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Eddy current induced in a metal by a coil carrying an alternating current may be perturbed 
by the presence of any macroscopic defects in the material, such as cracks, surface 
indentations, or inclusions. In eddy-current nondestructive evaluation, defects are commonly 
sensed by a change of the coil impedance resulting from perturbations in the 
electromagnetic field. This paper describes theoretical predictions of eddy-current probe 
responses for surface cracks with finite opening. The theory expresses the electromagnetic field 
scattered by a three-dimensional flaw as a volume integral with a dyadic kernel. Probe 
signals are found by first solving an integral equation for the field at the flaw. The field equation 
is approximated by a discrete form using the moment method and a numerical solution 
found using conjugate gradients. The change in probe impedance due to a flaw is calculated 
from the flaw field. Predictions of the theory are compared with experimental 
impedances due to eddy-current interaction with a rectangular surface breaking slot. Good 
agreement is found between predictions and the measurements. 

1. FLAW EXCITATION 

In a well-known early study of eddy-current nonde- 
structive evaluation (NDE) ,l Burrows pointed out that the 
perturbed field due to a small flaw, such as a spheroidal 
cavity in a conductor-carrying eddy current, is the same as 
the field of an embedded current dipole. The idea of rep- 
resenting the effect of a small flaw by a point source has 
parallels in other branches of applied physics. For example 
far-field scattering of an electromagnetic wave is frequently 
represented as a multipole expansion; the dipole term being 
the one that decays most slowly with distance from the 
scatterer. In eddy-current NDE however, far-field behavior 
is of limited practical interest since the probe and the flaw 
must be close together to guarantee reliable detection. For- 
tunately it is possible to treat near-field effects of a finite 
flaw in terms of a distributed source. If the flaw is a thin 
crack modeled as a surface barrier to eddy current, then 
the crack behaves as a surface layer of current dipoles.2 
Here three-dimensional flaws in nonferromagnetic materi- 
als are considered, their equivalent source being volume 
current dipole distributions. 

The induced dipole moment at the flaw depends on the 
incident electromagnetic field, the flaw parameters, and the 
presence of an interface between the conductor and the 
surrounding air. Any calculation of the dipole density must 
take account of the mutual interaction between dipoles. In 
our integral equation formulation, a dyadic integral kernel 
represents the interaction between different parts of the 
source. The mutual interaction between dipoles takes place 
both directly and via reflections from the surface of the 
conductor. Therefore, the dyadic Green’s kernel contains 
both direct and reflection terms. It ensures that whatever 
flaw is considered, the perturbed field satisfies the correct 
continuity conditions at the conductor/air interface and 
vanishes as the radial field coordinate goes to infinity. Be- 

cause these conditions are automatically satisfied, one is 
free to concentrate on evaluating the field at the flaw. This 
has computational advantages since only the flaw region 
needs to be made discrete, thus limiting the required num- 
ber of unknowns. One possible alternative would be to use 
a free-space or unbounded domain Green’s function. An 
application of Green’s second theorem would yield surface 
integrals at the interface and these would have to be in- 
cluded in any numerical scheme, possibly using boundary 
elements. Consequently the number of unknowns would 
have to increase. Choosing a dyad that embodies the 
conductor/air interface conditions removes the need for a 
surface term but places a restriction on the conductor ge- 
ometry we can study- since the required Green’s functions 
are only available in explicit form for simple structures 
such as a layered half-space, an infinite cylinder, or a 
sphere.3 In the present analysis an isotropic homogeneous 
half-space conductor is considered. 

The method of moments is used here to approximate 
the integral equation for the dipole distribution by a dis- 
crete equation.4 A similar approach has been used by 
McKirdy5 to determine the electric field at a slot in a con- 
ductor. The discrete equation is then solved to get a piece- 
wise constant approximation of the dipole density at the 
flaw. With the flaw region divided into say N volumetric 
cells and three dipole components for each cell, it is nec- 
essary to solve a linear system with 3N unknowns. Al- 
though the number of unknowns needed in a typical eddy- 
current NDE problem may not be large, possibly a few 
hundred, a numerical algorithm has been designed with a 
view to treating very large systems of equations and adapt- 
ing it for other applications such as microwave scattering 
at penetrable bodies. Based on this strategy the linear sys- 
tem is solved iteratively using a conjugate-gradient algo- 
rithm. The matrix-vector products that consume most of 
the computational effort in the conjugate-gradient scheme 
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are computed using fast Fourier transforms.” 
Once the effective source strength of the flaw is known, 

it is easy to calculate the change of probe impedance due to 
the scattered field. One possible method for finding the 
probe response is to determine first the scattered electric 
field at the probe coil and then integrate over the coil re- 
gion to give the impedance contribution from the scattered 
field alone. However, by using a reciprocity theorem,’ it is 
possible to show that the same result may be found from an 
integral over the flaw. This second integral is much more 
convenient to use since the integrand is the dot product of 
the incident electric field and the induced source distribu- 
tion, making it unnecessary to perform the intermediate 
step of computing the scattered field at the excitation coil. 
In the discrete problem, where there are 3N unknowns, the 
impedance integral is approximated very simply by a 3N- 
dimensional scalar product and is computed very rapidly. 

II. INTEGRAL FORMULATION 

In a previous study, a volume integral formulation was 
used to calculate the induced magnetization of ferrite eddy 
current probe cores.’ Viewed as a scattering problem, the 
coil current produces an incident magnetic-field and the 
core acts as the scatterer. The induced magnetic dipole 
moment of the ferrite core is then regarded as the source of 
the scattered field. A Fredholm integral equation of the 
second kind expresses the total magnetic field as the sum of 
the incident field due to the coil and the scattered field due 
to the core. Assuming the core has linear material proper- 
ties leads to an equation for the core magnetization. This 
equation is then approximated by a discrete form by sub- 
dividing the core into volume elements and a numerical 
solution computed giving the core magnetization of each 
element. Although the flaw problem is physically different, 
the same basic formulation may be adopt.ed to determine 
the induced source strength at an inhomogeneity in a con- 
ductor-carrying eddy current. Assuming the conductor is 
nonferromagnetic, the induced source at the defect is an 
electric current dipole moment. We shall develop an inte- 
gral equation for the current dipole density beginning with 
the fundamental equations of linear electromagnetic the- 
ory* 

Assuming an excitation varying in time as the real part 
of exp( - iwt), Maxwell’s equations for an isotropic con- 
ductor containing a local conductivity variation may be 
written as 

VXE(r) =iqu&(r), 

VXH(r) =a(r)E(r), 
=a&Xr> + P(r), 

(1) 

where diplacement current is neglected. P(r)L = [a(r) 
- q,]E(r) is the induced current dipole density at the flaw 

due to departures from an otherwise constant conductivity 
au. The flaw calculation is developed from a solution of 
Maxwell’s equations expressed using the electric-electric 
dyadic Green’s function G( r 1 r’) as3 

E(r) =E(17(r) + z&u0 f G(rlr’).P(r’)dr’, (2) 
. J~aw 

where E(‘)(r) is the incident or unperturbed field and the 
integral represents the electric field scattered by the flaw. 
G( r 1 r’) transforms an electric source into an electric held 
hence its designation as an electric-electric Green’s func- 
tion. It is a solution of 

VXVXG(rIr’) - tiG(rlr’)=S(r - r’)I, (3) 
satisfying the same boundary and interface conditions as 
the electric field. I=%? + w + % is the unit tensor here 
expressed in terms of unit vectors, r’ is the coordinate of a 
source point in a half-space conductor (z < 0) and L k2 
= iquoao. The half-space solution of Eq. (3) can be de- 
rived by a scalar decomposition of the field and Fourier 
transformation of the field equations, an approach previ- 
ously used .for the analysis of external sources.9 This ap- 
proach leads to a result equivalent to that derived by Ri- 
ache and Coggon. lo Assuming that the Green’s functions 
vanish as Ir] -*co, scalar decomposition gives the form 

G(rlr’) = Go(rlr’) + Gi(rlr’) 

+ ( l/k2>Vxfl’XL?V(rJr’), (4) 
where Go(r ( r) is the dyadic Green’s function for an un- 
bounded conductor given by 

Wrlr’) = [I + Cl/k2)Tkb(rjr’), (5) 
with 

gclr - r’l 
Nrlr’)= 47rlr-r’l ’ (6) 

and the two remaining terms in Q. (4) are due to reflec- 
tion at the surface of the material. The first of these is the 
image term, 

Gi(rIr’)=[I’- (l/k2)VV’]~(rlr”), (1) 
where r” = r’ - Z?z’ is the image point and I’=s 
+ @ - %. The second contains a function V(r I r’) given 

by the Fourier integral 
m 1 
-m W(K+Y) 

xe-Ylat~‘l+~U(x-X’)+iu(v-Y’)dudv. (8) 

Here u and v are Fourier space coordinates, L K = (u2 

+ v*p2, and y = (u* + v2 - k2)1’2, where the L roots 
with positive real parts are taken. 

Alternative representations of V(r I r’) may be found 
by writing its Fourier transform with respect to x and y in 
two parts as 

i/Kexp( --yIz+z’l) - l/rexp( -y]z+z’I), 
and defining a function L( k,p,g) given by 

L(kpL)=; j-p s” $ 
m --m 

xe-y~+iu(X-x’) t iu(y-y’) du & (9) 
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wherep2= (x-x’j2+ (y-y’)2 andg= lz+z’l. Then 

~(rlr’)=~~~L(k,p,lz+z’l) -2f$(rlr”), (10) 

where the -t sign holds if z + z’ < 0 and the - sign if 
z + z’ > 0. In writing Eq. ( 10) the Fourier representation 

1 m ml 
4(rlr’) = (&# s s _ o. --co r 

x,-YII-dl + iU(X-X’) + tic,‘-Y’) & do 

’ (11) 

for the scalar Green’s function has been adapted for a sin- 
gular source at the image point. Note also that Eq. (9>, 
referred to by Banos as the Foster-Lien integral,” may be 
written in terms of modified Bessel functions asi 

L(k,p,c)= Jam +‘%tps)ds 

=Io[ - iW - 0/2lK0[ - ik(S + 5)/z], (12) 

where S2 = p2 + p. Here we have taken L ( ~ k2) - 1’2 
E - ik since the arguments of the modified Bessel func- 
tions must have a positive real part. Because the arguments 
have real and imaginary parts of equal magnitude, the 
modified Bessel functions can be written in terms of Kelvin 
functions. To evaluate the last term in Eq. (4), V(r I r’) is 
differentiated and the result expressed in terms of Kelvin 
functions. For numerical coding the Kelvin functions are 
approximated using polynonials.‘3 

Suppose we define the flaw function v(r) as L v(r) 
= [a(r) - uo]/oo, then multiplying Eq. (2) by L 
aov ( I) gives 

P(r) =P(“(r) + v(r>k2 
s 

G(rlr’)eP(r’)dr’. 
flaw 

(13) 

Pen (r) = aov( r)E’(r)and therefore vanishes at points not 
on the flaw. By solving Eq. (13) we obtain the effective 
source distribution of the flaw for a given excitation 
PtnPcr3 (r). Then the probe impedance or the scattered 
field are easily found from the induced source strength at 
the scatterer. Because we are interested in finding approx- 
imate numerical solutions that will give good results for an 
arbitrary flaw geometry, we have chosen to use the mo- 
ment method to determine P (r ), approximating Eq. ( 13) 
by a matrix equation. 

III. DlSCRETlZATlON OF THE INTEGRAL EQUATION 

A discrete approximation of the integral equation ( 13 ) 
is found by subdividing the region of space occupied by the 
flaw into a regular lattice of N, x NY x N, cells, each cell 
being a rectangular parallelepiped of equal size 6, x 6, 
x 8,. The induced current dipole density and the flaw func- 
tion are then expanded as pulse functions defined over the 
grid. Thus 

P(r)= C 
Nr-1 N5’ y p*m~,xsxo) 

LO m=O j=o x 

XPfnrT)PjrT) 3 

and 

(14) 

(15) 

xo,yo, and z. being reference coordinates for the source 
grid. The pulse function Pj(S>, is defined by 

1, if j-$Q<j+l 
Pj(S) = (16) 0, otherwise. 

Thus an arbitrary defect is modeled by assigning suitable 
values of v[,& on a regular rectangular lattice and postu- 
lating that the dipole source density is constant within each 
individual cell. For a crack or cavity of zero conductivity it 
follows from the definition that values of v/mj will be - 1.0 
for cells totally within the flaw. Where a cell is external to 
the flaw the discrete flaw function is zero and for cells on 
the boundary, some appropriate intermediate value is as- 
signed. Discretization error will be reduced by defining the 
flaw with a smaller cell size and a larger number of cells 
but this must be offset against a higher computational cost. 

To complete the discretization, the same three-dimen- 
sional pulse functions adopted for expanding the unknown 
are used for testing. Testing is carried out by multiplying 
the integral equation by the testing functions and integrat- 
ing over the field coordinates. That is, we take moments of 
the field by multiplying Eq. ( 13) by 

and then integrating with respect to x, y, and z. This pro- 
cedure yields a linear system for the solution vector Plmj 
given by 

where Pfjm is given in terms of the unperturbed electric 
field in the flaw region due to the probe as 

pw& = aovkh m JI:” Jz” JZz” E(“(r)dxdydz. 

(18) 
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Here xk= k6, + x0, yl=IaY + Yo, and z, =m& + zo, etc. 
(k,&m=0,1,2,3...). The dimensionless matrix in Eq. (17) 
is given by 

G k[,,&,f=k2 j-;II’ CT,’ J”_‘I’ Wxie~/~m I x’2y’~‘) 
m 

x+$+,f$)dx’dy’dz’, (19) 

where p&u), (j=O,1,2,3...) is a convolution of pulse func- 
tions given by 

I - Ij-sl + 1, ifj- l<s<j+ 1, 
/qs)= o (20) , otherwise. 

The matrix elements have been computed from Eq. (19) 
using a numerical quadrature scheme for three-dimen- 
sional integration. I4 Singular matrix elements are calcu- 
lated by enclosing the singularity in a finite exclusion vol- 
ume chosen to be a cube whose sides are of length 2a. 
Integration over the exclusion volume is based on a regu- 
larization scheme suggested by Lee, et alI5 for dealing with 
the strong singularity in the dyadic_Green’s function. By 
approximating the exponential term in the free-space 
Green’s function by a Taylor’s series expansion and inte- 
grating term by term, the exclusion volume integral is ex- 
pressed in the form of a power-series expansion in ak. Be- 
cause the size of the exclusion volume is chosen to be much 
less than the skin depth, the product ak is small and only 
a few terms in the polynomial are required to get reason- 
able accuracy, typically 3-5. The singular matrix element 
is found by adding the exclusion volume integral to the 
result of integrating over the remainder of the singular cell 
using a numerical quadrature scheme. The sum of the two 
contributions should be independent of the exclusion vol- 
ume size allowing a useful check on the result. Details of 
this calculation are described in a separate article.i6 

IV. UNPERTURBED FIELD 

The excitation vector P$i is given in terms of the 
unperturbed electric field at the flaw by Eq. ( 18). In gen- 
eral the incident electric field in the conductor due to an 
arbitrary external current source J(r) is given by an equa- 
tion of the form 

E(‘)(r) =$ Joi1 dz’ l Jmw G~(zIz’)*z(z’) 

x &( ia + UY) du dv, (21) 

where GT transforms an external electric current source 
into the electric field in the conductor. The transmission 
dyadic function transforms the external current source into 
a transverse electric field and may be written as9 

GT(rIr’)=VX!?7X’%(rjr’), (22) 

where V(r ( r’) is a transverse electric potential given by 

- i(&+u~) 
_ m 3 K-(K + Y> 

x p--‘+iu(x--7 +W-v’) du dv, (23) 

where V,=V - ‘&V&. Hence the Fourier transform of the 
transmission Green’s function is 

8,(11z~~=[ :iv i’ k] 2?&-L’P-a.. 
(24) 

For a normal cylindrical coil with a relatively large uni- 
form turns density n, the coil current density may be ap- 
proximated as uniform and azimuthal over a finite region. 
Using cylindrical polar coordinates to define the coil cur- 
rent density J, with a# as a unit azimuthal vector and I as 
the current per turn, we have 

J’P~Z’~‘= 
a&, %<z<zb and pl<p<p2, 

0 otherwise (25) , 9 

where p1 is the inner radius and p2 the outer radius of the 
coil. z, and zb are its lower and upper limits. The induced 
field E”‘(r) is evaluated through the two-dimensional 
Fourier transform of the current density. Assuming that 
the coil axis is located at (x,ILY,), the required transform of 
Eq. (25) is 

~~~IZI [p;‘(Kpd - p;r(Kp~) ] 
f(z) = x e - i(us + YJ za<z<zb 

10 otherwise . 
(26) 

The function Y(s), which arises in taking the Bessel trans- 
form of Eq. (25), is defined by17 

.9’-(s) = Jo1 pJ,(ps)dp 

=& EJ,(s)Ho(s> -Jo(s>H~(s)l, (27) 

where .J,, and .Ji are Bessel functions of the first kind. Ha 
and Hi are Struve functions. 

To determine the excitation vector P& explicitly for a 
normal cylindical coil, Eqs. (2 1 ), (24)) and (26) are co-m- 
bined with with Eq. ( 18) to give 
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P&z - 
inlk2vl,,,k CO 

I s 
ca &‘;~(K/‘z) - p;y(KpI) 

2h 
‘) 

-m sco “-?‘(K + 7’) 

V 

. I 1 - u .(e‘-=b- e-J%) 

0 

x (eVk+ 1 _ eM). 
sin (u6./? ) 

uSJ2 

x 
sin(vC5y/2) . 

VW2 
&w-xo-~c) +v(6p-yg-y,)] du & 

I 

(28) 
For computational efficiency, the double integral is evalu- 
ated using a two-dimensional Fast Fourier transform 
(FF”O. 

V. FLAW IMPEDANCE 

Adopting the probe current as the phase reference, the 
probe impedance AZ due to the flaw, expressed in terms of 
the electric field E(‘)(r) scattered by the flaw, is given by 

12AZ= - 
s 

EcS)(f).J(r)dr. (29) 
coil 

One might use Eq. (29) directly to compute the probe 
response but this would entail the intermediate step of cal- 
culating the scattered field at the coil before integrating 
over the coil region to get the impedance. Instead we apply 
a reciprocity theorem relating the scattered field at the 
primary source (the eddy-current probe) to the incident 
field at the secondary source (the induced current dipole 
density at the flaw). A similar form of the reciprocity prin- 
ciple is used to determine antennae impedances.’ Thus, 

12AZ= - 
s 

E(‘)(r).P(r)dr. (30) 
flaw 

Transforming to a discrete form, P(r) is again approxi- 
mated by a pulse function sum as in Eq. ( 14) and the flaw 
integration carried out over each volume element to give 

12AZ= - S.&L& 2 Nx-l N5’ NYi1 
k=O I=0 m=O 

~~~~~~~kdbOVkd. (31) 
Equation (3 1) allows us to compute the change in probe 
impedance due to the flaw from the solution vector as a 
simple multidimensional scalar product. 

VI. NUMERICAL ALGORITHM 

Approximate solutions of the discrete problem, Eq. 
( 17), have been calculated using a conjugate-gradient al- 
gorithm.“*‘* In this and similar algorithms, the greatest 
computational expense is incurred in the calculation of ma- 
trix vector products; therefore, it is important that these L 
products are evaluated efficiently. The demand for compu- 
tational efficiency is particularly acute where there is a 
need to obtain accurate numerical results because the dis- 
crete problem must have a fine resolution to make discret- 

ization errors small. In a three-dimensional vector calcu- 
lation such as this, the required number of unknowns may 
have to be very large to keep discretization errors within 
tolerable limits. Using a large number of elements could 
mean that the memory and processing requirements of the 
computation are prohibitive. Fortunately the Green’s func- 
tion has a convolutional-correlational structure that is pre- 
served in a discrete form by choosing a regular array of 
similar volume elements. Not only is the integral in Eq. 
( 13) a convolution in x and y, it may also be written as the 
sum of a convolution in z and a correlation in z, corre- 
sponding to the free-space and reflection parts of the 
Green’s function, respectively. The correlation in z is rec- 
ognizable from the z + z’ dependence of Gi( r 1 r’), Eq. (7)) 
and V(r 1 r’), Eq. (8). As a consequence, there is first a 
redundancy in the matrix (19) allowing a reduction in 
storage requirements and second a Toeplitz- Hankel struc- 
ture that allows matrix-vector products to be calculated 
using FFTs. 

In order to apply conjugate gradients in calculating the 
current dipole density at the flaw, Eq. ( 17) is interpreted 
as a matrix equation whose matrix elements are Cartesian 
tensors. In this scheme the elements of Pl,,j have three 
components and the v/mj are scalar row multipliers. In op- 
erator form we have 

Y=.dX, 

where 
(32) 

YsPgj YSPlmj , - , (33) 
and 

Nz- ’ dX=Pl,i- Vlmj 2 Nz ’ Nz ’ Glmj,LMrPLMp 
J=O L=O M=O 

(34) 
Also needed is the adjoint operator, ~?‘t,‘s>~~ given by 

N,-I N,--I NY-l 

.a?+x= P& - J=. Lzo Mzo G~j,LMJ'U~kUPL+ffi c 

(35) 

The superscript T here denotes the conjugate transpose of 
a dyad. Note that vlmj are real numbers, therefore conju- 
gation leaves these unchanged. 

The conjugate-gradient algorithm begins with an initial 
guess or estimate X0 from which we compute L R. 
= Y - SZ?X,, and PI = Qc = d+Ro. A convergence param- 
eter E determines the point at which the desired accuracy 
has been achieved. If k is the iteration number, then the 
algorithm proceeds as follows; for k= 1,2,... , if L Test 
= I[ R&[l Yll < E, stop. Xk is then the optimal solution of 
Eq. (32). Otherwise, update Xk by the following steps: 

xk=xk _ 1-k akpk, 

Rk=&- I - a,$k, 

(zk= d+&, 

(36) 
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TABLE I. Experimental probedaw interaction parameters. 

Coil parameters 

Inner radius (pi) 
Outer radius (pr) 
Length (zb - a) 
Number of turns 

Liftoff (z,) 
Frequency 

Specimen parameters 
Conductivity (cr) 

Thickness 
Flaw parameters 

Length (2 c) 
Depth (h) 
Width (w) 

6.15&0.05 mm 
12.4*0.05 mm 
6.15hO.l mm 

3790 
0.88 mm 
900 Hz 

3.06*0.02x 10’ s/m 
12.22 l 0.02 mm 

12.60*0.02 mm 
5.00*0.05 mm 
0.28 f 0.01 mm 

AWAZ) 14.0 
(Ohm.) 13.0 

12.0 

11.0 
10.0 

9.0 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

No. of cells 
.._.-.._. , x 7 x 4 
------ 3X7X4 
. . . . . . . . . . . 1 x ,5 x * 
----_ 1 x15x 16 
;_s__ 3x15~16 

Expt. 

bk=IlQkl12//lt?k- 1/12, 

Pk+l=bk&+& 

The numerical convolution and correlations implied by the 
operation &Pk and &t& are performed efficiently by us- 
ing the FFT. This, together with the fact that the storage 
requirements are reasonably modest, are the reasons why 
the conjugate-gradient algorithm is attractive for large sys- 
tems of equations with Toeplitz and/or Hankel forms. 

VII. PREDICTIONS AND COMPARISON WITH 
EXPERIMENT 

We have calculated the impedance change of a cylin- 
drical coil due to a rectangular surface slot in a conductor 
and compared these predictions of the model with the 
benchmark experimental measurements made by Burke.20 
The coil, specimen, and flaw parameters for the benchmark 
experiment are given in Table I. Although the measure- 
ments were made on a finite slab of aluminium alloy, the 
calculations assume a half-space conductor. However, be- 
cause the skin depth in these experiments (3.04 mm) is 
only 25% of the plate thickness at the test frequency (900 
Hz), this assumption should not produce significant errors 
in the predictions. The lift-off parameter z,, the distance 
from the base of the coil to the surface of the workpiece, is 
held constant at 0.88 mm. 

Figure 1 shows the excitation coil in relation to the slot 

0.0 
0.0 5.0 10.0 15.0 20.0 25.0 

x (mm.) 

FIG. 2. Comparison of predicted absolute impedance with experiment. 
Variation of 1 AZ( with distance measured along the slot from its center. 

and the coordinate system used to define the probe posi- 
tion. Impedance measurements made with the coil position 
varied in the plane of the slot are compared with theoret- 
ical results in Figs. 2 and 3. Figure 2 shows the variation in 
the absolute value of the coil impedance change and Fig. 3 
shows the phase variation. At x=0 the coil axis passes 
through the center of the slot and, because the mean di- 
ameter of the coil is greater than the slot length, the eddy 
current circulates around the defect without interacting 
strongly. The greatest interaction is observed when the coil 

Aw(Z) 
Pegs.) 

90.0 

80.0 

l . 

70.0 
No. of cells 

. .._ - . . . . , x,x 4 
------ 3X7X4 
..__....... 1x,5x8 

60.0 

\ . 

. 
. 

. ----. 1 x15x16 . 
~ 3x15~16 

x-axis I . Expt. . 
. I u 50.0 0.0 5.0 10.0 15.0 20.0 25.0 

I u x (mm.) 

FIG. 1. Eddy-current coil over a rectangular surface slot in a conducting FIG. 3. Comparison of phase with experiment. Variation of arg(AZ) with 
half-space. distance measured along the slot from its canter. 
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0.006 

Abs(AZ) 
(Ohm.) 

0.005 

0.004 

0.003 

0.002 

0.001 

0.c 

Aspect ratio 
~ 2:i rectangle 
------ 2:1 semi-ellipse 
‘..~~~.~..~~ 2.W semi-ellipse 
-.-.- 3.3:1 semi-ellipse 
----. 5:i semi-ellipse 

160.0 

Arg(Z) 
Pew.) 

140.0 
Aspect ratio 
2:i rectangle 
2:l semi-ellipse 
2.5:1 semi-ellipse 
3.3:1 semi-ellipse 
5:i semi-ellipse 

100.0 

80.0 

60.C \ 
1 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 I 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 

x (mm.) x (mm.) 

FIG. 4. Varation of probe impedance with position. Comparison of ab- FIG. 5. Varation of probe impedance with position. Comparison of phase 
solute impedance response for different flaws of the same length. response for different flaws of the same length. 

is displaced from the center by roughly one mean coil ra- 
dius. The coil response is symmetrical about x=0, there- 
fore a complete plot, including negative values of x, shows 
two peaks separated by a distance approximately equal to 
the mean coil diameter. Predictions are given for a number 
of volume element structures from a coarse array of 
1 X 7 X 4 cells, only 84 unknowns, to a 3 X 15 X 16 grid with 
2160 unknowns. Either 1 or 3 elements span the slot open- 
ing with improved accuracy found when 3 layers of volume 
elements are across the slot. The best predictions here are 
well within the estimated experiment error of 5%, there- 
fore the small-phase discrepancy between experiment and 
the 3X 15x 16 predictions, Fig. 3, is probably not signifi- 
cant. 

The prediction of eddy-current probe signals from in- 
teraction with a prescribed flaw is referred to as a forward 
problem in contrast to inverse problems where the signal is 
given and the flaw parameters must be found. Inversion is 
the central task of NDE, but it is a task that is inextricably 
linked to forward models of one kind or another. As an 
elementary approach to inversion one can simply run the 
forward model repeatedly and try to match solutions to 
given data. At an advanced level, one might make a direct 
attack on an integral formulation of a full nonlinear inver- 
sion problem. The success of any approach, whatever the 
details, depends on whether or not the observations are 
sensitive to the flaw parameters sought. To illustrate the 
relationship between flaw geometry and the eddy-current 
probe response, a number of calculations have been made 
showing the signal variation due to a variety of flaws. 

Figures 4 and 5 show the variation of impedance with 
probe position for various slots of the same length but 
having different aspect ratios. The parameters of the cal- 
culation are given in Table II where the flaw parameters 

are referred to as the First Series. The skin depth here is 
0.558 mm and the aspect ratio defined as the ratio of flaw 
length to depth. Four of the slots are semielliptical and one 
is rectangular. The shape of the response for a rectangular 
slot does not differ by very much from the overall shapeof 
the response for the semielliptical slots. There are; .h&& 
ever, differences’ in absolute impedance and phase as the 
aspect ratio is varied. Figures 6 and 7 compare the pre- 
dicted response for a number of semielliptical slots of the 
same depth but differing in length (Table II, Second Se- 
ries). A dramatic variation in impedance is seen in this 
case depending on the relative size of the flaw and coil. If 

TABLE II. Parameters for compararison of response due to various flaws. 

Inner radius (pt) 
Outer radius (pr) 
Length (zb - z,) 
Number of turns 

Liftoff (z,) 
Frequency 

Specimen parameter 

0.50 mm 
0.75 mm 
3.0 mm 

40 
0.1 mm 
1.0 MHZ 

Conductivity (0) 

Flaw parameters 

8.13~ lo5 s/m 

Fist series 
Length (2~) 

Depth (h) 
Width (w) 

Second series 
Length (2~) 

Depth (h) 
Width ‘(w) 

1.2 mm 
0.6, 0.48, 0.36, 0.24 mm 

0.05 mm 

0.8, 1.6, 2.4, 3.2 mm 
- 0.36 mm 

-- 0.05 mm 
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0.006, 

Abs(AZ) 
(Ohm.) 

n 

associated with the tendency of the induced current to pass 
below a long flaw rather than around a short one. 

Semi-ellipse 
- 3.2x 0.36 mm. 
------ 2.4x0.36 mm. 
...........' 1.6 x 0.36 mm. 
-_--- 0.8x0.36 mm. 

0.0 T 
0.0 1.0 2.0 3.0 4.0 5.0 

x (mm.) 

FIG. 6. Varation of probe impedance with position. Comparison of ab- 
solute impedance variation for semielliptical flaws of the same depth but 
with different lengths. 

the flaw is small, the minimum in the absolute impedance 
at x=0 is very marked but the minimum becomes a max- 
imum at x=0 if the flaw length is substantially greater 
than the coil diameter. Although the eddy-current distri- 
bution has not been calculated, one can speculate that the 
change from a minimum to a maximum at x=0 may be 

160.0 

Arg(Z) 
Pegs.) 

Semi-ellipse 
140.0 - 3.2x 0.36 mm. 

------ 2.4x0.36 mm. 
..~~~~~~~~~~ 1.6 x 0.36 mm. 
-.-_- 0.8x 0.36 mm. 

120.0 

80.0 

60.0 
0.0 1.0 2.0 3.0 4.0 5.0 

x (mm.) 

FIG. 7. Varation of probe impedance with position. Comparison of the 
phase variation for semielliptical flaws of the same depth but with dif- 
ferent lengths. 

VIII. CONCLUSION 

A theory for predicting eddy-current coil impedance 
due to the presence of a three-dimensional flaw in a 
con’ductor has been developed. Numerical calculations 
based on the theory have been carried out using the mo- 
ment method to derive a discrete system of linear equations 
and a conjugate gradient algorithm to get an approximate 
solution. Extensive use of fast Fourier transforms, in the 
iteration procedure, give efficient coding of probe-flaw in- 
teraction allowing problems to be solved that require a 
large number of unknowns. Predictions of probe response 
for a simulated defect show good agreement with experi- 
ment. 
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