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The time-harmonic electromagnetic field in an electrically conductive right-angled wedge
due to an inductive excitation by circular coil in air has been calculated. Using a
formulation in Cartesian coordinates, the problem domain is truncated in a dimension
whose axis is normal to a wedge face, and an approximate series solution found using
elementary functions satisfying Maxwell’s equations in the quasi-static limit. The coil
impedance variation with position and frequency is calculated and compared with
measurements made on a coil near the edge of a large aluminium block which
approximates the effect of a conductive quarter-space. The comparison between theory
and experiment shows very close agreement.
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1. Introduction

The quasi-static electromagnetic field in a conductive wedge has been determined
for the case where the excitation is an alternating current in a coil whose axis is
normal to one of the wedge faces. The problem has applications in eddy current
non-destructive evaluation (NDE) and its solution completes a preliminary stage
in a larger task to determine the eddy current probe response due to a corner
crack in a metal. In order to find the field in a homogeneous conductive quarter
space due to an external inductive excitation at an arbitrary frequency, we are
obliged to find a solution to a penetrable wedge problem. In the theory of wave
diffraction and diffusion between adjoining regions having different material
properties, a crucial step is to match solutions at the interfaces. In the case of
wedged shaped regions, exact closed form solutions have not been found due to
the formidable difficulties of matching the field across the boundaries between
the different media. However, a number of approaches have been used to find
approximate solutions. In particular, Budaev (1995) has discussed the
Sommerfeld–Maliuzhinetz formulation of the penetrable wedge problem in
elastodynamics and suggested a method for finding approximate solutions. In
contrast Rawlins (1999) used the Kontorovich–Lebedev transform to derive a
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solution for a penetrable dielectric wedge using perturbation methods assuming a
low contrast between adjoining media. Although the corresponding eddy current
problem could be approached using perturbation theory for the thin skin or large
skin depth regimes, we have sought instead a method that can be applied for a
wide frequency range while ensuring the correct continuity of the field at
conductor–air interfaces.

For a half-space conductor, which like the quarter space can be viewed as a
special case of a wedge problem, closed form integral expressions for the
electromagnetic field are easily derived for a coil whose axis is normal to the
surface. Similar solutions for a stratified half-space (Dodd&Deeds 1968) have been
widely used for applications in NDE, see Tai et al. (2002) and references therein.
Eddy current probes typically have ferrite cores but the problem of calculating the
core magnetization need not defeat the determined analyst. An approximate solu-
tion has been found for a normal coil with a cylindrical coaxial ferrite core of finite
length, despite the added complexity of dealing with extra interface conditions at
the core–air interface (Theodoulidis 2003). The electric field of the probe has been
found by truncating the domain of the problem to one of finite radius and
expressing the solution as a series. In this way the task of satisfying the boundary
conditions is made tractable. Here we extend this strategy to a conductive wedge
problem with a coil excitation. What we call the ‘truncated region eigenfunction
expansion’ (TREE) method has been used to find an approximate match between
the electromagnetic field in air and the field in a conductive quarter space.

Domain truncation is typically applied to a domain dimension that is infinite
according to the original problem definition. Limits are imposed in the infinite
spatial dimension by adding artificial boundaries and forcing the solution to be
zero there. This procedure gives rise to errors but these errors can be made as
small as desired by adjusting the location of the imposed boundaries to make
them more remote from the field source. The solution in the truncated dimension
can be written as a series expansion of eigenfunctions rather than as an integral.
Computations then are carried out by limiting the number of terms in the series.
Although the series truncation gives rise to a further source of error, this error is
also easily controlled.

In solving a complicated boundary value problem, it may be necessary, as
here, to subdivide the domain of the problem, construct a formal solution for
each region and use interface conditions to match the sub-domain solutions
across their boundaries. With sub-domain solutions in the form of series
expansions, it is convenient to represent the expansion coefficients as column
vectors related to one another through the interface conditions. The relationships
take the form of simultaneous matrix equations for the coefficient vectors. In the
TREE method, these matrix equations are then solved to get the expansion
coefficients in terms of a prescribed source-field column vector. Computation of
the solution coefficient vector is done numerically, hence the method can be
considered semi-analytical. However, the essential point is that the solution has
an analytical form that satisfies the governing equations, although the boundary
conditions are satisfied only approximately. The scheme can be applied to a
number of configurations (Theodoulidis 2003, 2004). Here it is used to find an
approximate solution of a penetrable wedge problem using elementary functions.

The problem is formulated in terms of a transverse electric (TE) and a
transverse magnetic (TM) scalar potential. As a first step in the solution, a
Proc. R. Soc. A
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Figure 1. Coil in the presence of a conductive quarter space.

3Eddy currents in a conductive wedge
column vector representing the coefficients of the eigenfunction expansion of the
TE potential in the absence of the conductor is determined. This is the prescribed
source column vector. Then the corner conductor is introduced, series solutions
are constructed for each sub-region of the problem and matched across the
boundaries. Finally, the unknown coefficient vectors are expressed in terms of the
source vector and an equation for the coil impedance is derived.
2. Scalar decomposition

A time-harmonic magnetic flux density, varying at an angular frequency u as the
real part of exp(jut), is here expressed in terms of second order potentials

BZV!V!W with W Z x̂Wa C x̂!VWb: ð2:1Þ

The potentials, Wa and Wb, are sought for the quasi-static field of a circular coil
whose axis is normal to one of the faces of a conductive quarter space, figure 1.
The coil axis is in the z -direction and the outward normals to the faces of the
conductor are in the z -and x -directions. Because the potentials are defined with
respect to the x -direction, they are coupled through the interface conditions at
the conductor–air interface whose normal is z -directed. It may seem that at the
other interface, there is no coupling between potentials but in fact we find that
there is. The challenge of the quarter space problem is to satisfy the interface
conditions simultaneously.

A formal solution can be established by Fourier transformation of the field in
the x - and y -directions. In the approach chosen, the domain of the problem is
restricted in the x -direction to a region between xZ0 and xZh. On the
boundaries formed by the domain truncation, the normal component of the
magnetic flux density is set to zero. A Fourier integral representation is used for
the y -dependence whereas the x -dependence of the field is expressed as a Fourier
series. Truncation of the series leads to an approximation of the unbounded
domain solution but the errors introduced can be made as small as desired by
increasing the width of the domain.
Proc. R. Soc. A
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Figure 2. Circular filamentary coil in the plane zZz 0.

T. P. Theodoulidis and J. R. Bowler4
The first stage of the process is to derive an expression for the coil field in a
form that can be used subsequently to solve the corner conductor problem. This
means that the TE potential Wa, defined with respect to the x -direction, must be
found for a coil in free space whose axis is in the z -direction. The result is
expressed as a superposition of eigenfunctions whose coefficients form the
predefined source vector for the corner problem.
3. Coil field

(a ) Circular filament in free space

Consider a circular current filament of radius r0 in the plane zZz0 whose axis is
parallel to and at a distance d from the z -axis, figure 2. The magnetic flux density
due to the filament is written in terms of the TE potential

BZV
vW

ð0Þ
a

vx

 !
: ð3:1Þ

The problem domain is confined to the region between the planes xZ0 and xZh
where the boundary condition BxZ0 is imposed.

A Fourier representation of the y -dependence will be used, the transformation
being written

~W ðx; v; zÞZ
ðN
KN

W ðx; y; zÞeKjvydy; ð3:2Þ

with a corresponding inverse

W ðx; y; zÞZ 1

2p

ðN
KN

~W ðx; v; zÞe jvydv: ð3:3Þ

The TE potential satisfies the Laplace equation in the domain of the filament
problem excluding the filament region and hence its Fourier transform with
respect to y is a solution of

v2

vx2
C

v2

vz2
Kv2

� �
~W Z 0: ð3:4Þ
Proc. R. Soc. A



5Eddy currents in a conductive wedge
The x -dependence of v ~W
ð0Þ
a =vx is expressed as a Fourier cosine series allowing

the solution for a filament in the plane zZz0 to be represented as

v ~W
ð0Þ
a

vx
ZH eKvjzKz0jA

ð0Þ
0 C

XN
iZ1

cosðuixÞeKki jzKz0jA
ð0Þ
i

" #
; ð3:5Þ

where kiZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i Cv2

p
and HZsign(z0Kz). This form ensures that ~Bz is

continuous in the plane zZz 0 as can be verified by taking the derivative of
equation (3.5) with respect to z. By putting uiZip/h the boundary condition
~BxZ0 is satisfied at xZ0 and xZh, as can be seen from the derivative of
equation (3.5) with respect to x . The coefficients in the expansion are determined
from the current density in the plane zZz 0 written in the general form
J(x , y )d(zKz 0). From Ampère’s law, it can be shown that the magnetic flux
density has a discontinuity in the plane of the source such that

~B
C
y K ~B

K
y ZKm0

~Jx ; ð3:6Þ
where ~Jx is the Fourier transform with respect to the y of the x -component of
J(x , y ) and the G superscript refers to limiting points above and below the
plane zZz0, respectively. Combining equation (3.5) with (3.6), multiplying by
cos(umx ), mZ0, 1, 2. and integrating between 0 and h gives

2jvhA
ð0Þ
0 Zm0

ðh
0

~Jxðx; vÞdx ð3:7Þ

and

jvhAð0Þ
m Zm0

ðh
0
cosðumxÞ ~Jxðx; vÞdx; ð3:8Þ

where the orthogonality relationshipðh
0
cosðumxÞcosðunxÞdx Z

h

2
dmn; ð3:9Þ

has been used. Note that equations (3.7) and (3.8) can be written as

2jvhA
ð0Þ
0 Zm0

ðh
0

ðN
KN

Jxðx; vÞeKjvydxdy ð3:10Þ
and

jvhAð0Þ
m Zm0

ðh
0

ðN
KN

cosðumxÞJxðx; vÞeKjvydxdy: ð3:11Þ

Changing to cylindrical polar coordinates:

x Z dCr cos f; y Z r sin f;

ui Z ki cos b; v Z ki sin b;

)
ð3:12Þ

putting JxZKId(rKr0)sin f in equations (3.10) and (3.11) to represent the
x -component of the filament current and integrating gives

A
ð0Þ
i Z eipm0I

r0
hki

cosðuidÞJ1ðkir0Þ; i Z 0; 1; 2 .; ð3:13Þ
Proc. R. Soc. A
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where ei is the Neumann factor: e0Z1 and eiZ2, iO0. Note that the same result
is found using the complementary interface condition

~B
C
x K ~B

K
x ZKm0

~Jy: ð3:14Þ
Substituting for the A

ð0Þ
i into equation (3.5) gives

v ~W
ð0Þ
a

vx
ZHpm0I

r0
h

1

v
J1ðvr0ÞeKvjzKz0j C2

XN
iZ1

1

ki
cosðuidÞJ1ðkir0ÞcosðuixÞeKki jzKz0j

" #
;

ð3:15Þ
for the filament potential.
(b ) Coil with a rectangular cross-section

For a uniformly wound coil of rectangular cross-section having N turns, the
x -derivative of the TE potential, found from equation (3.15) by superposition is
written

v ~W
ð0Þ
a

vx
Zpm0I

N

hðr2 Kr1Þðz2Kz1Þ
1

v4
cðvr1; vr2ÞFðvz; vz1; vz2Þ

"

C2
XN
iZ1

1

k4i
cosðuidÞcðkir1; kir2ÞcosðuixÞFðkiz; kiz1; kiz2Þ

#
; ð3:16Þ

where z1 and z2 are the z co-ordinates of the lower and upper surfaces of the
coil, respectively. The coil inner radius is r1 and the outer radius r2. The
z -dependence of the TE potential for a circular coil is given by

Fðz; z1; z2ÞZ

KeKzðez2 Kez1Þ; zRz 2;

eKðzKz1ÞKeKðz2KzÞ; z 2RzRz1;

ezðeKz1 KeKz2Þ; z%z1;

8>><
>>: ð3:17Þ

and we have defined

cða1; a2ÞZ
ða2
a1

J1ðrÞr dr ; ð3:18Þ

which can be expressed in terms of standard functions. For computation purposes,
c(a1, a2) can be expressed in terms of a Meijer G-function or in terms of Struve and
Bessel functions (Gradshteyn & Ryzhik 1980). In the quarter space problem, it is
convenient to write the x -derivative of the Fourier transformed potential
representing the field in the region immediately below the coil (0%z%z1; figure 1) as

v ~W
ð0Þ
a

vx
Z evzC

ð0Þ
0 C

XN
iZ1

cosðuixÞekizC
ð0Þ
i : ð3:19Þ

With reference to equations (3.16) and (3.17), the coefficients are given by

C
ð0Þ
i Z eipm0I

N

hðr2 Kr1Þðz2Kz1Þ
1

k4i
cosðuidÞcðkir1; kir2ÞðeKkiz1 KeKkiz2Þ: ð3:20Þ
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7Eddy currents in a conductive wedge
4. Quarter-space conductor

Consider a conductive quarter space excited by a uniformly wound circular coil
of rectangular cross-section carrying alternating current. The conductor fills the
region z!0, 0!x!c, figure 1 and the coil, located in the half-space zO0, has its
axis in the z -direction. In this section we derive the quasi-static magnetic flux
density in terms of TE and TM potentials and in §5 give an expression for the
coil impedance due to induced current in the conductor. This can be
accomplished for the quasi-static limit without defining the TM potential in
air or the conservative part of the electric field in air, by using the continuity of
the normal magnetic flux and tangential magnetic field at conductor–air
interfaces.

As a guide to the application of the interface conditions, the following
expressions for the magnetic flux density are given here for reference:

BZV!V!ðx̂WaÞCk2V!ðx̂WbÞ; ð4:1Þ

where k2Zjums. Components of the magnetic flux density are therefore

Bx Z
v2Wa

vx2
Kk2Wa; By Z

v2Wa

vxvy
Ck2

vWb

vz
; Bz Z

v2Wa

vxvz
Kk2

vWb

vy
: ð4:2Þ

For the non-conductive regions, the terms containing k2 vanish and B can be
written as in equation (3.1).
(a ) Transverse electric potential

The positive z half-space is designated region 1 and the negative z half-space as
region 2. Coefficients in the series representations of the magnetic field in these
regions are correspondingly given superscripts (1) and (2) whereas the
superscript (0) refers to the prescribed whole domain coil solution defined in
§3. The Fourier transform with respect to y of the TE potential satisfies equation
(3.4) in region 1 except at the source coil. The solution for the region above the

plane zZ0 but below the coil (0%z%z1; figure 1), is written ~W
ð0Þ
a C ~W

ð1Þ
a

where ~W
ð0Þ
a is given by equations (3.19) and (3.20). For 0%z%z1, we write the

potential due to eddy currents in the conductor as

v ~W
ð1Þ
a

vx
Z eKvzC

ð1Þ
0 C

XN
iZ1

cosðuixÞeKkizC
ð1Þ
i : ð4:3Þ

To ensure that the x -component of the magnetic flux at the boundary xZh is
zero, we retain the discrete values uiZip/h. Again, the correct z -dependence
requires that kiZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
i Cv2

p
, where the positive root is taken.

For the non-conductive region below the zZ0 plane, the TE potential satisfies
equation (3.4). For the conductive region below this plane, however, the TE
potential satisfies

v2

vx2
C

v2

vz2
Kðv2 Ck2Þ

� �
~W Z 0: ð4:4Þ
Proc. R. Soc. A
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The TE solution for the lower half space (z!0) has the form

v ~W
ð2Þ
a

vx
Z

XN
iZ1

cosðqixÞegizC
ð2Þ
i ; 0%x!c;

evzC
ð2Þ
0 C

XN
iZ1

cos½piðhKxÞ�egizaiC
ð2Þ
i ; c%x!h;

8>>><
>>>:

ð4:5Þ

where piZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2i Ck2

p
and giZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2i Cv2Ck2

p
.

The cosine series representation potentially includes a term expð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Ck2

p
zÞ in

the expression (4.5), for the region 0%x%c, but this additional term vanishes
when the continuity of Bx is enforced across the interface xZc. The solution for
the non-conductive region c%x!h below the zZ0 plane is written in equation
(4.5) with a z -dependence expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2i Cv2Ck2

p
zÞ to match that for the field in the

conductor. Then the x -dependence for c%x!h below zZ0, is written with a
modified eigenvalue piZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2i Ck2

p
so that the expression for the TE potential

satisfies equation (3.4). As a consequence, coupling across the xZc interface
takes effect on a term-by-term basis, each eigenfunction for the conductive region
being matched by one for the air region having the same z -dependence.

The continuity of Bx and Hy at the xZc interface implies that

pi sinðqicÞZKaiqi sin½piðhKcÞ� ð4:6Þ
and

cosðqicÞZaicos½piðhKcÞ�; ð4:7Þ
respectively. Combining these givesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2i Ck2
q

tanðqicÞCqi tan½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2i Ck2

q
ðhKcÞ�Z 0; ð4:8Þ

from which the eigenvalues qi are found, and subsequently, ai determined from
equation (4.7). Note that the eigenvalues are independent of v and are calculated
once for a given h and c and a fixed k2.
(b ) Transverse magnetic potential

The TM potential, like the TE potential for the conductive region, satisfies
equation (4.4), the solution being of the form cosðrixÞesiz , where si is the root of
s2i Zr2i Cv2Ck2 with a positive real part. At the interface xZc, the normal
component of the electric current density, KjusV!V!ðx̂WbÞ, is zero. This
implies that the function Wb(c, y , z) satisfies a two-dimensional Laplace equation
and that

v2

vz2
Kv2

� �
~Wbðc; v; zÞZ 0: ð4:9Þ

Since the solution of equation (4.4) is of the form cosðrixÞesiz , the boundary
condition (4.9) is satisfied by letting ðr2i Ck2ÞcosðricÞesizZ0, which implies that
the required eigenvalues are r0ZGjk and riZ iK 1

2

� �
p=c, iZ1, 2, 3 . It follows

that the TM potential can be written

k2 ~Wb Z coshðkxÞevzD0C
XN
iZ1

cosðrixÞesizDi: ð4:10Þ
Proc. R. Soc. A



9Eddy currents in a conductive wedge
The complex eigenvalue r0 giving rise to the hyperbolic cosine term is due to the
wedge and does not appear in the half-space solution. It was also taken into
account by Flitz & Nethe (1993) where a problem of eddy current induction in a
finite length cylinder was studied.

Note that from equations (4.5), (4.10) and the continuity of Hy at xZc, it is
found that

C
ð2Þ
0 ZKj coshðkcÞD0: ð4:11Þ

We next consider the evaluation of the remaining coefficients, C
ð1Þ
i , C

ð1Þ
0 , C

ð2Þ
i , Di

and D0 (iZ1, 2, 3 .) via the continuity conditions that apply to the tangential
magnetic field and normal magnetic flux at the plane zZ0.
(c ) Magnetic field and flux continuity

The continuity conditions on the magnetic field are satisfied at the plane zZ0
by applying the orthogonality properties of the sine and cosine functions to
determine the relationship between Fourier coefficients. Specifically, one equates
expressions for the field components which are then multiplied by cos(uix ) for the
y and z components and by sin(uix ) in the case of the x -component; then
integrated between 0 and h. First this procedure is carried out using the
continuity of Hy and Bz for uiZ0 leading to the relationshipsðh

0

~H
ð0Þ
y C ~H

ð1Þ
y dx Z

ðh
0

~H
ð2Þ
y dx

and ðh
0

~B
ð0Þ
z C ~B

ð1Þ
z dx Z

ðh
0

~B
ð2Þ
z dx:

With reference to the field components, equation (4.2), and the general
expressions for the TE and TM potentials, (4.3), (4.5) and (4.10), it is found that

jvhðC ð0Þ
0 CC

ð1Þ
0 ÞZ v

k
½sinhðkcÞCkðhKcÞcoshðkcÞ�D0C

XN
iZ1

ðK1ÞiC1 si
ri
Di ð4:12Þ

and

jvhðC ð0Þ
0 KC

ð1Þ
0 ÞZ v

k
½sinhðkcÞCkðhKcÞcoshðkcÞ�D0C

XN
iZ1

ðK1ÞiC1 v

ri
Di; ð4:13Þ

where equation (4.11) has been used. Solving for C
ð1Þ
0 and D0 gives

C
ð1Þ
0 ZRT

KD ð4:14Þ
and

D0 Z lðC ð0Þ
0 KRT

CDÞ; ð4:15Þ
where

lZ
jhk

½sinhðkcÞCkðhKcÞcoshðkcÞ� : ð4:16Þ

Column vectors, RG, whose components are

RG;i Z
1

j2vh
ðK1ÞiC1 siGv

ri
ð4:17Þ
Proc. R. Soc. A
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have been introduced, D is a column vector of the expansion coefficients Di, iZ1,
2, 3 ., and superscript T denotes the transpose of the vector.

Next, we seek to ensure that the tangential magnetic field is continuous at
zZ0 through the relationshipsðh

0
sinðuixÞ½ ~H

ð0Þ
x C ~H

ð1Þ
x �dx Z

ðh
0
sinðuixÞ ~H

ð2Þ
x dx ð4:18Þ

and ðh
0
cosðuixÞ½ ~H

ð0Þ
y C ~H

ð1Þ
y �dx Z

ðh
0
cosðuixÞ ~H

ð2Þ
y dx; ð4:19Þ

with iZ1, 2, 3 . Also the continuity of normal flux density is sought through the
equation ðh

0
cosðuixÞ½ ~B

ð0Þ
z C ~B

ð1Þ
z �dx Z

ðh
0
cosðuixÞ ~B

ð2Þ
z dx: ð4:20Þ

The continuity conditions at zZ0 give rise to relationships that are expressed in
matrix form

uðC ð0ÞCC ð1ÞÞZM spC
ð2Þ; ð4:21Þ

jvðC ð0Þ CC ð1ÞÞZ jvM cC
ð2ÞCvLD0CM rsD; ð4:22Þ

and

kðC ð0ÞKC ð1ÞÞZM cgC
ð2ÞK jvLD0 K jvM rD; ð4:23Þ

where u, p and s are diagonal matrices with diagonal elements ui , pi and si ,
respectively. C (0)C (1)C (2) and D are column vectors of the expansion coefficients;
andMs,Mc andMr are matrices defined in the appendix together with the vector
L. For the impedance calculations, the electromagnetic field in the region zO0 is
required which means that the solution for C (1) is sought. Eliminating D0 using
equation (4.15) and C (2) using equation (4.21) gives the form

A11C
ð1ÞCA12DZK1C

ð0ÞCL1C
ð0Þ
0 ;

A21C
ð1ÞCA22DZK2C

ð0ÞCL2C
ð0Þ
0 :

9=
; ð4:24Þ

Note that the matrices Amn , Km and Lm (m, nZ1, 2) are used here to show the
form of the solution but these are not given explicitly. The solution can be written

C ð1Þ ZMC ð0ÞCVC
ð0Þ
0 ; ð4:25Þ

with

M Z ðA11KA12A
K1
22 A21ÞK1ðK1 KA12A

K1
22 K2Þ; ð4:26Þ

V Z ðA11 KA12A
K1
22 A21ÞK1ðL1 KA12A

K1
22 L2Þ; ð4:27Þ
Proc. R. Soc. A



11Eddy currents in a conductive wedge
and

DZAK1
12 ðKA11C

ð1ÞCK1C
ð0ÞCL1C

ð0Þ
0 Þ: ð4:28Þ

Using equation (4.25) together with equations (3.19), (3.20) and (4.3), the field for
zO0 can be found. A similar procedure gives the field for z!0.
5. Impedance

The impedance change due to the presence of induced current in a conductor is
derived by calculating the rate of change of flux linkage to the coil from the z -
component of magnetic flux density due to eddy currents

DBz ZK
1

2p

ðN
KN

veKvzC
ð1Þ
0 C

XN
iZ1

cosðuixÞkieKkizC
ð1Þ
i

" #
e jvydv; ð5:1Þ

where the z -derivative of the appropriate terms from equation (4.3) have been
used. The induced emf in a single circular filament of radius r0 at zZz0 is given by

DV ðr0; z0ÞZKj2pu

ðr0
0
DBzðr; z0Þr dr : ð5:2Þ

Integrating with respect to r0 and z0 over the coil cross-section gives

IDZ ZK
j2puN

ðr2 Kr1Þðz2 Kz1Þ

ðN
KN

ðeKvz1 KeKvz2Þ
v3

cðvr1; vr2ÞC
ð1Þ
0 dv

�

C

ðN
KN

XN
iZ1

ðeKkiz1 KeKkiz2Þ
k3i

cosðuidÞcðkir1; kir2ÞC
ð1Þ
i dv

#
; ð5:3Þ

where C
ð1Þ
i is given by equations (4.14) and (4.25). For a half-space conductor, it is

found by letting cZh that

C
ð1Þ
i Z

gi Kki

gi Cki
C

ð0Þ
i i Z 0.N: ð5:4Þ

By using equation (3.20) in (5.3), it is found that

I 2DZ ZK
j2uh

m0

XN
iZ0

1

ei

ðN
KN

C
ð0Þ
i C

ð1Þ
i kidv

� �
: ð5:5Þ

Because bothC
ð0Þ
i andC

ð1Þ
i are proportional to the current density in the coil, it can

be seen that the impedance is proportional to the square of the turns density.
6. Corroboration

The validity of equation (5.3) has been tested by comparing numerical
calculations to experiment. Firstly, the numerical performance of the impedance
calculations were examined by calculating the change in coil impedance due to a
half-space conductor using equations (5.3) with (5.4). Calculations were carried
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Table 1. Coil impedance change (U) due to half-space

coil C5 coil C27

experiment 22.0Kj70.5 12.65Kj125.1
Dodd & Deeds (1968) 22.20Kj70.49 12.801Kj125.388
equation (5.3) 22.25Kj70.45 12.801Kj125.329

Table 2. Coil parameters

parameter coil C5 coil C27

r1 (mm) 9.33 7.04
r2 (mm) 18.04 12.4
z1 (mm) 3.32 3.43
z2 (mm) 13.37 8.47
N 1910 556

Table 3. Conductive block parameters

parameter block B1 block B2

r (mU cm) 3.92 4.58
thickness (mm) 140 65

T. P. Theodoulidis and J. R. Bowler12
out using MATHEMATICA. The integral was computed with Gauss–Legendre
integration after truncating at vZG10/r2, while for the summation, 100 terms
were used with hZ20r2. The latter method was the one used also in the case of
the conductive quarter-space. The complex eigenvalues were computed with the
MATHEMATICA routine FindRoot. The three matrix inversions, needed in the
calculations, were done with the MATHEMATICA routine Inverse, which uses LU
(lower triangular and upper triangular) decomposition.

Numerical calculations for the half-space conductor were compared to an
integral formula (Dodd & Deeds 1968), which was evaluated using an automatic
integration routine (DQDAGI from Fortran IMSL Libraries) thus providing an
accurate result. The results, shown in table 1, were obtained based on the coil
parameters in table 2 and conductive block parameters in table 3. The agreement
between the two theoretical results gives confidence in the numerical approach
for computing the coil impedance variation (5.3) in the case of a quarter-space.

The experimental data for validating coil impedance variations in the presence
of a conductive quarter space consists of two measurement sets provided by
Burke & Ibrahim (2004). The first is for coil C5 at 850 Hz and the second is for
coil C27 operated at 20 kHz. Impedance change measurements were recorded as a
function of position, at 2 mm intervals, while the coils were moved across the
edges of thick aluminium alloy blocks. The coil position referred to in figures 3–6
Proc. R. Soc. A
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Figure 3. Resistance variation with coil axis position relative to the edge of the conductor B1 for
coil C5 excited at 850 Hz.
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Figure 4. Reactance variation with coil axis position relative to the edge of the conductor B1 for
coil C5 excited at 850 Hz.
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is the distance between the coil’s axis position and the edge, d –c, and it is zero
when the coil centre is directly above the edge.

The conductive block data are listed in table 3. The C5 coil was used with
block B1 which has a thickness 7.8 times the coil radius. The C27 coil was used
with block B2 which has a thickness 5.2 times the coil radius. Initially the C5 coil
was also used with the 65 mm thick aluminium alloy block but a small
disagreement between theory and experiment was noticed. It was conjectured
Proc. R. Soc. A
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Figure 5. Resistance variation with coil axis position relative to the edge of the conductor B2 for
coil C27 excited at 20 kHz.
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Figure 6. Reactance variation with coil axis position relative to the edge of the conductor B2 for
coil C27 excited at 20 kHz.

T. P. Theodoulidis and J. R. Bowler14
that this block did not provide an accurate approximation of a quarter-space
when used in conjunction with the large C5 coil. The use of the thicker 140 mm
block and the corresponding improvement in agreement supported the
conjecture.

The results cover cases where the skin depth is both small (0.762 mm at
20 kHz) and relatively large (3.418 mm at 0.85 kHz). The agreement between
predictions and experiment is very good in both cases, the difference being
roughly 1%, figures 3–6. A significant feature of these results is that while the coil
Proc. R. Soc. A
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reactance increases monotonically as the coil is traversed across the edge of the
conductive block, the resistance peaks before decreasing. This is a characteristic
edge effect noted also in tube testing (Theodoulidis 2004).
7. Conclusion

The quasi-static magnetic field of a coil carrying an alternating current in the
presence of a conductive right-angled corner conductor has been calculated using
the TREE method, explained here. The coil impedance change due to eddy
currents in the conductor has also been determined allowing a comparison of the
coil impedance variations with experiments in which the coil is moved over the
edge of the conductor. The results show good agreement with experiment both at
low frequencies and at a frequency where the skin depth is small compared with
the coil diameter.

The solution can be extended to the case of a plate with the coil moving across
its edge and to geometries involving planar conductors with long cracks or slots.
Work is underway for deriving solutions to these canonical problems as well as
for applying the TREE method to three-dimensional eddy current NDE problems
described in cylindrical coordinates.

The authors would like to thank Steve Burke and Matthew Ibrahim of DSTO Melbourne for
providing experimental data. The work of J.R.B. was performed with the support of the National
Science Foundation/Industry University Cooperative Research Consortium at the Center for
Nondestructive Evaluation and that of T.P.T. with funding from the Air Force Research
Laboratory through S&K Technologies, Inc. on delivery order number 5007-IOWA-001 of the
prime contract F09650-00-D-0018.
Appendix A. Matrix definitions

This appendix defines the matrices and vectors used in forming equations (4.21)–
(4.23). The matrix Ms, equation (4.21), is derived from the right-hand side of the
continuity condition (4.18) for Hx at the zZ0 interface with the x -component of
the field deduced from (4.5). Thus

M s;ij Z
2

h

pj
qj

ðc
0
sinðuixÞsinðqjxÞdxKaj

ðh
c
sinðuixÞsin½pjðhKxÞ�dx

� 	
; ðA 1Þ

where aj is given by equation (4.7). This can be written

M s;ij Z
pj
qj

M
ð1Þ
s;ij KajM

ð2Þ
s;ij ; ðA 2Þ

where

M
ð1Þ
s;ij Z

sin½cðqj KuiÞ�
hðqj KuiÞ

K
sin½cðqj CuiÞ�
hðqj CuiÞ

for qjsui;

c

h
K

sin 2cui
2hui

for qj Z ui;

8>>><
>>>:

ðA 3Þ
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and

M
ð2Þ
s;ij Z

1

h

sin½ðhKcÞðpj CujÞ�
pj Cuj

K
sin½ðhKcÞðpj KujÞ�

pj Kuj

� 	
cosðhuiÞ for pjsui;

1

h

sin½2ðhKcÞui�
2ui

KðhKcÞ
� 	

cosðhuiÞ for pj Z ui:

8>>><
>>>:

ðA 4Þ

Similarly, from the right-hand side of equations (4.5) and (4.19) we get

M c;ij Z
2

h

ðc
0
cosðuixÞcosðqjxÞdxCaj

ðh
c
cosðuixÞcos½pjðhKxÞ�dx

� 	
: ðA 5Þ

This can be written

M c;ij ZM
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where

M
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From equations (4.10) and (4.19) we get equation (4.22) where

M r;ij Z
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and

Li Z
2
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0
coshðkxÞcosðuixÞdxCcoshðkcÞ
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c
cosðuixÞdx

� 	

Z
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i Þ
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