integral ofl(a,r,z) to give L(a,r,z) cannot
be performed exactly, therefore the function must remain
a suitable integral form. This is written

L~a,r,z!

52
1

2p i E0

`E
Br

1

gs
exp@s~ t2t8!2gz#J0~kr!dk ds

52
1

2p i E0

`

exp@2k2~ t2t8!/m0s0#J0~kr!

3E
Br

1

As~s2k2!
exp@2Asz1~ t2t8!s/m0s0#ds dk

52E
0

` 1

2k Fe2kzerfcS z

a
2

ak

2 D2ekz

3erfcS z

a
1

ak

2 D GJ0~kr!dk, ~B1!

where formula 29.3.90 from Ref. 11 has been used. Dif
entiation with respect toz gives

]L~a,r,z!

]z
5

1

2E0

`Fe2kz erfcS z

a
2

ak

2 D2ekz

3erfcS z

a
1

ak

2 D GJ0~kr!dk. ~B2!

After a long time, the static limit is reached. Relationsh
valid in this limit are found from the properties of th
complementary error function

lim
x→`

erfc~x!50 ~B3!

and

lim
x→`

erfc~2x!52. ~B4!
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It is found that

lim
a→`

]L~a,r,z!

]z
5E

0

`

e2kzJ0~kr!dk5
1

R9
~B5!

and

lim
a→`

F~r ,r 8,t,t8!5
1

4pR9
, ~B6!

where R95Ar21z2. A conclusion drawn from Eqs.~B6!
and ~34! is thatV(r ,r 8,t,t8) vanishes in the static limit.

APPENDIX C: EVALUATION OF THE MAGNETIC
FIELD

From the curl of Eq.~31! and Eq.~2!, it is concluded that
the half-space magnetic-electric dyadic Green’s function
given by

G (me)~r ,r 8,t,t8!5¹3@If~r ,r 8,t,t8!#1¹

3@I8f~r ,r 9,t,t8!#2
1

m0s0
¹3¹

3 ẑ@¹83 ẑV~r ,r 8,t,t8!#, ~C1!

for z,0.
In order to evaluate the magnetic field in the regi

above the conductor, the curl of Eq.~16! is taken and again
Eq. ~2! is used to obtain

G (me)~r ,r 8,t2t8!52@¹3¹3 ẑ#@¹83 ẑU9~r ,r 8,t,t8!#,
~C2!

for z.0 where

¹ t
2U9~r ,r 8,t2t8!5

1

~2p!2i
E

0

`E
Br

1

~g1k!
exp@s~ t2t8!

2kz1gz8#J0~kr!k dk ds. ~C3!

It is convenient to define

x~k,z,t !5
1

2p i EBr

1

k1g
exp~2gz1st! ds, ~C4!

and use formula 28.3.88 in Ref. 11, to express Eq.~C3! as

¹ t
2U9~r ,r 8,t2t8!

5
1

2pE0

`

x~k,2z8,t2t8!e2kzJ0~kr!k dk, ~C5!

where

x~k,z,t !5
1

m0s0
FAm0s0

pt
expS 2

m0s0z2

4t
2

k2t

m0s0
D

2kekz erfcSA k2t

m0s0
1

z

2
Am0s0

t D G . ~C6!

The magnetic field in air for a singular electric source in t
conductor has the form, Eq.~C2!, whereU9(r ,r 8,t2t8) is
given by Eq.~C5! with Eq. ~C6!.
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