
idecd_ioctl idedisk_ioctl

mutex_lock mutex_unlock

Program Comprehension and Reliability Analysis
Atlas Tool and Query Model Refine Technology

EnSoft and Iowa State University

Software reliability analysis can be dauntingly difficult for problems such as dead lock detection. Human experts solve these problems by analyzing software
artifacts. It requires tracing volumes of code, extracting the important relationships, and filtering out unnecessary details – tasks which are very difficult to
perform manually. Atlas is a tool that automates these difficult manual tasks. Atlas is based on the powerful Query-Model-Refine (QMR) program
comprehension technology we are developing for retrieving, abstracting, and analyzing complex relationships between program artifacts. The QMR
technology provides a flexible and powerful mechanism to design and execute software analysis strategies. Atlas implements the QMR technology by
providing a SQL-like syntax for queries, presenting complex relationships as graphs, and enabling their refinement through a variety of graph
transformations. Powerful queries can be composed and combined with graph transformations to perform highly useful analysis of software.

Abstract

Why QMR Technology
The time spent on program comprehension can be

drastically reduced by using a QMR tool.
In industry, software engineers spend a lot of time on

program comprehension due to factors such as inadequate
documentation and code decay from software aging.

QMR technology can be used to improve the efficiency of
testing and requirements gathering activities.

QMR technology can be used for training software
engineers.
Contact: Suraj Kothari, kothari@iastate.edu

Brief History
ParAgent, an interactive automatic parallelization tool at ISU – 1996
TotalInsight, a COBOL tool for business rule extraction at EnSoft – 2004
EnSoft built a tool for Rockwell for auditing avionics software – 2005
C-Vision a research prototype at ISU – 2006
Atlas built at EnSoft – 2007

An Outsider’s View
“I think this is a real breakthrough – and I am now a confirmed advocate

of program reading. I am hoping to work with Prof Kothari to do some more
stuff with this ..” – a blog by a Microsoft manager

http://port25.technet.com/archive/2006/11/16/learning-to-read.aspx

Deadlock Detection using Atlas – an analysis of Linux code

Queries:
#x = call(mutex_lock)
#y = call(mutex_unlock)
#z = #x minus #y
#a = roots(#z)

For a subsystem analysis, choose
“idecd_ioctl” & “idedisk_ioctl”
as the roots

“mutex_lock” & “mutex_unlock”
as the leaves
Atlas create the graph on the right

#a, #x, #y, #z are set of functions

Tool Interface

Applications Of QMR Technology
Architecture extraction, auditing safety-critical software, defect
analysis, interactive automatic parallelization, and business rule
extraction.

If indeed our objective is to build computer systems that solve very
challenging problems, my thesis is that IA > AI, that is, that intelligence
amplifying systems can, at any given level of available systems
technology, beat AI systems. That is, a machine and a mind can beat a
mind-imitating machine working by itself.

--Fred Brooks

Intelligence Amplifying

Program Comprehension Process

Our Approach
Omit the “device_add” case,
Atlas simplifies graph

Omit “ide_unregister” operation
Atlas further simplifies the graph

idecd_ioctl idedisk_ioctl

mutex_lock mutex_unlock

