
This research is aimed at developing a new tool to facilitate efficient development of control
software for safety-critical applications. Like Computer-Aided Design (CAD), Model-based
development (MBD) tools offer a graphical programming environment where the user develops
the program as a graphical model from which the code is generated automatically. Our research
focuses on Simulink, a tool by The MathWorks. The C code is generated automatically using
another tool called Real-time Workshop.

Model-Based Development Research at ISU
Software Reliability

Problem Statement

Developing tools and
technology for producing
safety-critical software.

F-4 (1960): 8% of
capabilities provided by
software

F-22 (2000): 85% of
capabilities provided by
software

Ariane 5 Disaster

Software Bug

Expansion of Capabilities Growing Size of Software in Industry

Importance of Software Verification

Complexity of software grows – reliability an
important issue. Infamous Ariane 5 disaster, arguably
one of the most expensive software bugs in history.

Mars Polar Lander – Powered down
100ft above the Martian surface –
most likely a software bug.

• The generated code must be checked to
ensure correct translation

• Existing avionics systems have as many
as 750,000 lines of code.

• Develop an automated tool for auditing
• Reconstruct the model from the

generated code,
• Compare extracted model and

original with graph differencing tool
(existing grad student project)

Model-Based Development in Simulink

Functional Requirements
•Parse C code generated from Simulink model by Real-Time Workshop
•Produce a graph representation comparable to the original model
•Allow easy extensibility to support additional Simulink blocks

Non-Functional Requirements
•Usable on any system running the Eclipse Platform
•Process large model with over 100 blocks in under a minute

Deliverables
•Requirements Specification
•Engineering Specification
•Source Code
•Project Poster
•Project Plan
•Design Documents
•User Manual
•Website

Conclusion

Test Results

JUnit Test Results

White Box Testing
•Testing of individual methods and classes
•Uses JUnit framework

System-Level Testing
•Testing of system as a whole
•Input is a single set of files
•Intermediate output from each stage can be saved
•The source of a bug can be tracked to the component

Test Results
•Revealed a number of bugs in the code
•Identified blocks which are not supported by our code
•Test succeeds in all models using only supported blocks

Design Overview

1. Code segmentation – create segments that can be matched
with code patterns.

2. Matching – developed a block matcher to perform the
matching. The block matcher is written to handle possible
mutations of the code, such as the substituting of sub-
expressions for an input variable.

3. Linking – link the matched blocks to reconstruct the model.

Our project
•demonstrates that it is possible to
automatically test generated code for
errors.
•is capable of matching nearly all types
of blocks.
•could be developed into a robust
commercial solution to save test
engineers a great deal of time when
auditing automatically generated code.

Work Breakdown
1.Create Simulink Models and C Code
2.Manually Identify Simulink Blocks In C Code
3.Write Code to Obtain an Abstract Syntax Tree
4.Write Code to Detect Blocks
5.Write Code to Output to DOT File
6.Verify Generated Model is Functionally Equivalent
7.User Interface
8.Testing and Debugging

Project Plan

Requirements

