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Eddy-current inversion is the process whereby the geometry of a flaw in a metal is derived from 
electromagnetic probe measurements. An inversion scheme is described for finding the shape and 
size of cracks from eddy-current probe impedance measurements. The approach is based on an 
optimization scheme that seeks to minimize a global error function quantifying the difference 
between predicted and observed probe impedances. The error minimum is sought using a standard 
descent algorithm that requires a knowledge of the gradient of the error with respect to a variation 
of the flaw geometry. Computation of the gradient is based on a provisional flaw estimate, then the 
flaw estimate is updated in a “direction” that reduces the error. The process continues iteratively 
until a convergence criterion has been satisfied. Then the final flaw estimate should match the shape 
of the real defect. An equation for the gradient has been derived using an integral formulation of the 
ideal crack problem. Numerical estimates of the error gradient and the probe impedances have been 
calculated using approximations based on the moment method. Tests of the inversion scheme using 
single frequency probe impedance measurements have been carried out by calculating the shapes of 
narrow slots in aluminum alloy plates. Good agreement is found between the optimum profiles and 
the measured slot shapes. 

I. INVERSION 

In eddy-current nondestructive evaluation, a defect such 
as a crack in a metal is detected through changes of the probe 
signal caused by perturbations of induced current (Fig. 1). 
The task of predicting the signals from a knowledge of the 
probe and flaw is a direct or forward problem. In the corre- 
sponding inverse problem, the aim is to determine the shape 
and size of the flaw from probe signals measured at different 
positions and possibly at different frequencies. Time-domain 
measurements could also be used but the vast majority of 
eddy-current inspections are performed at a single frequency. 
Therefore, the primary interest is in the inversion of oscilla- 
tory signals. 

An optimization approach to inversion seeks the flaw 
which minimizes the difference between tentative predictions 
of the probe signals and the measurements. If the agreement 
is unsatisfactory, then the flaw is updated and a new predic- 
tion made. The process continues through a number of itera- 
tions until predictions and observations match to within a 
reasonable tolerance. When a tolerable agreement has been 
found, the final flaw should be close to an optimum estimate 
of the real defect. 

An improved estimate of the flaw is obtained if a global 
error quantifying the difference between predictions and the 
measurements is reduced. Generally it is not possible to re- 
duce the error to zero owing to the effects of inaccuracies in 
the measurements or deficiencies in the predictions. How- 
ever, a minimization search can be carried out using a de- 
scent algorithm that terminates once the error is below a 
predefined threshold. Because the inversion is inherently 
nonlinear, it is a possible that a false minimum is found in 

which case the final flaw estimate may be inaccurate. There 
are standard methods of dealing with local minima; for ex- 
ample, simulated annealing can be used to distinguish the 
global minimum, but they can be computationally expensive 
and are best avoided. Although the possibility of false 
minima cannot be discounted, they have not been encoun- 
tered in the present investigation of ideal crack inversion. 

In general, a flaw is represented by a flaw function de- 
fined in terms of a variation of the electrical properties of the 
material, There are a number of possible representations, two 
of which were explored in an earlier article.’ For the first of 
these possibilities, the flaw function is defined as the electri- 
cal conductivity expressed as a function of position. A dis- 
crete version of this representation would be a piecewise 
constant approximation of the conductivity on a three- 
dimensional rectangular grid, which means that the inversion 
would seek the conductivity of each volume element in three 
dimensions. An unconstrained search for the conductivity of 
each cell is likely to be computationally expensive, therefore 
it would probably be necessary to limit the process in some 
way. The second possibility, leading to a more restricted op- 
timization problem, arises for cases where it is known a pri- 
ori that the defect is homogeneous; for example, if it is a 
cavity or a uniform inclusion. The inversion may then be 
specified as a search for the bounding surface.’ Ideal crack 
inversion presents us with a third possible flaw function: the 
equation of the line following the crack edge. Here the aim is 
to devise a means of finding the shape of a crack in a known 
plane by calculating the position of the edge from a set of 
probe measurements. 

With the above conception of the task, the search for the 
optimum crack shape takes place in a function space spanned 
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FIG. 1. A normal eddy-current coil over a surface breaking crack in an 
half-space conductor. 

by all possible flaw functions in a particular class. In order to 
find the minimum error via a descent algorithm, it is neces- 
sary to determine the error gradient in this space with respect 
to a variation of the flaw. A knowledge of the gradient en- 
ables one to update the flaw in a “direction” that will guar- 
antee an error reduction at each iteration. In crack inversion 
based on probe impedance measurements, the error gradient 
is dependent on the gradient of the impedance with respect to 
a variation in the location of the crack edge. Clearly the 
central requirement of the scheme is the determination of the 
impedance gradient. 

In part I, the interaction of eddy currents with an ideal 
crack was calculated using a boundary integral method.’ In 
the problem formulation, an integral equation for the field at 
the crack is derived, the equation is approximated using the 
moment method and a solution of the resulting linear system 
found by LU decomposition. This concluding part concerns 
the corresponding inverse problem. Previous work on crack 
inversion has been based on the thin skin limit where the 
skin depth is small compared with the depth of the crack.3T4 
In the present scheme, the skin depth is arbitrary. By devel- 
oping the boundary integral theory further, an equation for 
the impedance gradient has been derived. Using this gradient 
and an extension of the numerical scheme for approximating 
the forward problem, inversions have been performed to find 
the shapes of simulated cracks from probe impedance mea- 
surements. Our account of ideal crack inversion begins with 
a brief review of the forward problem. Further details are 
given in part I. 

II. FORWARD PROBLEM 

An ideal crack is a perfect surface barrier to electrical 
current but has zero thickness. The current density on oppo- 
site sides of the surface will usually be different, therefore an 
ideal crack supports a discontinuity in the tangential electric 
field. A solution of the appropriate boundary-value problem 
may be found by representing the discontinuity by an equiva- 
lent source distribution that gives rise to the same field. A 
suitable source equivalent of an ideal crack in an electromag- 
netic field is a current dipole layer where the dipoles are 
orientated normal to the surface.* 

The electric field perturbed by a crack at an open surface 
So may be expressed as a surface integral using Green’s sec- 
ond theorem. By applying a vector version of the theorem, it 
is found that the electric field in conductor containing an 
ideal crack is given by 

0) 

where E(‘)(r) is the unperturbed electric field, p(r’)=hp(r’) 
is the dipole distribution on the crack surface So, and 4 is a 
unit vector normal to the surface. The half-space dyadic 
Green’s function, .F(rlr’), ensures that the solution satisfies 
the correct continuity and boundary conditions for a half- 
space conductor. Setting the normal component of the elec- 
tric field to zero in the limit as the field point approaches the 
surface of the crack gives 

Er’(r*)= -imp0 lim ri. 
s 

flrlr’).p(r’)dS’, (2) 
l--r* s, 

where rk denotes the limit as the crack surface So is ap- 
proached from one side or the other. This equation for the 
dipole density will be written as 

.E~“‘(r2)= -iopo 
I 

G”“(rzlr’)p(r’)dS’, 
SO 

(3) 

where G”“(rlr’)=ri ..F(rjr’).ii. Because of the nature of the 
singularity of the Green’s function, the integral is to be in- 
terpreted using the Hadamard theory of the finite part.5 

Equation (3) has been approximated using the moment 
method and the resulting linear system solved to give a 
piecewise constant estimate of the dipole density.* The probe 
impedance change due to an ideal crack is given by 

Z= - 
I 

Ei’)(r)p(r)dS 
SO 

(4) 

for unit probe current. A discrete approximation of Eq. (4) is 
used to predict the measurements. 

III. NONLINEAR OPTIMIZATION 

In ideal crack inversion the task is to find the boundary 
of the defect from a knowledge of the scattered field as ac- 
quired, for example, by measuring probe impedance as a 
function of position and frequency. It is assumed that the 
crack lies in a known plane but the shape and size are un- 
known and must be inferred from measurements. The crack 
geometry is represented by the equation of the line of the 
crack edge written as &s,t) =O, where s and t are coordi- 
nates of a point in the crack plane. The probe impedance due 
to the flaw is a continuous function of position and the exci- 
tation frequency o. These coordinates are combined in the 
vector m={x,y,z,o}. The impedance is written as Z[&m], 
where the square bracket containing .$ denotes a functional 
dependence on the flaw function. 

A global “error” ??[e] is defined by 

g[itl=C W(mi)lZ[S,mil-Z,hs(mi)12, (5) 
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where the summation is over all the observations and 
Z,t,,(mi) is the observed impedance at mi . The weighting 
function W(m) is used to give more or less weight to the 
data as necessary. The aim is to find the flaw function 5 that 
minimizes the global error. 

Whether it is a steepest descent, a conjugate-gradient, or 
Levenberg-Marquardt scheme that is chosen, it is necessary 
to calculate the gradient of the error with respect to a varia- 
tion of the flaw function. An incremental variation of the 
flaw function means that the location of the crack edge is 
changed by adding or subtracting a small strip of territory to 
the perimeter of the crack domain. Suppose a variation in the 
flaw function &(t) results in the addition to the crack do- 
main of a strip &(t) wide, where r is a coordinate measured 
along the crack edge and s is measured in the orthogonal 
direction in the crack plane. Then 

&f(t)= -2 h(t). 
Without loss of generality, the flaw function will be scaled in 
order that @Js= -1 enabling us to equate 8&t) with the 
width of the strip. 

Adding the strip to the perimeter of the crack domain 
gives rise to a change in the global error. Each part of the 
strip contributes to the change and by integrating the contri- 
butions, the total error increment is expressed as 

d8[[5,@j= 
I (6) 

edge 
VgE(r)8&)dt. 

This relationship introduces V&C(t), the functional gradient 
of the error with respect to a variation of the flaw function. It 
represents the change in the global error due to a variation of 
the crack boundary at t. In a similar way the impedance 
gradient may be defined such that a change of impedance 
due to an incremental but arbitrary flaw variation is given by 

(7) 

The impedance gradient VgZ(m,t) may be viewed as sensi- 
tivity function since it represents the effect on the impedance 
at m due to a change in the location of the edge of the crack 
at a point whose coordinate is t. 

Substituting Eq. (5) into the definition of the functional 
derivative, 

d8[5,8fl= lim 
~[[5+wn-~[[El 

P-+0 P 

=$ m!+Pwll~=o, 
and using Eq. (7) gives 

2 Re 2 [z[t,mil 
i 

Hence, comparing Eq. (6), one identifies 

V&(f)=2 Re C [Z[5,mi]-Z,b,(mi)]*VgZ(mi,t). (10) 

Equation (10) enables one to calculate the error gradient 
from a knowledge of the impedance gradient at all the ob- 
servation points. 

In order to find the optimum flaw function, the error 
gradient is evaluated and the boundary of the flaw updated 
using a formula that depends on the descent algorithm. Let 
the modified flaw function be [+ A& then the steepest de- 
scent update is given by 

A&(t)= -47$5(t), 01) 

where cy governs the step size and is chosen to minimize the 
error functional &[t] in the direction of the gradient. Itera- 
tion continues until the condition 8 [,$]<E has been satisfied, 
where E is a real positive constant representing a tolerable 
residual error. Alternatively the process is terminated when 
the error no longer decreases significantly. 

Evaluation of the error gradient from Eq. (10) requires 
first the impedance predictions Z[&mJ, for all i and second 
the impedance gradient V$(m, ,t). The predictions are 
found from the solution of multiple forward problems. As- 
suming a suitable solver is available, the optimization prob- 
lem reduces to one of finding the impedance gradient. A 
possible way forward is to approximate the impedance gra- 
dient as a discrete form at this point, replacing it with a 
sensitivity matrix. The matrix elements could be evaluated 
using a finite difference scheme but the use of finite differ- 
ences for this purpose has potentially a very high computa- 
tional cost that is best avoided. A more elegant approach is to 
postpone the discretization and extend the field theory with 
the aim of expressing the functional gradients in terms of the 
electromagnetic field at the flaw. 

In an earlier article it was shown that the impedance 
gradient can be found in general from the same solutions that 
are used in predicting the impedances, plus an equal number 
of solutions from the corresponding adjoint problems.’ These 
adjoint problems are defined in terms of an operator acting 
on the dipole density, as in Eq. (2), where an integral form 
for the operator is employed. If the operator is self-adjoint, 
the expressions for the impedance gradient simplify a little, 
but more significantly the computational effort needed to cal- 
culate it is halved because the adjoint problems are identical 
to the regular problems. Below we treat a special case of the 
ideal crack in which the surface of the crack is perpendicular 
to the surface of a half-space conductor. For this and similar 
calculations, each standard forward problem and its adjoint 
are the same. This means that an inversion from N measure- 
ments requires the solution of only N rather than 2N forward 
problems to give both the predictions and the impedance 
gradient at each iteration. If the crack were inclined to the 
air-conductor interface, the operator would not be self- 
adjoint and it would be necessary to solve two forward prob- 
lems for each measurement. 
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IV. IMPEDANCE VARIATION 

Consider an ideal crack in the plane x=0 perpendicular 
to the surface of a half-space conductor occupying the region 
z<O. A variation of the flaw will be defined in terms of a 
flaw characteristic function y(r) where 

Y(r)= 
1, rES0, 
0 otherwise. (12) 

The impedance variation resulting from an arbitrary incre- 
mental change in the flaw characteristic is 

dZ= - 
I SE 

Ei’)(r)dp(r)dS. (13) 

Here and throughout this section the functional dependence 
on .$ is implied but not stated and rESE . We have chosen to 
integrate over an extended domain in the plane of the crack, 
denoted by SE, rather than the crack region So. This is sim- 
ply a device for making the region of integration flaw inde- 
pendent. The extended domain is larger than that of the flaw, 
either before or after variation, but it is otherwise arbitrary. 
By defining p(r) and dp(r) as nonzero over the flaw region 
and zero otherwise, the extension of the region of integration 
makes no difference to the integral. In order to identify the 
impedance gradient introduced in Eq. (7), Eq. (13) is trans- 
formed into a line integral whose path is the edge of the 
crack. 

Art equation for dp(r) is found by considering the 
equivalent of Eq. (2) for the varied flaw, namely 

E’O’(r)[ y(r) + Mr)l x 

= -iw~0[Ar)+Mr)l 

X sEG*x(r]r’)[p(r’)+dp(r’)]dS’, 
I (14) 

where Stir) is unity in the region of the flaw variation, the 
strip region, and zero elsewhere. The presence of the flaw 
characteristic in this equation means that it is valid for any 
field point in the plane of the flaw. Take the normal compo- 
nent of Eq. (l), multiply it by y(r) + Stir), extend the range 
of integration, and subtract Eq. (14) to give 

X +GXX(rlr’)dp(r’)dS’. 
I 

Note that the total electric field normal to the unvaried crack 
is zero, therefore E,(r) y(r) =O. The left-hand side of Eq. (15) 
represents a component of the electric field at the crack tip, 
prior to the variation. At the tip, the field exhibits a charac- 
teristic edge singularity that is described more fully in the 
following. For immediate purposes, note that there are two 
distinct relationships to be drawn from Eq. (15). The first 
states that the normal component of the electric field at the 
strip prior to the crack variation, E,(r)&(r), is equal and 
opposite to the field in that region due to the variational 
change in the dipole density. This relationship, stated as 

E,(r)Q(r)= -iopoQ(r) 
I 

s,Gxx(rjr’)dp(r’)dS’, 

(16) 
ensures the normal electric field at the strip surface of the 
varied crack is zero. The second relationship follows by re- 
stricting Eq. (15) to the original crack domain, giving 

-iwpoy(r) GxX(r/r’)dp(r’)dS’=O, 
I sE 

(17) 

which means that the normal electric field at the surface of 
the unvaried crack is unchanged, in fact remains zero, after 
the crack is varied. In other words the normal field due to 
dp(r) is zero over the surface of the original crack. 

Equation (13) is transformed by substituting for E:‘)(r) 
from Eq. (14). This gives 

dZ=- 
I 

pE~“‘(r)dp(r)dS=iopo SE[y(r)+Sy(r)] 
s 

^ 
X 

J 
sEGxx(rlr’)[p(r’)+dp(r’)]dS’ dp(r)dS. (18) 

Reversing the order of integration and using Eq. (16) gives 

dZ= - 
I 

SE[p(r’)+dp(r’)]E,(r’)Sy(r’)dS’ 

= - 
I 

dp(r’)E,(r’)6y(r’)dS’, 
SE 

(19) 

where we have used the fact that GXX(rlr’)=GXX(r’jr). 
The symmetry property of the XX component of the dy- 

adic Green’s function means that the integral operator is self- 
adjoint in the sense considered here.’ It is this property that 
makes the regular and adjoint forward problems identical. 
Indeed, the same is true for any crack whose surface is nor- 
mal to the conductor-air interface. On the other hand, the 
excitation of z components of the dipole distribution on an 
inclined crack will bring into play components of the half- 
space dyad that do not exhibit the self-adjoint property.’ 
Therefore, a calculation of the impedance gradient in such 
cases requires the solution of distinct adjoint problems. 

Equation (19) can be cast in the form of Eq. (7) by 
integrating over the width of the strip. In order to do this 
integration explicitly, the variation of the dipole density at 
the edge of the crack and the field at the crack tip is needed. 

V. LOCAL EDGE SOLUTION 

In a region whose dimensions are small compared with a 
skin depth, the electric field can be approximated as the gra- 
dient of a scalar potential satisfying the Laplace equation. In 
such a region, close to a crack with a smooth edge, the cur- 
vature of the edge can be neglected and the field described 
adequately by a scalar potential of the form 

V(p,c$)= -9-p1’2 cos 
i i 

; ) 

where 4 is measured from the positive crack face and p is a 
radial coordinate defined with respect to an axis along the 
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Substituting Eqs. (25) and (26) into Eq. (19) and using the 

FIG. 2. Variation of the dipole density and the normal component of the 
electric field near the crack edge. 

=- .P2(m,t)G[(t)dt, (27) 2 

crack edge. The term .P is locally constant and determines 
the overall strength of the edge field. The local electric field 
is given by 

which is the desired form for dZ[&S&m]. Comparing with 
Eq. (7), one identifies 

V.$(m,r)=~.P2(m,t). (28) 

E(P,$)= -VV(P,~). (21) 

Using the general relationship between the dipole density 
and the jump in the electric field at the crack, Eq. (3) of part 
I, we find that the dipole density at the edge is given by 

p(p) = 2.9=-o-p”2, (22) 

where c is the electrical conductivity of the conductor. The 
electric field in the vicinity of the crack tip is given by 

E(p,@)=-VV=- 6 $ +a;5 
i I 

=&[ficos(g)-)sin(g)]. (23) 

This central result gives the impedance gradient in terms of a 
function .F’(m,t) which weights the dipole distribution at 
the edge of the crack. 

The inversion algorithm begins by solving the forward 
problem for some initial estimate of the flaw shape. The 
solution is computed for each probe position giving a set of 
dipole distributions and impedance predictions. The dipole 
distribution at the edge of the crack is used to determine 
.F2(m,t) and the corresponding impedance gradient is cal- 
culated from Eq. (28). Next the error gradient is evaluated 
using Eq. (10) and the flaw is updated using the steepest 
descent formulas, Eq. (11). The process continues iteratively 
until a convergence condition is satisfied. 

The above local field is found in the limit as one approaches VII. NUMERICAL INVERSION 
the edge of an arbitrary ideal crack having a smooth bound- 
ary. On the scale of the crack dimensions however, the term 
.j7 will not be constant but vary along the edge. Therefore, 
for the general case, we define 

.P(m,r)=$~p1’2[E(p,$=0,r)-E(p,+=2rr,t)]*fi, (24) 

where E(p,+=O,t)-E(p,r$=2n;t) is the jump in the electric 
field at the crack surface. 

VI. IMPEDANCE GRADIENT 

In evaluating Eq. (19) for an arbitrary ideal crack, the 
dipole density at the crack edge will be written, in accor- 
dance with the preceding discussions, as 

Sy(s,t)dp(s,t)=2a~(m,t)~~, OSSSS&‘, (25) 

where s is a coordinate in the crack plane measured outward 
in a direction normal to the edge of the unvaried crack (Fig. 
2). At the edge of the varied crack, point A in Fig. 2, 
s = s&t). Equation (25) has the form of the local solu- 
tion (22). 

The singular electric field normal to the crack plane at 
the tip of the unvaried crack has the form given by the 4 
component of Eq. (23) with +=IL Thus, 

EJs,t)= -F(m,t) 
$7. 

A number of tests of the inversion scheme have been 
carried out using experimental data obtained by measuring 
coil impedance due to interactions with simulated defects in 
metal plates. The skin depth was much smaller than the plate 
thickness for all observations, therefore no significant errors 
are introduced by treating the conductor as a half-space. 

TABLE I. Probe and flaw parameters. 

Coil parameters 
inner radius (at) 
outer radius (aa) 
length (2b) 
lift-off (I) 
number of turns 

Frequency 
Conductor 

conductivity 
thickness 

Flaw 
shape 
length (d) 
depth (h) 
opening (c) 

Derived quantities 
skin depth (s) 
opening/skin depth (c/s) 

2.51t0.01 mm 
7.38-tO.01 mm 
4.9920.01 mm 
0.313-tO.01 mm 
4om 

350 Hz 

22.62kO.06 MS/m 
24 mm 

semielliptical 
22.1510.02 mm 
8.6120.05 mm 
0.33~0.01 mm 

5.6.5rtrO.02 mm 
0.058”0.002 

irregular 
49.78rtO.05 mm 
8.94ZO.05 mm 
0.33rC_O.O1 mm 
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0.5. 
No. of c&s No. of c&s 

- - 32x16 32x16 
0.04 .______. .______. 16x6 16x6 

x (mm) 

PIG. 3. Predictions of probe resistance due to a semielliptical simulated 
crack and comparison with experiment. 

Single frequency impedance measurements were made on 
simulated cracks in the form of narrow slots using a normal 
coil. These observations were made with the coil at a number 
of equally spaced locations along the length of the defect. 
The axis of the coil was aligned with the vertical plane of the 
slot. Both the probe position and data collection were con- 
trolled automatically by computer. The dimensions of the 
coil and slots, together with other experimental parameters, 
are given in Table I. 

1.2 

I 
F-5 r 

1.0. I.:\ A+ r’ l u p /A\ *.. ‘\ 

y ncI m 
5 

0.4. 

0.2. 

o.;; 
. 10.0 20.0 30.0 40.0 50.0 60.0 70.0 

x (mm) 

PIG. 4. Predictions of probe inductance due to a semielliptical simulated PIG. 6. Predictions of probe resistance due to an irregular simulated crack 
crack and comparison with experiment. and comparison with experiment. 

Iteration 0 123 

PIG. 5. Evolution of the crack profile through an iterative inversion using 
experimental measurements made on a semielliptical defect. The bold final 
crack profile was found after 15 iterations. 

A discrete approximate solution of the forward problem, 
found using the boundary element scheme described in part 
I, gives the predicted probe impedance and a piecewise con- 
stant dipole density on a regular grid of rectangular elements. 
In order to evaluate an estimate of the impedance gradient 
from these results, the dipole density is sampled by interpo- 
lation at points that are at a small fixed distance from the 
edge of the crack. The distance being of the order of the 
dimensions of a boundary element. From these samples, the 
function .Y(m,t) is estimated using the half-power edge 
variation of the dipole density, Eq. (22). The estimates give 
the impedance gradient at points where vertical lines through 
the centers of boundary elements intersect the crack edge. 
The steepest descent formula is used to relocate these points 
and the crack profile redefined as a continuous line using a 
cubic spline interpolation. 

Clearly there are discretization errors in this procedure, 
particularly as the piecewise constant approximation of the 
dipole density is likely to distort the dipole distribution quite 

0.5 

0.0 

I- 
-0.5. 

F -1.0. 

e -1.5. 
9 
9 -2.0. 

-2.5. 

-3.0. 

-3.5. 

-4.0. 

\ 

. 
::p 

:; 
: : 

. 

r 
No. of calls No. of calls 
32x16 32x16 
16X8 16X8 
Expt. Expt. 

/ 

I 

‘*.k : 
‘*. 

u c 

-4.51 
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 60.0 

x (mm) 
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1.8. Iteration 0 1 5 1020 

No. of cells 
1.6. - 32x16 

16X8 
1.4. Expt. 0. 

le 

PIG. 8. Evolution of the crack profile through an iterative inversion using 
experimental measurements made on an irregular defect. The profile after 20 
iterations is shown as a dashed line and the 100th iteration is shown bold. 

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 
x (mm) 

PIG. 7. Predictions of probe resistance due to an irregular simulated crack 
and comparison with experiment. 

severely at the edge of the crack. Options for improving the 
accuracy of the impedance gradient calculation include in- 
creasing the number of boundary elements or reformulating 
the numerical scheme so that the edge behavior is enforced.6 
Both of these possibilities carry a cost penalty that needs to 
be constrained for the overall scheme to yield results reason- 
ably quickly. In fact, the inversion results are reasonably ac- 
curate without the refinements. 

Impedance measurements made on a slot that is nomi- 
nally semielliptical are shown in Figs. 3 and 4, where they 
are compared with predictions calculated with three different 
boundary element grids. Using 51 observations, starting with 
a semicircular crack of radius 5 mm as the first estimate, and 
using a 16 boundary element grid, the inversion scheme pro- 
duced the result shown in Fig. 5. In the absence of any sta- 
tistical analysis of the measurements, the weight function of 
Eq. (5) was fixed at 1.0. After 15 iterations the global error 
reached 4% and thereafter did not change significantly with 
further processing. On completion of the calculation, the fi- 
nal length of the inverted crack was 21.7 mm compared with 
a measured value of 22.1 mm, and the depth was 8.35 mm 
compared with 8.61 mm measured. 

It is evident from Fig. 5 that some distortion of the crack 
shape is produced in the regions where the edge is inclined at 
around 45” to the surface of the conductor. This may be due 
to discretization errors arising from a jagged edge approxi- 
mation of the crack shape by the rectangular grid. 

Observations made on an irregular simulated defect are 
shown in Figs. 6 and 7 where they are compared with the 
boundary element predictions. The inversion results using 71 

observations are shown in Fig. 8. Again the initial or seed 
crack was semicircular, with a 5 mm radius. The boundary 
element grid for the inversion consisted of 32X 16 cells. Af- 
ter 100 iterations, the calculation was terminated with crack 
profile that was in good agreement with the measure shape. 
The final calculated flaw length was 48.9 mm, compared 
with a measured value of 49.78 mm. The maximum depth 
found by inversion was 8.95 mm compared with a measured 
value of 8.94 mm. 

WI. CONCLUSION 

An inversion scheme has been developed to reconstruct 
the geometry of cracks using probe impedance measure- 
ments. Tests of the inversion using observations on simulated 
cracks of known dimension show that the shapes can be re- 
constructed in reasonable time even with quite modest com- 
puter resources. All the results presented in this article could 
be calculated in less than 2 h on a personal computer. 

Flaw inversion by optimization contains two central re- 
quirements: an effective means of predicting the observa- 
tions and an efficient method of finding the gradient of the 
predictions with respect to a variation of the flaw. Although a 
boundary element scheme has been used in the present study 
to make the predictions, any suitable forward problem solver 
could be used instead. Similarly, the impedance gradient is 
determined by the behavior of the dipole density at the edge 
of the crack, therefore any numerical scheme that can be 
used to calculate the jump in the field or the dipole density at 
an ideal crack surface can be used to calculate the impedance 
gradient. It is not necessary to use a calculation based on an 
integral formulation. 
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