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The impedance of an eddy-current probe changes when the current it induces in an electrical 
conductor is perturbed by a flaw such as a crack. In predicting the probe signals, it is expedient to 
introduce idealizations about the nature of the flaw. Eddy-current interaction is considered with an 
ideal crack having a negligible opening and acting as a impenetrable barrier to electric current. The 
barrier gives rise to a discontinuity in the electromagnetic field that has been calculated by finding 
an equivalent electrical source distribution that produces the same effect. The choice of source is 
between a current dipole layer or a magnetic dipole layer; either will give the required jump in the 
electric field at the crack. Here a current dipole layer is used. The strength of the equivalent source 
distribution has been found by solving a boundary integral equation with a singular kernel. From the 
solution, the probe impedance due to the crack has been evaluated. Although analytical solutions are 
possible for special cases, numerical approximations are needed for cracks of arbitrary shape. 
Following a moment method scheme, numerical predictions have been made for both rectangular 
and semielliptical ideal cracks. These predictions have been compared with experiments performed 
on narrow slots used to simulate ideal cracks. Good agreement has been found between the 
calculations and the measurements. 

I. THEORETICAL APPROACH 

In eddy-current nondestructive evaluation, a flaw is usu- 
ally detected from the observation of probe impedance 
changes due to the interaction between induced oscillating 
electrical current in a conductor and the defect. Theoretically, 
the interaction may be treated as a scattering problem in 
which the scattered field is determined from a knowledge of 
the incident field and the nature of the flaw. The solution 
must take account of the shape and material properties of 
both the flaw and the conductor, ensuring that the electro- 
magnetic field satisfies the correct continuity and boundary 
conditions. 

In tackling the problem using an integral equation tech- 
nique, the scattered field may be expressed as either a 
volume’*’ or a surface integral.3 In either case, an integral 
equation can be derived containing a kernel that embodies 
the boundary conditions of the unflawed conductor. In this 
way, these boundary conditions are satisfied for an arbitrary 
flaw. The approach works best for simple conductors such as 
a homogeneous half-space,4 an infinite cylinder,’ or multilay- 
ered planar structures,6 since explicit Green’s kernels are 
known in such cases and are relatively easy to evaluate nu- 
merically. With a known Green’s function, the essence of the 
scattering problem is to determine the electromagnetic field 
in a flaw region or, by considering the flaw as a secondary 
source, determine its effective source strength. 

A small flaw in a nonmagnetic conductor, such as a 
small spherical cavity, disturbs the induced current and pro- 
duces the same perturbed field as a current dipole, the dipole 
strength being proportional to the incident field at the flaw 
site.7 More generally, the equivalent source of the perturbed 
field due to a volumetric flaw, such as a finite cavity, can be 
expressed as a three-dimensional current dipole distribution.’ 
A Fredholm integral equation of the second kind has been 
used to determine the effective dipole density in the flaw 

volume and approximate solutions of this equation computed 
using the moment method.* Predictions of the impedance due 
to the flaw may be found using an equation derived from a 
reciprocal relationship.’ 

It is possible to predict the probe response due to a crack 
by treating it as a thin volumetric flaw but a more elegant 
and efficient alternative is to consider eddy-current interac- 
tion with an ideal crack. An ideal crack is defined as a flaw of 
zero thickness acting as an impenetrable surface barrier to 
electric current. In discussing a two-dimensional version of 
this problem, Kahn, Spal, and Feldman’ adapted Sommer- 
feld’s solution for the diffraction of a wave at a semi-infinite 
half-plane” to determine the field in the region of the crack 
edge. A different ideal crack problem, involving a through 
crack in a thin plate, has been solved by Burke and Rose” 
for the case where the plate thickness is small in comparison 
with the skin depth. In spite of the restriction on the skin 
depth, the thin plate solution agrees with experiment over a 
wide frequency range. 

The present study is a two-part examination of the gen- 
eral ideal crack problem using a boundary integral formula- 
tion valid for an arbitrary skin depth.” In this, the first part, 
the forward problem is formulated and approximate numeri- 
cal solutions found using boundary elements. The use of a 
rapid numerical procedure for finding approximate solutions 
paves the way for part II which considers the inverse prob- 
lem. In ideal crack inversion, the aim is to estimate the shape 
of an unknown crack from a finite number of probe imped- 
ances. In the inversion scheme proposed, the flaw is modified 
iteratively until the forward problem gives optimum predic- 
tions which match the data as closely as possible in a least- 
squares sense. For a successful least-squares inversion 
scheme, the forward calculation described here in part I has 
been developed to be flexible enough to cope with any flaw 
shape that will be encountered and sufficiently fast so that 
the inversion does not take an inordinate amount of time. 
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FIG. 1. ideal crack and a normal excitation coil. 

We begin the account of the forward problem by consid- 
ering the crack boundary conditions. This is followed by a 
description of the integral formulation and details of the nu- 
merical scheme. Comparisons of predictions with experi- 
mental measurements on narrow slots produced by electric 
discharge machining are reported, and finally the conclusions 
are stated. 

II. SECONDARY SOURCE 

Boundary integral methods for solving electromagnetic 
problems are usually based on one of the variants of Green’s 
second theorem. Application of a vector version of the theo- 
rem leads us to consider the tangential components of the 
electric and magnetic fields on a suitable regular closed 
surface.’ An ideal crack is defined on an open surface So, say 
(Fig. l), but by collapsing the closed surface onto the crack 
(Fig. 2) it is possible to derive an integral equation for the 
surface field on So. In anticipation of this derivation, we 
consider first the boundary conditions at the crack. 

w 

Air %I 

FIG. 2. (a) Surfaces S1 and &; (b) surface S enclosing the crack. 

At an interface between dissimilar materials, the tangen- 
tial magnetic field is continuous. One of the standard text- 
book arguments to justify this statement is to invoke Am- 
pere’s circuital law, applying it to a small rectangular loop 
whose shortest sides cross the interface.13 In the limit as the 
shortest sides vanish the only contribution to the line integral 
of the magnetic field around the circuit comes from the 
longer sides of the rectangle. If there are no singular surface 
currents tangential to the interface, the net current through 
the loop is zero in the limit, therefore the two remaining 
contributions to the line integral from the longer sides of the 
rectangle sum to zero. For this sum to be zero for all possible 
rectangles, the tangential magnetic field must be the same on 
either side of the interface. Without modification the same 
argument applies at the crack surface So and the tangential 
magnetic field satisfies the continuity condition 

H:-H;=AH,=O, (1) 

where the + signs refer to limiting values approaching each 
side of So and the subscript t denotes tangential components. 

From the fact that the net magnetic flux through an ar- 
bitrary closed surface is zero, it can be shown using another 
well-known argument4 that the normal flux is continuous at 
So, a condition that is expressed as 

B;-B,=AB,=O, (2) 

where the subscript n denotes a normal component. 
The current density is, in general, discontinuous at an 

ideal crack and therefore the same must be true of the elec- 
tric field. It follows from Eq. (2) and Faraday’s induction law 
that the discontinuity in the tangential electric field AE, sat- 
isfies the condition ii.VXAE,=V.(li xAE,)=O, which 
means that the jump in the electric field at the crack may be 
expressed as the gradient of a surface scalar function. Thus, 

E;-E;=AE,= -1 V 
cr tP9 (3) 

where (+ is the conductivity of the material, p is a surface 
scalar function defined on So, and V, is the tangential gradi- 
ent. A similar equation for the jump in the tangential electric 
field at a surface arises in electrostatics but in electrostatic 
theory the dielectric permittivity is written in place of the 
conductivity and the surface is populated by charge 
dipoles.15 In eddy-current theory the analogous argument 
leading to Eq. (3) involves a source layer of current dipoles 
orientated normal to the surface. Equation (3) defines p apart 
from a constant that disappears when the gradient is taken. 
The constant is chosen such that p vanishes at the crack 
edge, a condition necessary for ensuring that the energy of 
the dipole distribution is finite. With ir the unit vector normal 
to So, the current dipole distribution p=rip represents the 
electric source equivalent of an ideal crack. 

An alternative equivalent source is a layer of oscillating 
magnetic dipoles whose surface density m is related to the 
jump in the electric field at So by ri XAE,= iwpom.14 The 
magnetic dipoles are orientated in the direction tangential to 
the crack surface and normal to the direction of the jump in 
the electric field. The implicit time dependence is of the form 
exp(-iwt). In the thin plate problem of Burke and Rose,‘t 
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the vortices invoked to represent the equivalent source of an 
ideal crack are, by another name, magnetic dipoles. 

For numerical calculations, the electric current dipole 
distribution has an advantage in that it is a single component 
vector and therefore requires fewer unknowns. Also, the cur- 
rent dipole density remains finite at the crack edge whereas 
the magnetic dipole density tends to infinity as the edge is 
approached. Although not an insurmountable problem, the 
edge infinity in the magnetic source can be an inconvenience 
in numerical calculations. 

An ideal crack, by definition, allows no current to pass 
across it, which means that the normal component of the 
current at So is zero. Although the crack surface will carry an 
oscillating charge, the charging current is of the order of the 
displacement current across the crack and is, therefore, neg- 
ligible in most cases of practical interest. The condition on 
the normal current, written as 

Jf=O, (4) 

will be used together with an integral equation for the field to 
determine the dipole density p. 

For ferromagnetic materials, the above boundary condi- 
tions are valid but are not necessarily appropriate because the 
finite opening of a real defect in a high-permeability material 
has a significant effect on the field adjacent to the crack 
faces. It may be necessary to use a different idealization for 
modeling cracks in, say, ferrous steel, but for materials that 
are not ferromagnetic, the boundary conditions specified by 
Eqs. (l)-(4) approximate the field adjacent to a crack or slot 
of narrow opening. 

Ill. DIPOLE DENSITY 

The integral equation for the dipole density at an ideal 
crack in an otherwise homogeneous conductor may be de- 
rived starting with the differential equation for the electric 
field. Excluding the flawed region, the perturbed electric 
field Ej , satisfies 

VxVxEj(r)-kSEj(r)=O, (5) 

where subscript j refers to the nonconducting Cj =l, k,=O) 
and conducting (‘j =2, ks= k2= iopou) regions. To get an 
integral solution of Eq. (5), the electric dyadic Green’s func- 
tions Yj(r]r’), j=1,2 are introduced satisfying 

VXVXFj(rlr’)-kfFj(rlr’)=S(r-r’).T, (6) 

where 3 is the unit tensor and r’ is the coordinate of a 
source point in the conductor. 5’t and Y2 are considered as 
electric dyadic Green’s functions because they satisfy the 
same continuity and boundary conditions as the electric field, 
namely, 

and 

lim .~j=O, (7) 
lrl-+- 

where G is a unit vector normal to the interface. The first of 
these conditions ensures that the tangential components of 

the electric field are continuous at the surface of the conduc- 
tor, the second ensures a continuous tangential magnetic 
field, and the third condition guarantees that the solution 
vanishes as ]rl-+m. 

An equation for the current dipole density may be found 
that is valid for surface breaking and subsurface cracks. In 
the argument presented below, it is necessary to consider the 
singular behavior of the field at the periphery of the defect, 
both at the buried edge and where the crack intersects the 
surface. The nature of the edge singularities is significant in 
transforming the integral relationship that is found from 
Green’s second theorem. It is not necessary to have a com- 
plete solution of the problem to establish the form that these 
field singularities take; all that is needed is an idea of the 
local solution on a scale that is small compared with the skin 
depth and the radius of curvature of the crack edge. On such 
a small scale the form of the edge singularities can be estab- 
lished from approximate local fields satisfying the Laplace 
equation. The aim has been to derive an integral equation 
involving the crack surface So and avoid the possibility of 
having to include a line integral to represent edge effects. 

Using Eqs. (5) and (6) and a regular surface S enclosing 
the defect, Green’s theorem in the form 

I (C.VXVXA-A.VxVxC)dr 
V 

= J(AxVxC)-CxVxA]dS 
I 

may be invoked to show that’ 

(8) 

E(r)=E”‘(r)- S{[iiXE(r’)]~V’x~(r’~r) 
I 

+iopo[i xH(r’)]+ qr’(r)}dS’, (9) 

where i is an outwardly directed unit vector normal to S and 
E(‘)(r) is the unperturbed electric field. The subscript j = 1,2 
has been dropped. Equation (9) is derived by applying 
Green’s theorem to the two surfaces St and S2 [Fig. 2(a)]. 
The resulting equations are added, the two surfaces brought 
together at the interface, and the interface continuity condi- 
tions used to reduce the surface of integration to S. 

The regular surface S consists of S, and S- adjacent to 
the crack faces, a surface S, encircling the buried edge and a 
surface S, encircling the crack mouth [Fig. 2(b)]. Allow S to 
collapse onto the open surface So and consider the way Eq. 
(9) is modified in the process. In the limit, Eqs. (1) and (3) 
can be used to simplify the integral over the faces. Examine 
first, however, the behavior of the integral over S, as the 
radius of S, vanishes. 

At a buried edge, the integral over S, involves a weak 
singularity’ at which the magnetic field is finite but the elec- 
tric field varies in magnitude as p-I”, p being the perpen- 
dicular distance from a point to the crack edge. For small p, 
the integral over S, is of the order P”~ and therefore vanishes 
with p for any field point not at the crack edge. 

Although the buried edge integral vanishes, the field in 
air near the crack mouth involves components of the order 
l/p. In spite of the presence of such terms, it is possible to 
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obtain an equation for the dipole density that does not in- 
volve edge integrals. This conclusion is reached by consid- 
ering the nature of the electromagnetic field close to the line 
where the crack meets the surface of the conductor. 

Near the crack mouth, local Laplacian corner solutions 
describe the electromagnetic field in the conductor. It is evi- 
dent from the comer solutions inside the conductor that both 
the electric and the magnetic fields are finite in this region. 
Therefore, the corner contribution to the integral over S, 
will vanish in the limit as the enclosing surface collapses. 
Outside the conductor, the field in the vicinity of the mouth 
of an ideal crack is singular. In characterizing the external 
field, we refer to the intersection of the crack surface with the 
surface of the conductor as the line of the crack. Local solu- 
tions given below describe separately components of the 
electric field perpendicular to the line of the crack and par- 
allel to this line. Although these field components are 
coupled and the solution in this region is complicated, the 
essential behavior is exhibited by the approximate local so- 
lutions of Eq. (5). Apart from a smoothly varying back- 
ground that does not concern us at present, the external elec- 
tric field in the direction of the line of the crack is 
approximated by 

where r? is a unit vector in the direction of the crack line and 
C$ is an azimuthal angle measured in the plane perpendicular 
to h from the direction of the normal to the surface of the 
conductor (-n-/2~&~/2). The term AE, is the jump in the 
electric field across the crack mouth. Equation (10) applies 
on a scale that is small compared with both the crack size 
and skin depth. It gives the local field associated with the 
current contraflow divided at the line of intersection of the 
surface of the conductor and the crack. It may be verified that 
Eq. (10) satisfies Eq. (5) (with j=l, k, =0) on a small scale 
where AE, is locally constant. From the induction law, the 
corresponding magnetic field is 

AEo ,. io~,H,=VxE,= -- u 
n-p P’ 

where i, is a radial unit vector. Here the singular behavior of 
the magnetic field is exhibited in the radial component and 
not in the components tangential to the surface S, . There- 
fore the corresponding integral over S, vanishes in the limit 
as the radius of S, goes to zero. 

An additional contribution to the electric field arises due 
to the potential drop across the crack mouth. Using 4 to 
denote an azimuthal unit vector defined with respect to the 
direction of the crack edge, the potential has the local form 

where AV is the potential drop across the crack. The corre- 
sponding electric field is 

AV1 . 
E,=-VV=---~ +, 

where, once again, p is the cylindrical polar radial coordinate 
defined with respect to the line of the crack. Equation (13) 
contains a l/p singularity that will give rise to a nonvanish- 
ing contribution to the integral over S, in the limit as the 
radius of S, goes to zero. 

In summary, we have established, from the continuity 
condition, Eq. (l), and the nature of the field at the perimeter 
of the ideal crack, that the magnetic-field term in Eq. (9) 
does not contribute to the scattered electric field in the limit 
as S collapses onto So. Furthermore, Eqs. (3) and (13) show 
that only the conservative part of the electric field contributes 
in the limit and it does so both through a contribution from 
the mouth and through an integral over the crack faces. In 
the subsequent development, a transformation is made to ab- 
sorb the mouth contribution into a surface integral over So. 

In general, the tangential electric field on the surface S 
can be expressed in terms of two scalar functions as 
E,(r)=-V,V(r)+VX[hU(r)] but in the limit as S collapses 
onto Se, continuous and finite parts of the field will not con- 
tribute to the resulting integral. Hence, the contribution aris- 
ing from VX[riU(r)] vanishes in the limit. This means we 
need only consider a surface integral involving the part of 
the tangential electric field that is contained in the term 
-V,V(r). Note that the continuity of the tangential electric 
field implies that the potential V(r) is continuous at the air- 
conductor interface. From the jump in the electric field at the 
crack one can identify A V(r)=p(r)/(+. The nonvanishing part 
of the integral from Eq. (9) is transformed as follows: 

I s 
[ii XVV(r’)].V XRr’lr)dS’ 

= sii{VX[V(r’)VxFfr’jr)] 
I 

-V(r’)VXVXflr’lr)}dS. (14) 

Applying the Stokes theorem to the first term on the right- 
hand side shows that its contribution vanishes since S is a 
closed surface. Hence, in the limit as S, and S- approach 
the crack faces, 

E(r)=E(‘)(r)- ri-[AV(r)V’xV’xflr’(r)]dS’ 
I SO 

=E(“)(r)+io~o soRrlr’).p(r’)dS’. 
I (15) 

Here the integrand is transformed using Eq. (6), we use the 
fact that AV(r)=p(r)/(+ and apply the symmetry 
relationship5 F(rlr’)= .Y@(r’lr), where T denotes the trans- 
pose of the dyad. 

Multiplying Eq. (15) by the conductivity (+ and applying 
the condition, Eq. (4), that the normal component of the cur- 
rent density at the crack surface is zero, gives 

J(O)(r,)= -k2 lim n -I r-r+ so 
Gnn(rlr’)p(r’)dS’, (16) 

where .T~“)(r,)=cl; .E(‘)(r,) and Gnn(r(r’)=ii -.FQ-jr’)-ii. 
Equation (16) determines the current dipole density on the 
surface So. 
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The nature of the singularity in the Green’s function 
means that Eq. (16) involves an improper integral that is 
interpreted in the limit by Hadamard’s theory of the finite 
part.16*17 Unfortunately this interpretation is not helpful for 
numerical boundary element calculations. To calculate the 
singular matrix element, the region of integration is sepa- 
rated into two parts: a finite exclusion zone S, adjacent to the 
field point, and a region remote from the field point that can 
be treated using a standard numerical quadrature scheme. 
Here the integral over S, is evaluated analytically with a 
near-field approximation of the kernel, then the limit is taken 
as the field point approaches the center of the exclusion zone. 
The details of this procedure are given in Sec. VI following 
a discussion of the dyadic kernel. 

IV. GREEN’S DYAD 

The quasistatic dyadic Green’s function for an electric 
source in a half-space conductor satisfying Eq. (6) and the 
boundary conditions (7) was derived by Raiche and 
Coggon.4 Closely related earlier work on dipoles in a half- 
space is reviewed in the text by Banos.18 Using an analysis 
based on a scalar decomposition of the field using Hertz 
potentials,” the half-space dyadic Green’s function giving 
the electric field due to an electric source can be written as 

F(rlr’)=( j Y+b VV a[Y&rlr’)+Yg5(rlr’-2fz’)] 

+$ {Vxf[V’xiV(rlr’)]}, 

where Y’=.?i+jjt -f,? is a modified unit dyad that reverses 
the sign of the z component of a vector, 

&WI = 
eiklr-r’I 

4n-Jr-r’1 (18) 

and 

where the results are given in terms of Kelvin functions. For 
the numerical calculations, the Kelvin functions are approxi- 
mated by polynomials.*r 

V. IMPEDANCE 

The eddy-current probe impedance change due to an 
ideal crack is given in terms of the coil current J(r) and the 
scattered electric field E(“)(r) by 

12AZ = - 
I 

E(s)(r).J(r)dr 7 (21) 
coil 

where the integral is over the coil region. The scattered elec- 
tric field EcS)(r) is given by the integral of Eq. (15). An 
alternative and more convenient expression for the imped- 
ance is found from Eq. (21) using a reciprocity principle22 
based on the vector Green’s theorem, Eq. (B), with C= -EC’) 
and A=E”‘. Using the field equation (5) with the source 
term J(r) included, the impedance is expressed as a surface 
integral. The choice of the surface is somewhat arbitrary, but 
initially the surface S defined earlier and illustrated in Fig. 
2(a) is chosen, allowing S to collapse onto So as before to 
give the desired result, 

(22) 

The application of the reciprocity relationship is slightly 
complicated by the fact that the primary and secondary 
sources are in different regions, but this is taken into account 
by starting with two surfaces as shown in Fig. 2(a), combin- 
ing these to form S while making use of the field continuity 
conditions that apply at the air-conductor interface. 

The unperturbed electric field in the conductor due to a 
coil with an axis of symmetry normal to the interface is 
given by 

I m K 
Eco)(p,z)=iopol& o jo eYnZS(K)J1(KP)dK, (23) 

V(rlr’)=*&~Z(k,p,lz+z’l)-2&r/r’-2;z’), (19) 
where y. = 47 z opoa, taking the root with a positive real 
part. The coil function S(K), is a combined Laplace and Han- 

where p2=(x-x’)2+(y-y’)2. Here the -t sign holds if 
kel transform of the coil turns density n(p,z) and is given by 

z+z’<O and the - sign if z+z’>O. Equation (19) contains 
m m 

the function L,= dLlc?z where L is given by the Foster-Lien 
S(K)= 

If n(w)ew(- KZ)JI(K,P)P dp dz. (24) 
0 0 

integral,18 
In the case of a coil with a rectangular cross section and a 

L(k,p,[)=f: 5 e-YIJo(ps)ds 

=lo[ - WS- O/21Ko[ - ik(S+ 5)/2], (20) 

where S2=p2+12 and y = x/=, taking the root with a 
positive real part. Here we have taken p = -ik since 
the integral requires that this parameter has a positive real 
part.*’ 

Equation (17) contains the unbounded domain dyadic 
Green’s function, an image term and a transverse electric 
term, (l/k2)Vxf[V’ xfV(rjr’)] accounting for the fact the 
reflection from the interface is partial. The differentiation of 
the transverse electric potential is presented in the Appendix 

uniform turns density no, the turns density function is given 
by 

n(w) = 
I 

n0 if a2<p<al, and -b<z-h<b, 
0 otherwise, 

(25) 
where a, is the outer radius of the coil and a2 the inner 
radius. 2b is the axial length and h the height of the coil 
center above the surface of the conductor. Integrating Eq. 
(24) with the turns density constant gives 

S(K)=% exp(-Kh)sinh(bK)[afX(alK)-a&(azK)], 

(26) 
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where x arises from the radial integration in Eq. (24) and is 
defined in terms of a standard integral bys 

I 

-1 
x(a)= o JI(~P)P dp 

He and HI being Struve functions. 

Vi. NUMERICAL SOLUTION 

A discrete approximation of Eq. (16) has been found for 
plane ideal cracks of arbitrary shape perpendicular to the 
surface of the conductor. The coordinate system has been 
chosen such that the crack is in the plane x=0 (Fig. 1). For 
the numerical calculations, it is convenient to work with a 
rectangular domain S, rather than the domain of the crack 
So. Introducing a characteristic function gy ,z) into the in- 
tegrand of Eq. (16) allows an extension of the domain of 
integration. By definition, the characteristic function is 1.0 at 
any point on the crack surface and zero elsewhere in the 
crack plane. With the extended domain S,, Eq. (16) can be 
written in the modified form 

J”‘(r n 2 )= -k2 lim 
I 

GYrlr’) y(r’)p(r’)dS’, (28) 
r-r+ s, 

where Gxx(rlr’)=i- 3Qjr’) ai. A discrete approximation of 
Eq. (28) is formed by expanding the characteristic function 
and the dipole density in terms of pulse functions. The pulse 
functions are defined on a rectangular lattice filling the re- 
gion S, with cells whose dimensions are S,,X 8,. Thus, 

Y(YJq YhPl( ;)G( ;) 

and 

P(Y?z)=z Pl&( $Pm( ;), 

where the summations are over all cells and 

I 1.0 if 
Pi(U)= 

-$Su-j<+, 

0 otherwise. 
(30) 

The coefficients yiYlm are predefined as 1.0, zero, or some 
intermediate value depending on whether a particular rectan- 
gular cell is inside, outside, or on the border of the crack. 
The optimum choice is given by 

(31) 

where .SI, is the domain of the lm cell. Substituting Eq. (29) 
into Eq. (28) and demanding that the resulting equation is 
satisfied only at the central point of each rectangle, r,,,, , the 
piecewise constant dipole density is given by 

j=( $7&p, (32) 

where the elements of the vector j are Jr,,,= cV$“)(rl,,,)yrm, 
and the matrix T is diagonal with ylm as its diagonal ele- 
ments. The matrix elements of G are given by 

G (33) 

The skin depth S, used as a scaling factor, ensures that the 
matrix elements are dimensionless. 

The solution of Eq. (32), giving the piecewise constant 
approximation of the dipole density, is found by carrying out 
a LU decomposition of the matrix G. Because T is diagonal, 
the LU decomposition is retained in forming the matrix prod- 
uct $7. The solution is then found by backsubstitution. A 
major advantage of the scheme, particularly for inversion, is 
that the decomposition is done on a flaw-independent matrix. 
This means that it is only necessary to decompose once for 
any number of flaws defined on the same grid. 

The crack impedance in discrete form is given by 

This follows from Eqs. (22) and (29) plus the approximation 
that the value of E$‘) averaged over a cell is equal to the 
value at the center. 

The matrix elements of E, expressed as the sum of a 
free-space and a reflection term, are of the form 

(35) 

Using Eq. (17), these separate contributions are given by 

Gji)= 6/szm( k2+$j +(Olr)dS, {Lm}+;(CW} (36) 

and 

(37) 

All but the singular matrix element are calculated from Eqs. 
(36) and (37) using a numerical quadrature scheme. Evalua- 
tion of the singular element is carried out by subdividing the 
region of integration into a square exclusion zone of side 2a, 
and a region outside the square covering the remainder of the 
singular cell. The integral over the exclusion zone is given 
by 

~oo=4~f#;j-;( k2+-$) NWy dz], (38) 

where +(R)=eikRl(4mR) and R2=x2+y2+z2. By expand- 
ing &R) as a power series in ikR, integrating term by term 
and taking the limit, I, is expressed as a power series ex- 
pansion in ika. If we ensure that the size of a cell is much 
smaller than a skin depth, a reasonable approximation is ob- 
tained by terminating the series after a few terms. Terminat- 
ing at fifth order, the integral of the free-space Green’s func- 
tion over the exclusion region is given by 

ZOO=; T c,(ika)“, 
V-O.5 
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where TABLE I. Probe and flaw parameters. 

X2 
(v-3) @v- 1) 

(40) 
Evaluating the coefficients gives 

co=d!, c1=0, c2=-ln(l+V7), 

c3=-;, c,=-~fi+ln(l+v?)], cs=-2. 

Adding I, to the result of the integration over the region 
of the singular cell outside the exclusion zone gives the value 
of the singular matrix element. This value should be inde- 
pendent of the size of the exclusion region. However, nu- 
merical errors are introduced first by terminating the series 
(39) and second in the numerical quadrature used to integrate 
outside the exclusion zone. A good test of the scheme is to 
vary a and examine any changes that might occur in the 
value of the singular matrix element. Although it is not pos- 
sible to state precisely how small these changes should be, it 
is prudent to ensure that they are much smaller than the 
overall error in the impedance predictions. 

The nature of the singularity means that the leading term 
in I, is of the order l/u. This dependence is a feature of the 
singular matrix element found by integrating the dyadic 
Green’s function over a surface.24*25 In the singular element 
calculation the contribution from the a-dependent function 
Zoo must be cancelled by contributions computed numeri- 
cally. The cancellation is more accurate for a larger exclusion 
zone but it is not possible to exceed the bounds of the sin- 
gular cell therefore cancellation errors are minimised by put- 
ting 2a equal to the smaller of SY and 8,. 

VII. COMPARISON WITH EXPERIMENT 

The boundary-element predictions have been compared 
with measurements made on narrow slots in aluminum al- 
loys. The ideal crack theory assumes that the defect has a 
negligible opening and therefore it is important that the ex- 
periments are performed at a frequency such that the skin 
depth is large compared with the width of the slot. The pa- 
rameters for two experiments are given in Table I, including, 
at the bottom of the list, the ratio of crack opening to skin 
depth. In both experiments the crack opening is less than 
10% of the skin depth. 

A comparison between predictions of the coil impedance 
change due to an ideal crack and experimental measurements 
is shown in Figs. 3 and 4. The measurements by Burke2” are 
made at different coil positions with the coil axis in the plane 
of a rectangular slot. The coil starts at y =O, where the axis 
passes through the center of the slot. The calculations have 
been carried out using three different rectangular grids to 
give some indication of the stability of the results with re- 
spect to variations of the cell dimensions. The discrepancy 
between calculated and measured results for the 32X 16 grid 
is approximately 3%. Figure 4 compares the phase of the 
flaw signal with experiment showing that the predictions 
agree well with the measurements. 

For the second comparison, the flaw profile was mea- 
sured and the results of these measurements used to generate 
a set of coefficients to define the flaw shape in accordance 

Expt. 1 Expt. 2 

Coil parameters 
inner radius (at) 
outer radius (aa) 
length (26) 
lift-off (I) 
number of turns 

Frequency 
Conductor 

conductivity 
thickness 

FIaw 
shape 
length (d) 
depth (h) 
opening (c) 

Derived quantities 
skin depth (8 
opening/skin depth (c/6) 

6.1520.05 mm 
12.420.05 mm 
6.15-tO.l mm 
0.88 mm 
3790 

900 Hz 

30.6f10.02 MS/m 
12.22ZO.02 mm 

rectangular 
12.620.02 mm 
5.020.05 mm 
0.28t0.01 mm 

3.03ZO.02 mm 
0.092~0.003 

2.51+0.01 mm 
7.38kO.01 mm 
4.99+0.01 mm 
0.30t0.01 mm 
4000 

417 Hz 

22.6220.06 MS/m 
24 mm 

semielliptical 
22.120.05 mm 
8.6120.05 mm 
0.33ZzO.01 mm 

5.1850.01 mm 
0.063t0.002 

with Eq. (31). Although the slot is nominally semielliptical, 
there are slight departures from the nominal shape that are 
accounted for in the calculations. The predicted inductances 
due to an ideal crack are compared with the measurements in 
Fig. 5. The results show a very close agreement between the 
calculations and measurements, particularly for the 32X 16 
cell lattice. The calculated resistance showed vary little 
change as the grid was varied (Fig. 6) but consistently un- 
derestimated the magnitude of the signal by a small amount. 

14.0 No. of cells 
- 32x16 
.------. 16x8 

12.0 --'8x4 

E 10.0 

5 

g 8.0 

9 

6.0 

0.0 
0.0 5.0 10.0 15.0 20.0 25.0 

Y (mm) 

FIG. 3. Boundary-element predictions of the variation of absolute coil im- 
pedance due to a rectangular flaw compared with experiment at 900 Hz. 
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100.0, No. of cells 
32x16 
16x8 
8x4 
Expt. 

60.0 

55.0 
I . 

No. of cells 
0.5- 

No. of cells 
- - 0.0. 0.0. 32x16 32x16 
.--____. ,GX8 .--____. ,GX8 . . 

-- -- 8x4 8x4 
-0.5. -0.5. 

-1.0. -1.0. 

23 23 
E E 5 5 -1.5. -1.5. 

%  %  -2.0. -2.0. 

-2.5. -2.5. 

-3.0. -3.0. 

-3.5. -3.5. 

50.01~ 0.0 5.0 10.0 15.0 20.0 25.0 -4.51. 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 

Y (mm) Y (mm) 

FIG. 4. Boundary-element predictions of the variation of the phase of the 
impedance change due to a rectangular flaw compared with experiment at 
900 Hz. 

FIG. 6. Boundary-element predictions of the variation of coil resistance due 
to a flaw compared with experiment at 417 fix. 

VIII. CONCLUSION 

A theory has been developed for calculating the per- 
turbed field due to an ideal crack in a half-space conductor. 
By representing the flaw in terms of an equivalent dipole 
density, a three-dimensional vector field problem has been 
reduced to one of finding a single component source distri- 
bution on a surface. The dipole density is given by a solution 

5f 5f 
g g 0.8. 0.8 

-d -d 

0.6. 0.6 

0.4. 0.4 

0.2. 0.2 

No. of cells 
- 32x16 32x16 
.-_____. 18 x 8 ,ex 8 

8x4 
Expt. 

oovv- 
‘0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 

0.0 . 
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 

Y (mm) 

FIG. 5. Boundary-element predictions of the variation of coil self- 
inductance due to a flaw compared with experiment at 417 Hz. 

of an integral equation with a singular kernel. The equation 
has been approximated using the moment method and a so- 
lution of the resulting matrix equation found by a LU decom- 
position. 

A notable disadvantage of the moment method is that the 
accuracy of the results are difficult to predict and control. A 
piecewise constant solution is a crude approximation and one 
must be concerned about the errors this assumption intro- 
duces. On the other hand the predictions are often reasonably 
accurate even when only a few unknowns are used to define 
the dipole density on the crack. The calculation of, say, 50 
impedances using a 16X8 grid takes only about 20 s on a 
PC, including the calculation of the matrix. Although the 
speed of the calculation is not of major importance for mak- 
ing predictions, it is a significant factor in inversion where 
computational cost severly restricts what can be done. This 
issue is explored further in part II. 
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APPENDIX: QUASISTATIC HALF-SPACE GREEN’S 
DYAD: TRANSVERSE ELECTRIC TERM 

In this Appendix the transverse electric term from the 
half-space Green’s dyad, Eq. (17), is expanded and expressed 
in terms of Kelvin functions. The term in question has the 
form 
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- a2v d2V 
-0 -ayz axay 

; VxiV'x;V(r/r')=~ a2v a2v 
- --s 0 ' axay 

_ 0 0 o- 

(AlI 

where V(rjr’) is given by Eqs. (18)-(20). In order to get 
explicit expressions for the derivatives of V(rlr’), it is nec- 
essary to evaluate the derivatives of the function L. Rewrit- 
ing Eq. (20), this function is given by 

L =~o(~KoW, (‘a 

where (r=-ik(S-J)/2 and p=-ik(S+l)/2. For the TE 
dyad we need L,,, , Lyyz , and L,, , the subscripts denoting 
derivatives. Taking the derivative with respect to z gives 

L,=[LYI1((Y)KO(P)+Pzo(cu)K1(P)l/S, (A3 
hence 

L,,= - y 2 [zl(a)Kl(p)-lo(cu)Ko(P)l 

-[all(cu)Ko(P)+plo(a)K1(P)I 
(as/ax) 

S2 (A4) 

and 

L . ..=~oo~o~c”~~o~P~+~ol~o~~~~.~P~+~,o~*~~~~o~P~ 

+PIdI(~KI(P), W) 

where 

Poo=--$qg+(q)(g)(g), 646) 

PO’=3 dx dx 
’ ~(~)-$($~)-2(~)(~)2, (A7) 

plo=$ dx dx l aa(ds)-$($~)+2(~)(~)2, (A8) 

and 

h=(q)(g) 

x(q(g)2. (A9) 

Differentiating with respect to x in Eqs. (A6)-(A9) gives 

poo=!$[ l-3(yj2], (AlO) 

p11= -2 [l-3( qi2-2 ;;;:;!;l. (A13) 

The expression for Lyyr has the same form as Eq. (A5) with 
y-y ’ replacing x-x’ in Eqs. (AlO)-(A13). Similarly L,, 
can be written as 

L ,,=Qoo~o(~)~o(P)+Qo~~o(~)~~(P) 
+Qldl(cu)Ko(p)+Ql~zl(a)Kl(p), 

where 

QoI=;$(;)-;($;) 

-2(yj(3($), 

+2(q(33 

and 

QII=(~)($) g-$(7:) 

+(;+;)(y)(g)($). 

(A14) 

(Al% 

6416) 

(A17) 

w-9 

Carrying out the differentiation in Eqs. (AH)-(A18) gives 

3k2[ 
Qoo= -3 (x-x’)(Y-Y’), (A19) 

Qo,= -$ [3(y) -k’&S](x-x’)(y -y ‘1. (MO) 

Qlo= -$ [3(y) +k’@](x-x’)(y-y’). (ml) 

and 

Q,,=$ (; +&)(X-x’)o-Y’)- (m2) 

Finally, the modified Bessel functions with complex ar- 
guments are expressed in terms of Kelvin functions as 
follows:21 

Zu(a)=ber(t)-i bei W3) 

Zr(a)=~[(l+i)ber’(~)+(l-i)bei’(l)], W4) 

Ko( p) = ker( 7) - i kei( 7)) 

KI(P)=-A[(l+i)ker’(r~)+(l-i)kei’(v)], (A26) 

where .$=v”z Re(a) and V=V? Re@). and 
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