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Abstract
In this paper, the magnetic field at the mouth of a crack in ferromagnetic steel
is determined by means of a two-dimensional, linear model. The solution is
found by employing an analytical method in which one complex variable is
transformed into another by means of a mapping function. An approximate
boundary condition, based on the fact that the steel permeability is much
larger than that of free space, is used. In this way, three representations of a
crack are treated: narrow and open cracks and a semi-elliptical indentation.
The mapping function transforms these shapes into a half-plane geometry
for which the solution is easily obtained. The advantage of this analytical
approach is that the results are readily accessible without the need for a large
numerical code. Example calculations are compared with each other and
with calculations based on a former theory. This work has application in
electromagnetic non-destructive evaluations: eddy-current testing, flux
leakage measurements and, most directly, magnetic particle inspection.

1. Introduction

This paper describes a theoretical and computational model
which has been developed to study the interaction of magnetic
fields with cracks in ferromagnetic steels. The theory finds
application in a number of areas in non-destructive evaluation,
including magnetic flux leakage measurements and eddy-
current testing, but its primary application is to magnetic
particle inspection (MPI). MPI is widely used as a very
sensitive method of detecting surface-breaking cracks in
ferritic steel. In MPI, ink containing magnetic particles in
the form of a colloidal suspension is applied to the surface
of a magnetized test-piece. The magnetic particles diffuse
through the liquid under the influence of an externally applied
magnetic field until a steady state is reached. They accumulate
in regions where the magnetic field is greatest, such as at
the mouth of a crack. In a contribution to the theory of
MPI, the magnetic field is here evaluated for a number of
two-dimensional configurations that are of practical relevance.

Many factors influence the magnetic field produced in a
typical inspection using magnetic particles. These include the
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geometry of the magnet yoke, the magnet coil parameters and
the shape of the component under test. However, essential
knowledge of the magnetic field in the vicinity of a crack
can be gained without reference to the details of the magnetic
circuit. Instead, it is useful to focus on a region near to the flaw
and obtain a local field solution which may then be scaled if
necessary with reference to the larger magnetic circuit.

In this paper, a field perturbation due to a localized flaw
subjected to a uniform unperturbed field is considered. A class
of such problems is defined by considering the field in a
homogeneous, permeable half-space perturbed by a surface
irregularity. Members of the class are distinguished by the
nature of the flaw, which may be an ideal, thin crack, a semi-
elliptical indentation, etc. Here it is assumed that the field
and flaw are invariant in one dimension. The problem domain
then reduces to two dimensions and the region of the metal
is represented by a half-plane with an irregularity on its line
boundary.

The magnetic field in the vicinity of the defect is calculated
in two stages. In the first stage, the magnetic field in the steel
is determined. This solution defines the magnetic potential on
the air–conductor interface from which the magnetic field in air
above the metal is then evaluated. The problem is formulated
in terms of complex potentials and the method of conformal
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transformations is used to transform the flawed domain into
a simpler, un-flawed domain in which the solution is easily
obtained. This approach yields analytic results which are
readily accessible without the need for a large numerical code.

Three solutions are presented corresponding to three
representations of a crack: narrow and open cracks and a semi-
elliptical indentation. In the cases of the narrow crack and
the semi-elliptical indentation, the field perturbation due to
the crack is found in response to an applied magnetic field
with magnitude 1 A m−1. In the case of the open crack, the
solution is truly local; only the field perturbation in the region
of the crack mouth is considered. In order to obtain a solution,
it is assumed that the magnetic potential difference across
the crack mouth has unit magnitude. This assumption is not
restrictive since simple scaling of the result will give the correct
magnitude for other applied field strengths. Calculations of the
field at the crack mouth are compared with each other and with
results of a former theory due to Edwards and Palmer [1], in
turn, based on the earlier work of Zatsepin and Shcherbinin [2].

2. Formulation

Under static conditions, the magnetic field in a current-free
region can be written in terms of a magnetic scalar potential
φ(x, y) defined such that

H = −∇φ with ∇ = x̂
∂

∂x
+ ŷ

∂

∂y
, (1)

where x̂ and ŷ are unit vectors. In linear homogeneous regions,
the magnetic field, like the magnetic flux density, has zero
divergence. Equating the divergence of (1) to zero shows that
the potential satisfies the Laplace equation:

∇2φ = 0. (2)

The problem of determining the magnetic field reduces to one
of finding φ subject to suitable boundary conditions.

Solutions of the Laplace equation in two dimensions are
commonly found using the properties of analytical functions
of a complex variable [3]. A function F = φ + iψ of the
complex variable z = x + iy is analytic in a certain domain if it
is single-valued and differentiable at all points in the domain.
In order to be differentiable, the real and imaginary parts of F

are connected by the Cauchy–Riemann equations:

∂φ

∂x
= ∂ψ

∂y
and

∂ψ

∂x
= −∂φ

∂y
.

The real function ψ , here called the stream function, is
introduced to complement the potential φ. Then, using the
Cauchy–Riemann equations,

dF

dz
= ∂F

∂x

∂x

∂z
+

∂F

∂y

∂y

∂z

= 1

2

(
∂φ

∂x
+

∂ψ

∂y

)
+

i

2

(
∂ψ

∂x
− ∂φ

∂y

)

= ∂φ

∂x
− i

∂φ

∂y

= − Hx + iHy. (3)

In (3), the total derivative of the complex potential gives the
components of the magnetic field.

In general, a transformation from the domain of a complex
variable t to the domain of z is written as

z = M(t), (4)

where M is a single-valued mapping function. Starting
with, for example, a uniform field of unit magnitude, its
representation in the t-domain is expressed in terms of a
complex potential given simply by

f (t) = t. (5)

Then the potential in the z-domain, which corresponds to
ordinary configuration space, is

F(z) = M−1(z). (6)

A flawed half-plane problem can be solved by using a mapping
to transform an ‘unflawed domain’ into a ‘flawed domain’. The
advantage of this approach is that the solution in the unflawed
domain is typically more easy to obtain. It is sometimes the
case that an explicit form for the inverse mapping function,
which transforms the solution back into the flawed domain,
is not available. If this is so, then to find t for a given z

and evaluate the complex potential F(z), equation (5), an
alternative means of finding the inverse relationship is required.
In this study, in the case of the open crack, t is found
numerically ([4], see Brent’s routine) for a given z by varying
t until |z − M(t)| is minimized.

3. Boundary conditions

The continuity of the normal component of the magnetic flux
at the interface between two regions S1 and S2, is expressed as

µ1

(
∂φ

∂n

)
1

= µ2

(
∂φ

∂n

)
2

. (7)

Assuming the metal (region S1, say) has a high relative
permeability (µ1 � µ2), one can make an approximation for
the boundary condition and proceed to solve a problem defined
in the internal domain:

∇2φ = 0, z ∈ S1 with
∂φ

∂n
= 0, z ∈ ∂S1, (8)

where ∂S1 denotes the boundary of region S1. This
approximation is good for many common ferromagnetic steels
provided they are not saturated. The approximate interface
condition derived from the continuity of the normal flux density
allows the internal field to be decoupled from the external field.
In this way, the former can be calculated independently of the
latter. An underlying assumption of condition (8) is that the
magnetic flux leakage has a negligible effect on the internal
field in the metal. This means that the solutions obtained below
are valid for cracks whose depth is not excessively greater than
the width since, in practice, flux leaks between the faces of very
deep, narrow cracks. Another consequence of equation (8) is
that the permeability of the steel does not appear explicitly in
the result. This approximation is a good one for most steels in
which µ1 ≈ 100µ2.

The continuity of the tangential magnetic field at the
interface implies that the potential is continuous there:

(φ)1 = (φ)2. (9)
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Thus the internal field solution defines the potential on the
external boundary. Let the boundary potential be g. Then
the external field can be determined from the solution of the
Laplace equation with a Dirichlet boundary condition:

∇2φ = 0, z ∈ S2 with φ = g, z ∈ ∂S2. (10)

Below, three solutions are considered in order of
increasing complexity. In the first and second cases (narrow
crack and semi-elliptical indentation), it is assumed that, if no
crack is present, a uniform background magnetic field exists.
With a crack present, an additional field arises which depends
on the far field. This far magnetic field is normalized to unit
magnitude (1 A m−1) as expressed by the condition

lim
|z|→∞

φ = −z. (11)

In the third case (open crack), a local solution is sought
corresponding to unit potential difference at the crack mouth.

4. Solutions for three flaw models

4.1. Narrow crack

In the first and simplest crack representation, the internal
solution is expressed in terms of a complex potential F(z) =
−√

z2 + b2 where b is the depth of the crack. The function
gives rise to a uniform far field of 1 A m−1 and a magnetic
potential difference across the crack mouth of magnitude 2b.
Consider a region in the vicinity of the mouth of a narrow
crack with the internal field represented by the above complex
potential. On a scale which is large compared with the crack
opening but small compared with the crack depth, the crack
opening can be neglected and the magnetic potential in the
metal on both sides of the crack can be assumed locally
constant. The difference between the constant values on each
side of the crack will be referred to as the mouth potential
difference (MPD). With an MPD of 2b, the external magnetic
scalar potential is given by

φ = −2bθ

π
= −2b

π
arctan

(
x

y

)
, (12)

where θ is the angle between a line radiating from the line of
the crack mouth and the y-axis. Taking the derivative of φ with
respect to x and y, the magnetic field components are found
to be

Hx = 2b

π

y

x2 + y2
and Hy = −2b

π

x

x2 + y2
. (13)

These equations give a reasonable estimate of the field in air
at a distance from the crack mouth that is large compared with
its opening but small compared with its depth.

4.2. Semi-elliptical crack

The transformation [5]

z = a(t + λ
√

t2 − 1), (14)

where a and λ are constants, maps the upper half of the t-plane
into the upper half of the z-plane indented by a semi-elliptical
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Figure 1. (a) Half-plane indented by a semi-ellipse mapped from
(b) a half-plane.

region (figure 1). The parameter a is the length of the semi-
minor axis of the ellipse and λ is the ratio of the semi-major
axis to the semi-minor axis. The inverse transform is given by

t = a

β2
[λ

√
z2 + β2 − z], where β2 = a2(λ2 − 1).

(15)

A uniform magnetic field is represented in the t-plane by
the elementary function

f (t) = −a(λ + 1)t, (16)

where the coefficient a(λ + 1) ensures that the corresponding
far field in the z-plane has unit magnitude. Transforming this
solution to the z-plane using equation (15) gives

F(z) = z − λ
√

z2 + β2

λ − 1
, z ∈ S1 (17)

for the internal complex potential in the z-plane. Taking the
derivative of F with respect to z as shown in equation (3) gives
the following equation for the magnetic field in the metal:

−Hx + iHy = 1

λ − 1

[
1 − λz√

z2 + β2

]
, z ∈ S1. (18)

The external field is approximated by assuming that the field
in the semi-elliptical region of the crack is uniform and
x-directed. This assumption, together with the expression
for the internal potential, equation (17), and the continuity
condition on the scalar potential, equation (9), determines the
complex potential at the line x = 0 and therefore in the upper
half-plane. The complex potential in this region is written
as [6]

F(z) = −z − 1

iπ

∫ ∞

−∞

h(s)

z − s
ds, z ∈ S2, (19)

where h(x) is the perturbed potential at the line x = 0 due to
the crack and is given by

h(x) =



λx, |x| � a,
λ

λ − 1
[
√

x2 + β2 − x], |x| � a.
(20)

Note that h(x) for |x| � a is found from (17) by subtracting z

and taking the real part with y = 0. From (19) and (20) it is
found that the external complex potential is given by

F(z) = − z − λ

iπ

[
z log

(
z + a

z − a

)
− 2a

]

− λ

iπ(λ − 1)

[
(z −

√
z2 + β2) log

(
a + z

a − z

)

+
√

z2 + β2 log

(
aλ

√
z2 + β2 + az − β2

aλ
√

z2 + β2 + az + β2

) ]
,

z ∈ S2. (21)
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Figure 2. Hx in the presence of a long, semi-elliptical defect 0.5 mm wide and 0.75 mm deep, in a metal half-space. The crack mouth is
centred at the origin and the metal occupies the region y � 0.

Taking the derivative of (21) gives

dF

dz
= − 1 − λ

iπ

[
log

(
z + a

z − a

)
− 2az

z2 − a2

]
− λ

iπ(λ − 1)

×
[

z√
z2 + β2

log

(
aλ

√
z2 + β2 + az − β2

aλ
√

z2 + β2 + az + β2

)

+
aβ2(λz +

√
z2 + β2)

(aλ
√

z2 + β2 + az − β2)(aλ
√

z2 + β2 + az + β2)

+

(
1 − z√

z2 + β2

)
log

(
a + z

a − z

)

− 2az(z −
√

z2 + β2)

z2 − a2

]
, z ∈ S2, (22)

from which the components of the field are found by taking real
and imaginary parts according to equation (3). This is easily
accomplished computationally, but analytic expressions for Hx

andHy at the crack mouth can also be easily obtained by putting
z = 0 in equation (22) and noting that log(z) = log |z| + iα
with −π < α ≡ arg(z) � π . It is found that, at the crack
mouth,

Hx(0, 0) = 1 + λ. (23)

This result agrees with that of Edwards and Palmer [1]. The
x-component of the magnetic field in the presence of a semi-
elliptical defect, calculated from equations (18) and (22) for
the metal and air regions, respectively, is shown in figure 2 for
a defect with width 0.5 mm and depth 0.75 mm.

4.3. Open crack

In contrast to the two previous crack representations, this
third representation accurately models the singularity in the
magnetic field at the vertices of the crack mouth.

(a)

x

y

g

z

A B

(b)

u

v t

-1 1

A� B�

Figure 3. Mapping to (a) a slot from (b) a half-plane.

The open crack can be treated in two different ways. It
may be treated either as a three-vertex system (figure 3) or as
a two-vertex system [7] making use of symmetry. Applying
the Schwarz–Christoffel theory [5] to the structure shown in
figure 3 gives

dz

dt
= 1

t
(t2 − 1)1/2, (24)

where t = u + iv, t = ±1 corresponds to the vertices on either
side of the crack mouth, and the point t = 0 maps to the bottom
of the crack. By integration of (24), it is found that

z = g

π

{√
t2 − 1 + i log

[
1 + i

√
t2 − 1

t

]}
. (25)

In order to obtain the desired solution in the z-plane, consider
a complex potential defined in the t-plane given by

f (t) = 1

π
log(it) (26)

and having the property

Re{f (u)} =
{

1
2 , u < 0,

− 1
2 , u > 0.

(27)
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Mapping this potential to the z-plane produces a solution that
is constant on the boundaries but maintains unit potential
difference across the crack mouth. Because equation (25)
cannot be inverted, the inverse mapping is carried out
numerically as described in section 2.

4.4. Example calculations

In figure 4, a comparison is made between the magnetic field
predicted by the three solutions presented here. The field
values are computed for a set of points 0.1 mm above the
surface of a sample containing a slot 0.2 mm wide and 1.0 mm
deep. In the calculations, the result for the open crack is
scaled to match the others in terms of potential difference at
the crack mouth. Note that, because the size of the crack
opening is not small compared with the stand-off distance of
0.1 mm, the elementary result given in equation (13) is not
strictly applicable in this case. Nonetheless, there is reasonable
agreement between the three sets of predictions at this
height.

Closer to the surface of the metal, the open crack theory
is the most accurate since it accounts for the singularity in the
magnetic field at the metal vertices. This is demonstrated in
figure 5 in which predictions are compared at a set of points
0.005 mm above the surface of a sample. The crack dimensions
are the same as for figure 4. Comparisons are made between
predictions of the semi-elliptical crack model, the open crack
solution and the theory of Edwards and Palmer [1] in which
the field is represented in terms of a uniform layer of magnetic
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Figure 4. Magnetic field variation with x at y = 0.1 mm for a crack 0.2 mm wide and 1.0 mm deep: (— · —) narrow crack, (· · · · · ·)
semi-elliptical indentation and (——) open crack.

monopoles at the crack faces. In calculating a result from the
theory of [1], the high permeability limit is assumed.

5. Summary and conclusion

A number of solutions of the Laplace equation in two
dimensions have been derived for evaluating the interaction
of an imposed magnetic field with cracks in ferromagnetic
steels. The solutions are obtained by conformal mapping
which exploits the properties of analytical functions of a
complex variable. The calculations predict the magnetic field
at the mouth of the crack, allowing estimates of the forces
experienced by magnetic particles in MPI.

A comparison is made between solutions found by
conformal mapping and one found from a theory developed
by Edwards and Palmer [1]. The elementary theory for a
narrow crack is useful for calculating the magnetic field at
a height above the sample which is large compared with the
crack opening but small compared with its depth. The solution
for a semi-elliptical indentation is not restricted in this way
but makes the approximation that the magnetic field in the
crack opening is uniform and x-directed. The theory for the
open crack is the most accurate since it correctly represents
the singularity in the field at the metal vertices. The theory
of Edwards and Palmer [1] is based on the work by Zatsepin
and Shcherbinin [2] who represent the magnetic field in terms
of uniform magnetic monopole layers at the crack faces. The
uniform monopole layers give a reasonable approximation of
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Figure 5. As for figure 4 but with y = 0.005 mm: (· · · · · ·) semi-elliptical indentation, (——) open crack and (- - - -) Edwards and
Palmer [1].

the field but do not describe the corner singularity correctly, as
is clear from figure 5.

References

[1] Edwards C and Palmer S B 1986 J. Phys. D: Appl. Phys.
19 657–73

[2] Zatsepin N N and Shcherbinin V E 1966 Defektoskopiya 2 385
[3] Riley K F 1974 Mathematical Methods for the Physical Sciences

(Cambridge: Cambridge University Press) chapter 16

[4] Press W H, Teukolsky S A, Vetterling W T and Flannery B P
1992 Numerical Recipes in Fortran. The Art of Scientific
Computing 2nd edn (Cambridge: Cambridge University
Press) (see Brent’s routine)

[5] Binns K J and Lawrenson P J 1973 Analysis and Computation of
Electric and Magnetic Field Problems (Oxford: Pergamon)

[6] Muskhelishvili N I 1953 Singular Integral Equations
(Groningen, Holland: Verenigde Drukkerijen
Hoitsema NV)

[7] Van Bladel J 1964 Electromagnetic Fields (New York:
McGraw-Hill)

2242


