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Abstract
An important aim of nondestructive evaluation is to quantify flaws in
components using sensor measurements. In pursuit of this aim, a method
has been developed for finding the size and shape of planar cracks in
electrical conductors from single-frequency eddy-current probe impedance
measurements. In the direct problem, the change in the impedance of an eddy-
current probe due to a crack in a conductor is determined in the regime where
the skin depth is much smaller than the dimensions of the crack face. The
thin-skin field at the crack face is represented by a potential satisfying the
two-dimensional Laplace equation. In the corresponding inverse problem, the
crack shape is sought from probe impedance measurements. Here the crack
boundary is located using an iterative inversion scheme in which a cost function
quantifying the overall difference between predictions and measurements is
minimized using a gradient method. The gradient is found from the derivative
of the cost function with respect to a variation of the flaw. Shape estimates found
by the inversion of impedance data have been compared with the measured
profiles of simulated cracks in aluminium plates. The comparisons show that
the inversion scheme gives good agreement with direct physical measurements.

1. Introduction

Eddy-current nondestructive inspection uses inductive probes to excite currents in metallic
components and to sense the presence of defects through changes of probe impedance [1].
Calculations of the probe response can neglect displacement current because of the
overwhelming dominance of charge conduction. The quasi-static field in the conductor
migrates in accordance with a vector diffusion equation. For a time-harmonic excitation,
the ‘wavenumber’ is complex having equal real and imaginary parts. An electromagnetic
disturbance therefore attenuates rapidly with distance from the surface of the conductor on a
scale determined by the skin effect.
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In creating a theoretical framework for direct and inverse problems, flaws can be defined
in terms of the boundary at which the electrical conductivity and magnetic permeability
changes. By using inversion techniques, the shape and size of flaws are sought from probe
measurements. An ideal crack is represented theoretically as an impenetrable barrier to electric
current and the quasi-static electromagnetic field is calculated to predict the probe impedance
variation with position for comparison with the measurements. Here, the crack shape is sought
through a standard iterative inversion scheme in which a cost function quantifying the overall
difference between predictions and measurements is minimized using a conjugate gradient
method. Despite the intrinsic non-linearity of the problem, false minima have not given rise
to difficulties.

It is assumed that the crack lies in a known plane perpendicular to the surface of the
conductor and has negligible or known opening. The inverse problem then reduces to one of
finding a function that defines the line of the crack edge. The required functional derivative
of the cost function is determined from the corresponding derivative of the probe impedance
with respect to a variation of this line. The latter has been derived in a previous inversion study
for an ideal crack excited at an arbitrary frequency [2, 3]. Here, the impedance derivative is
determined for the case where the skin depth is small in comparison with the dimensions of
the crack face. For a thin-skin excitation, the current density decays exponentially with the
perpendicular distance from the crack surface. Its distribution on the crack face is governed by
a potential satisfying the two-dimensional Laplace equation with distinct boundary conditions
at the crack edge and the crack mouth. Hence the direct problem is solved by finding a harmonic
function whose domain corresponds to the face of the crack.

The approach taken in this paper evolved from the pioneering work of Kahn et al [4]
who considered a two-dimensional thin-skin surface crack problem. Assuming that the skin
depth is small compared with the crack depth, the field at the edge decouples from the solution
at the crack mouth. The edge solution can then be adapted from Sommerfeld’s half-plane
diffraction theory [5] by substituting a complex wavenumber for a real one. The impedance
associated with the long straight crack in a field invariant along its length has been calculated
by integrating the Poynting vector over the crack surface to give a simple analytical result [6].
The small skin depth approximation has also been applied to finite-length crack problems [7]
and used to treat a simple inverse problem for a long crack of constant depth excited by a
non-uniform field [8].

2. Direct problem formulation

2.1. Transverse magnetic potential

In this work, thin-skin approximations are used for forward and inverse finite-crack problems.
In the configuration considered, eddy currents are induced by a circular coil whose axis is
normal to the plane surface of a conductor containing an ideal crack, figure 1. The crack
plane is perpendicular to the surface of a half-space conductor. The ideal crack has negligible
opening yet is impenetrable to electric current. In the forward problem the aim is to calculate
the field at the crack faces and, from the solution, determine the coil impedance change due
to the flaw. A brief description of the problem formulation is presented below summarizing
a more detailed account given elsewhere [9, 10]. Later in this paper it will be necessary to
consider the effects of a finite opening since this has a significant effect on the probe impedance
variation due to slots, but initially the opening is neglected.

The field in the conductor is expressed in terms of Hertz potentials representing transverse
electric (TE) and transverse magnetic (TM) modes defined with respect to a preferred direction
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Figure 1. A normal coil over a surface-breaking crack in a conductor.

normal to the crack face. With a negligible crack opening, no direct TE interaction with the
ideal crack occurs but because the preferred direction is parallel to the material interface, the
modes are coupled at the surface plane leading to indirect perturbation of the TE mode via the
TM mode. However, the primary electromagnetic interaction with the ideal crack is through
the TM mode.

Let the normal to the crack face be in the z-direction and express the magnetic field of the
TM mode in the conductor as

H = ∇ × [ẑψ], (1)

ẑ being a unit vector. From Ampère’s law, the curl of the magnetic field is equal to the current
density J , therefore

J = ∇ × ∇ × [ẑψ]. (2)

Putting ẑ · J = 0 for points at the surface of the crack shows that the TM potential satisfies
a two-dimensional Laplace equation in a domain corresponding to a crack face. Thus, at
arbitrary frequency and skin depth,(

∂2

∂x2
+
∂2

∂y2

)
ψ(x, y) = 0. (3)

The domain of equation (3) is bounded by a line corresponding to the crack edge, Ce, and the
line of the crack mouth, Cm. In order to find the thin-skin boundary conditions at Ce and Cm

for the two-dimensional Laplace problem, it is helpful to outline first the arbitrary-frequency
ideal crack problem as follows. At an arbitrary frequency the TM potential due to the ideal
crack can be expressed in integral form as a double-layer potential. By approximating this
integral form for the double-layer potential in the thin-skin regime, the boundary condition
on Cm for the Laplace problem is found.

2.2. Double-layer potential

Let an ideal crack in an induced electric current stream be defined on an open surface S0. The
current density is given in terms of a TM potential by (2) and the potential is a solution of the
Helmholtz equation

(∇2 + k2)ψ = 0, (4)

where k2 = iωµ0µrσ0, µr being the relative permeability and σ0 the conductivity of the host
conductor. While the tangential magnetic field is continuous at S0, the tangential electric field
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and indeed the electric current density are discontinuous. From (1), it can be seen that by
making ψ continuous at S0, the continuity of the tangential magnetic field is secured. The
discontinuity of the tangential current density together with (2) shows that the normal gradient
of ψ is discontinuous. Thus ψ is a double-layer potential that can be expressed using an
integral formula as

ψ(r) = ψ(0)(r)−
∫

S0

G(r, r′)
[
∂ψ

∂z′

∣∣∣∣
+

− ∂ψ

∂z′

∣∣∣∣−
]

dS′ (5)

where the + and − subscripts indicate points at the approach to the positive and negative crack
faces respectively. ψ(0)(r) represents the unperturbed potential. The Green function for the
TM potential in a half-space conductor, G(r, r′), has been derived taking into account that
the preferred direction is parallel to the surface of the conductor. With this choice, a singular
TM source in the conductor gives rise to a TM field and a TE field due to mode coupling at
the interface. Similarly, a TE source gives rise to both modes. Commonly, mode coupling is
avoided by choosing the preferred direction normal to the interface but here the main concern
is to avoid mode coupling at the crack plane. With this non-standard choice of reference
direction, the TM half-space Green function is [9]

G(r, r′) = eik|r−r′ |

4π |r − r′| +
eik|r−r′′ |

4π |r − r′′| +
∂2

∂x2
U(x − x ′, y + y ′, z − z′), (6)

where r′′ = r′ − 2ŷ y ′ is the image point and

U(x, y, z) = µr k2

(2π)2

∫ ∞

−∞

∫ ∞

−∞
1

v2 − k2

(
1

κ
− µr

γ

)
1

[(µ2
r − 1)κ2 + k2]

eγ y+iux+ivz du dv, (7)

with γ = (u2 + v2 − k2)1/2 and κ = (u2 + v2)1/2, taking roots with positive real parts.

2.3. Boundary conditions

The boundary conditions on ψ for the surface Laplace problem have been derived assuming
that the skin depth is much smaller than the length and depth of the crack. At the buried edge
of the crack, the thin-skin magnetic field normal to the edge in the crack plane is zero [7, 8].
This condition is satisfied by requiring that the TM potential at the edge is constant. Putting
the constant to zero gives the edge boundary condition

ψ(x, y) = 0 {x, y} ∈ Ce. (8)

In the thin-skin regime, the potential near the crack plane varies as eik|z|, therefore one
may approximate the jump in the potential gradient at the crack as

∂ψ

∂z

∣∣∣∣
+

−∂ψ
∂z

∣∣∣∣− ≈ 2ikψ±. (9)

Differentiating (5) with respect to y, using (9) and considering a field point at the crack mouth
gives

f (x) = ∂ψ(x, y)

∂y

∣∣∣∣
y=0

+
∫

Cm

K (x − x ′)ψ(x ′, 0) dx ′, {x, y} ∈ Cm, (10)

where the integral is taken along the line of the crack mouth and f (x) = ∂ψ(0)/∂y is the
x-component of the unperturbed magnetic field on Cm. The kernel K (x − x ′) is given by

K (x) = 2ik
∂2

∂x2
U(x, 0, 0). (11)
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In deriving (10) from (5), the integration over y ′ is carried out assuming the functionψ(x ′, y ′)
is approximately constant over the limited depth range of the integral kernel in the thin-skin
limit.

The boundary condition, equation (10), expresses the x-component of the unperturbed
magnetic field at the mouth of the crack as the total minus the perturbed field. In the work of
others [7, 8], the mouth boundary condition was approximated by neglecting the effect of the
perturbed field at Cm. Although this omission simplifies the calculations, predictions made
without the integral term are less accurate than those which include it [9].

3. Solution of the direct problem

3.1. Approach

A solution of equation (3) is sought for cracks of smooth shape by using a general conformal
mapping which transforms a complex-plane representation of the crack face region into a
rectangular domain. In the case of a semi-elliptical crack, as well as for all the other shapes
considered, the crack mouth is divided into three segments by two foci. Each of the three
segments is then mapped to one side of a rectangle and the crack edge maps to the fourth side.
The Laplace equation for a potential defined on a rectangular domain is readily solved.

A suitable mapping has been found for a general class of crack shapes but it is difficult
to apply the integral boundary condition, equation (10), on three sides of the transformed
domain. This complication is avoided by using an approximation as follows. The solution is
first expressed as

ψ = ψ1 + ψ2, (12)

where ψ1 satisfies the Laplace equation in a rectangular region whose length, 2a, and depth,
b, is equal to the overall length and depth of the crack. The function ψ2 is a solution defined
in the actual crack domain whether this be semi-elliptical or some other shape. The solution
ψ1 is found exactly as for a rectangular crack which means it vanishes on three sides of the
boundary:

ψ1 = 0,

{
x = ±a, 0 � x � b,

−a < x < a, y = b,
(13)

and at the mouth satisfies

f (x) = ∂ψ1(x, y)

∂y

∣∣∣∣
y=0

+
∫

Cm

K (x − x ′)ψ1(x
′, 0) dx ′. (14)

The first part of the solution of (3) is expressed in the form

ψ1(x, y) =
∑

n

Dn
2a sin[(nπ/2)(x/a + 1)] sinh[(nπ/2)(b − y)/a]

nπ cosh(nπb/2a)
, (15)

which satisfies (13). Substituting into (14), multiplying by sin[(mπ/2)(x/a + 1)] and
integrating between −a and a gives a matrix equation which is solved numerically to give
the expansion coefficients, Dn .

The potential ψ2 satisfies

∂ψ2(x, y)

∂y

∣∣∣∣
y=0

= 0 {x, y} ∈ Cm, (16)

at the crack mouth. At the crack edge

ψ2(x, y) = G(x, y), {x, y} ∈ Ce. (17)
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In order to comply with (8), the function G(x, y) is defined by letting

G(x, y) = −ψ1(x, y), {x, y} ∈ Ce. (18)

It can be seen from (14) and (16) that (10) is not satisfied exactly but is approximated by
neglecting ψ2 in the integral. Because ψ2 is small compared with ψ1 and the integral term
is itself relatively small, the approximation is reasonable as can be corroborated from the
comparison of direct problem predictions with experiment [11].

3.2. General mapping

A mapping of the form

ζ = x + iy =
∑
ν

Kν cos[νπ(1 − τ )], (19)

where τ = ξ + iη and ν = 1, 2 . . . N , transforms the representation of the crack domain in the
complex ζ -plane into a rectangular region in the τ -plane. Parametric equations for the line of
the crack edge are found by putting η = α in (19), where α is a real constant. Equating real
and imaginary parts gives

x =
∑
ν

aν cos[νπ(1 − ξ)] (20)

y =
∑
ν

bν sin[νπ(1 − ξ)] (21)

where

aν = Kν cosh(νπα) (22)

and

bν = Kν sinh(νπα). (23)

In the direct problem, the parameters are chosen to give a good representation of a given flaw
shape by a least-squares fitting procedure. For a semi-elliptical crack only one term is needed
in the summation, equation (19). In general, three or four terms give a good approximation of
a smooth crack shape using what we refer to as an elliptical epi-cycloidal representation [11].
In the inverse problem, the coordinate x0 of the mid-point of the foci, the parameter α and the
coefficients Kν are sought from observations of impedance.

Now the second part of the solution, ψ2, is written as

ψ2(x, y) = φ[ξ(x, y), η(x, y)], (24)

where

φ(ξ, η) =
∑

n

Cn
cos(nπξ) cosh(nπη)

cosh(nπα)
. (25)

In the τ -plane, the boundary condition (16) becomes

∂φ

∂ξ
= 0, ξ = 0 or 1, 0 � η � α, (26)

∂φ

∂η
= 0, 0 � ξ � 1, η = α, (27)

and (8) is satisfied by putting

φ(ξ, α) = g(ξ), 0 � ξ � 1, (28)



Thin-skin eddy-current crack inversion 1897

where g(ξ) is given by mapping the function G(x, y),{x, y} ∈ Ce into the τ -plane. Clearly (25)
satisfies (26) and (27). The expansion coefficients in (25) are found from

Cm = 2
∫ 1

0
g(ξ) cos(mπξ) dξ (29)

which is derived using the orthogonal properties of the cosine function. This completes the
summary of the solution of the direct problem. Next the calculation of the observed probe
impedance is considered.

3.3. Impedance

The impedance change of a coil due to the presence of a crack can be calculated from an
expression derived using a reciprocity theorem. Taking into account a correction for the crack
opening, the impedance change due to a crack is given by [10]

Z = β

∫
C
ψ(x, 0) f (x) dx, (30)

where

β = − k

σ I 2

(
kc
µc

µr
+ 2i

)
. (31)

Here c is the crack opening, I is the probe current and µc is the relative permeability of the
material within the crack volume. For a probe consisting of a normal coil of rectangular cross
section, the incident field, f (x), can be calculated using a closed-form expression [12].

The crack opening has been introduced here because it gives rise to a term that is of leading
order with respect to its k dependence. Even if the opening c is so small that it has a negligible
effect on the field at the crack face, the crack opening gives rise to the dominant contribution to
the impedance in the high-frequency limit and must be included. Other terms associated with
the crack opening which involve integration of the field over the area of the crack mouth and
edge have been omitted from equation (30). Additional small terms omitted from equation (30)
but included in the forward predictions account for the fact that the flow of electric current near
the crack mouth and edge is not parallel to the crack face [9]. By neglecting these additional
contributions in the inverse problem, minor errors arise in computing the impedance gradient.
These may marginally slow the rate of convergence but, by using (30) rather than the full
expression, the computational cost of computing the effects of minor terms is avoided.

4. Crack profile inversion

4.1. Least-squares optimization

Let the crack shape be defined in terms of a flaw function υ(p, x, y) = 0 representing the
equation of the line of the crack edge. The flaw function depends on n parameters p1, p2,
p3, . . ., pn, collectively denoted by the vector p. These parameters are sought by minimizing
a cost function using a gradient method. The cost function, otherwise known as an error or
penalty function, is a measure of the overall difference between predictions and observations.
Summing over all observations, the cost function is defined by

E(p) =
∑

m=1,M

|Zm(p)− Z obs
m |2, (32)

where Z obs
m is the observed contribution to the impedance of an eddy current probe at the mth

observation point due to a crack and Zm(p) is the corresponding prediction.
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In order to find the set of flaw parameters that minimize the cost function, the derivative
with respect to each parameter is calculated. From (32), the partial derivative with respect to
parameter p j is given by

∂E
∂p j

= 2 Re

{ ∑
m=1,M

[Zm(p)− Z obs
m ]∗

∂Z(p)

∂p j

}
, (33)

where Re denotes the real part and ∗ denotes the complex conjugate. The derivatives will
be found from the functional gradient of the impedance with respect to a variation in the
flaw function, υ, written as ∇υZ(l). The latter can be interpreted as the sensitivity of the
probe impedance to a variation in the flaw function at a point on the edge of the crack whose
coordinate is l. This function is defined such that an incremental change in the impedance due
to an arbitrary variation of the flaw is expressed in the form

δZ =
∫

Ce

∇υZ(l)δn(l) dl, (34)

where δn(l) represents a displacement of the crack edge in the direction of its normal in the
plane of the crack. The function ∇υ Z(l) is identified in the next section. From (34), the partial
derivatives of the impedance are given by

∂Z

∂p j
=

∫
Ce

∇υZ(l)
∂n

∂p j
dl. (35)

Combining the partial derivatives into the parameter-space gradient vectors ∇pE and ∇p Z ,
equation (33) can be written as

∇pE = 2 Re

{ ∑
m=1,M

[Zm(p)− Z obs
m ]∗∇p Z

}
. (36)

Starting with an initial parameter set, denoted by the vector p0, the first update uses a steepest
descent step, written

p1 = p0 − α∇pE, (37)

where the step size parameter α is chosen to minimize E in the direction of its gradient.
Thereafter a conjugate-gradient update is used.

Thus the search for a minimum error takes place in a parameter space using the cost function
gradient vector ∇pE to determine the search direction and update the flaw parameters. The cost
function gradient vector is calculated from the functional gradient of the impedance, ∇υ Z(l),
using equations (35) and (36). We next consider how ∇υZ(l) is determined from solutions of
the forward problem.

5. Impedance gradient

5.1. Potential variation

In order to determine a general incremental change of probe impedance due to a flaw variation,
and thereby identify ∇υ Z(l), it is necessary to consider how the potential ψ changes as the
position of the crack edge is varied. An incremental variation in the position of the line of
the crack edge results in a variation δψ in the potential. Thus, following an incremental flaw
variation, equation (10) becomes

f (x) = ∂(ψ + δψ)

∂y

∣∣∣∣
y=0

+
∫

Cm+δCm

K (x − x ′)[ψ(x ′, 0) + δψ(x ′, 0)] dx ′,

{x, y} ∈ Cm + δCm. (38)
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The potential ψ is deemed to be zero in the region outside the original crack domain.
Subtracting equation (10) from (38) and considering the resulting relationship for the original
line of the crack mouth we have

0 = ∂δψ

∂y

∣∣∣∣
y=0

+
∫

Cm+δCm

K (x − x ′)δψ(x ′, 0) dx ′, {x, y} ∈ Cm. (39)

Equations (38) and (39) are used to derive a simple expression for the impedance variation as
follows.

5.2. Impedance variation

From equation (30), the variation of impedance due to an incremental change in the crack
profile is given by

δZ = β

∫
Cm+δCm

δψ(x, 0) f (x) dx . (40)

Substituting for f (x) from (38) gives

δZ = β

∫
Cm+δCm

[
δψ
∂(ψ + δψ)

∂y

∣∣∣∣
y=0

+ (ψ + δψ)
∫

Cm+δCm

K (x − x ′)δψ(x ′, 0) dx ′
]

dx,

where the order of the integration has been reversed in the double-integral term, variable names
x and x ′ exchanged and the fact that K (x) = K (−x) has been used. The above relationship
can also be written as

δZ = β

∫
Cm+δCm

δψ
∂(ψ + δψ)

∂y

∣∣∣∣
y=0

dx + β
∫

Cm

(ψ + δψ)
∫

Cm+δCm

K (x − x ′)δψ(x ′, 0) dx ′ dx

+ β
∫
δCm

δψ

∫
Cm+δCm

K (x − x ′)δψ(x ′, 0) dx ′ dx .

Equation (39), whose field domain is Cm, is used with the second integral above to give

δZ = β

∫
Cm+δCm

[
δψ
∂(ψ + δψ)

∂y

∣∣∣∣
y=0

− (ψ + δψ)
∂δψ

∂y

∣∣∣∣
y=0

]
dx

+ β
∫
δCm

δψ

[
∂δψ

∂y

∣∣∣∣
y=0

+
∫

Cm+δCm

K (x − x ′)δψ(x ′, 0) dx ′
]

dx . (41)

Note that the integral over δCm, being second order in the variation, is negligible. Because
both δψ and ψ + δψ are zero at the varied crack edge in accordance with the boundary
condition (8), the path of the first integral may be extended to enclose the varied crack. Let C0

be the clockwise closed path round the original flaw and C0 + δC0 be the path round the varied
crack domain, figure 2. Then

δZ = β

∮
C0+δC0

[
δψ
∂(ψ + δψ)

∂n
− (ψ + δψ)

∂δψ

∂n

]
dl. (42)

This line integral can be expressed as the sum of two closed contour integrals, one following
the boundary of the original crack domain C0, figure 2(a), and the other following the boundary
of the crack extension δC0, figure 2(b). It can be shown, using Gauss’ theorem, that∫

S0

[
ψ1∇2ψ2 − ψ2∇2ψ1

]
dS =

∮
C

[
ψ1
∂ψ2

∂n
− ψ2

∂ψ1

∂n

]
dl. (43)
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Figure 2. (a) Initial crack domain showing the enclosing path C0. (b) Crack variation showing its
enclosing contour δC0.

Assuming ψ1 and ψ2 satisfy the Laplace equation, the left-hand side vanishes. Noting that
both δψ and ψ + δψ are Laplacian, the theorem can be used to show that the integral whose
path, C0, encloses the original crack domain also vanishes. Consequently,

δZ = β

∮
δC0

[
δψ
∂(ψ + δψ)

∂n
− (ψ + δψ)

∂δψ

∂n

]
dl = β

∫
Ce

δψ
∂ψ

∂n
dl = β

∫
Ce

(
∂ψ

∂n

)2

δn dl,

(44)

where it has been noted once more that δψ and ψ + δψ vanish at the edge of the varied crack.
By comparing (44) with (34) it can be seen that

∇υ Z(l) = β

(
∂ψ

∂n

)2

= βH 2
t (l), (45)

where Ht(l) is the tangential magnetic field at the edge of the crack.

6. Edge field evaluation

The normal derivative of the potential, ∂ψ/∂n, required for the evaluation of the impedance
gradient via equation (45), is evaluated as the sum of two parts:

∂ψ

∂n
= ∂ψ1

∂n
+
∂ψ2

∂n
, (46)

where ψ1 is the rectangular crack solution, equation (15), and ψ2 is found by mapping to the
τ -domain to give a solution defined by equation (25). The terms in the right-hand side of
equation (46) have been separately expanded and are given in explicit form below.

The normal derivation of ψ1 is expressed as

∂ψ1

∂n
= ∂ψ1

∂x

∂x

∂n
+
∂ψ1

∂y

∂y

∂n
=

[
∂ψ1

∂x

∂x

∂η
+
∂ψ1

∂y

∂y

∂η

]
∂η

∂n
, (47)
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where the derivatives of ψ1 with respect to x and y are obtained simply from (15). From (20)
and (21) (

∂x

∂η

)
η=α

= π
∑
ν

νbν cos[πν(1 − ξ)] (48)

and (
∂y

∂η

)
η=α

= π
∑
ν

νaν sin[πν(1 − ξ)]. (49)

Also

∂η

∂n
=

[(
∂x

∂η

)2

+

(
∂y

∂η

)2]−1/2

. (50)

From (24) and the fact that ∂φ/∂ξ is zero at the corresponding boundary, the normal
derivative of ψ2 at the crack edge is written as

∂ψ2

∂n
=

(
∂φ

∂η

)(
∂η

∂n

)
(51)

where, from (25),(
∂φ

∂η

)
η=α

=
∑

n

Cnnπ cos(nπξ) tanh(nπα). (52)

The relationships summarized in this section are used to evaluate the function gradient of the
impedance, equation (45), in terms of the solution of the direct problem and a general mapping.

7. Parameter search

From (44), the derivative of the impedance with respect to parameter p j is given by

∂Z

∂p j
= β

∫ 1

0

{
∂ψ

∂n

}2[
∂n

∂p j

][
∂l

∂ξ

]
η=α

dξ, (53)

with [
∂n

∂p j

][
∂l

∂ξ

]
η=α

=
[
∂y

∂p j

][
∂x

∂ξ

]
η=α

−
[
∂x

∂p j

][
∂y

∂ξ

]
η=α

. (54)

For example, suppose the crack is assumed to be semi-elliptical with the shape represented by
the parametric equations

x = x0 + a cos[π(1 − ξ)] (55)

and

y = b sin[π(1 − ξ)]. (56)

The parameters a, b, and x0 are sought where x0 is the coordinate of the mid-point of the line
joining the foci of the ellipse. Then, noting that ∂x/∂a = cos[π(1 − ξ)] and ∂y/∂a = 0, it is
found that [

∂n

∂a

]
l

[
∂l

∂ξ

]
η=α

= πb cos2[π(1 − ξ)]. (57)

Similarly, [
∂n

∂b

]
l

[
∂l

∂ξ

]
η=α

= πa sin2[π(1 − ξ)] (58)
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Table 1. Coil parameters.

Parameter Value

Outer radius 7.50 ± 0.05 mm
Inner radius 2.51 ± 0.01 mm
Axial length 4.99 ± 0.01 mm
Nominal lift-off 0.10 ± 0.01 mm
Number of turns 4000 ± 1

and [
∂n

∂x0

]
l

[
∂l

∂ξ

]
η=α

= πb cos[π(1 − ξ)]. (59)

Hence, with (53), the impedance derivative can be found for carrying out a search for semi-
elliptical crack parameters. In dealing with an epicyclic crack with elliptical components such
as shown in figure 1, the required derivatives are computed from the following relationships:[
∂n

∂x0

]
l

[
∂l

∂ξ

]
η=α

= π
∑
ν

bν cos[νπ(1 − ξ)], (60)

[
∂n

∂α

]
l

[
∂l

∂ξ

]
η=α

=
{
π

∑
ν

νaν sin[νπ(1 − ξ)]

}2

+

{
π

∑
ν

νbν cos[νπ(1 − ξ)]

}2

(61)

and[
∂n

∂Km

]
l

[
∂l

∂ξ

]
η=α

= π sinh(πmα) sin[mπ(1 − ξ)]
∑
ν

νaν sin[νπ(1 − ξ)]

+ π cosh(πmα) cos[mπ(1 − ξ)]
∑
ν

νbν cos[νπ(1 − ξ)]. (62)

In the initial phase of the calculation, the parameters a, b and x0 are sought, treating the crack
as a semi-ellipse. Further degrees of freedom are added later by including extra terms in the
series representation of the crack profile. A term is added when the calculation has reached
a point at which reduction in the cost function with each iteration is small and yet its value
indicates that further reduction is possible.

8. Results

Impedance measurements by Harrison et al [13] on simulated cracks in the form of slots in
aluminium plates have been used to test the parametric inversion scheme. Experimental data
have been provided by these authors at 16 frequencies from 250 Hz upwards but because the
present theory uses thin-skin approximations, the inversions are carried out using data at the
highest frequency only, 50 kHz. The experimental data have previously been used to validate
and test the accuracy of solutions of the thin-skin forward problem [11].

Four simulated cracks, designated D1, D2, D3 and D4, have been reconstructed assuming
that the crack lies in a known plane and the crack opening c is also known. A parametric
search could include the crack opening but at present it is held fixed while the profile is sought.
Predefined coil parameters and specimen parameters are given in tables 1 and 2.

For the first iteration, the search is restricted to fit a semi-ellipse by adjusting the location
of the crack centre, the semi-major axis and the semi-minor axis. When the cost function is no
longer decreasing with each iteration, an addition term is added to the parametric representation
of the crack. This process continues until the cost function cannot be reduced by adding more
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Figure 3. (a) Parametric reconstruction of slot D1 showing the profile at iterations 1, 3 and 5, solid
curves. (b) Parametric reconstruction of slot D2 showing iterations 1, 25 and 35. Measured profile
data are shown as circles.

Table 2. Slot parameters and coil lift-off.

Parameter Slot D1 Slot D2 Slot D3 Slot D4

Max opening (mm) 0.33 ± 0.01 0.37 ± 0.01 0.32 ± 0.01 0.30 ± 0.01
Conductivity (MS m−1) 22.50 ± 0.05 22.40 ± 0.05 23.15 ± 0.05 23.20 ± 0.05
Coil lift-off (mm) 0.491 ± 0.01 0.318 ± 0.01 0.368 ± 0.01 0.498 ± 0.01

Table 3. Inversion results.

Parameter Slot D1 Slot D2 Slot D3 Slot D4

No of measurements used 11 19 11 19
Measurement step (mm) 4 4 4 4
Length measured (mm) 22.10 ± 0.05 49.78 ± 0.05 24.84 ± 0.05 48.41 ± 0.05
Length by inversion (mm) 22.16 ± 0.50 49.34 ± 0.50 25.21 ± 0.50 48.78 ± 0.50
Max. depth measured (mm) 8.61 ± 0.05 8.94 ± 0.05 9.04 ± 0.05 8.36 ± 0.05
Max. depth inversion (mm) 8.51 ± 0.80 8.15 ± 0.80 8.72 ± 0.80 8.16 ± 0.80

degrees of freedom in the representation of the crack shape. At this point the algorithm is
terminated. For flaws D1 and D3, the algorithm terminates with three terms in the series
expansions, equations (20) and (21). For flaws D2 and D4, five terms are needed.

The results of a parameter search for the shape of D1 and D2 are illustrated in figure 3.
Similar results for D3 and D4 are shown in figure 4. Table 3 compares the length and depth of
the slots found by inversion with the values found by direct measurement.
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Figure 4. (a) Parametric reconstruction of slot D3 showing the profile at iterations 1, 10 and 11 as
solid curves. (b) Parametric reconstruction of slot D4 showing iterations 1, 25 and 35. Measured
profile data are shown as circles.

9. Conclusion

In an optimization approach to inversion, the central task is to find a means of updating the
flaw in such a way that the agreement between theoretical predictions and observations is
improved. For a number of cases [14], this update has been expressed in terms of the gradient
of the observations with respect to a variation of the flaw using the adjoint method. In earlier
work, the approach was used to perform inversion calculations using a forward model in
which the effect of an ideal closed crack is represented in terms of a surface current dipole
distribution [3]. The dipole density is determined using a boundary element scheme and the
probe impedance changes due to the crack calculated from a numerical approximation of the
dipole density. This model is valid at low frequencies where the skin depth is much greater than
the crack opening. At higher frequencies it is possible to account for the effect of the opening
in a simple way by approximating the electric field inside the crack as normal to the crack
faces and adapting the boundary element calculation accordingly [15]. The boundary element
schemes seem to be more efficient at low and intermediate frequencies, but at high frequencies
a large number of elements is needed and the computation cost is high. This cost has been
avoided in this study by using an alternative approach based on thin-skin approximations. The
functional gradient of the impedance with respect to a variation of the line of the crack edge has
now been determined for thin-skin crack profile inversion. The gradient is expressed simply
in terms of the magnetic field tangential to the crack edge.

As alternatives to (32), other cost functions can be defined which use only the resistive or
the inductive component of the observations. There may be advantages in doing this if one or
other component is more accurately measured, or is in better agreement with the prediction of
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the forward problem. In either case, the gradient of the new cost function can be expressed
in terms of the functional gradient of the impedance with respect to a variation of the crack
profile. Hence the method presented here is easily adapted to deal with different cost functions
by making minor modifications to the function definition (32) and the gradient (36).

In testing the inversion scheme using impedance measurements of a normal coil on
simulated cracks, the profiles found by inversion were in good agreement with the measured
shapes. It must be acknowledged that in industrial conditions, the signal-to-noise ratio of the
data is not usually as high as that of the experimental results used in this work. In addition, the
ultimate applications must deal with fatigue cracks that can be irregular, subject to stress fields
and may have points of electrical contact between faces. All of these factors will reduce the
accuracy of the inversion. However, the preliminary steps taken in this study have shown that
without presupposing the slot shapes the lengths can be determined from eddy current data to
within 3% and the depths to within 10%.
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