Overview of Program
Comprehension

CPRE 416-Software Evolution
and Maintenance-Lecture 4

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.



Program Comprehension

e International Workshop on Program
Comprehension http://www.leee-
iIwpc.org/iwpc2005/

 Annotated bibliography
http://www2.umassd.edu/swpi/processbi
bliography/bibcodereading2.html#Deimel

90

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.



Understanding Programs

o Goes far beyond the abillity to read syntax.
e Serious economic issue for the industry.

 Program comprehension is required for:
— Defect identification
— Tracing the defect source
— Code inspection
— Preparation of test cases
— Good documentation
— Code revisions and enhancements

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.



Macro vs. Micro Level
Understanding

 Macro-level: understanding software at large
with focus on the global and cross-cutting
characteristics (e.g. class relationships).

e Micro-level: understanding a specific part of
software In great detail (e.g. implementation of a
data structure such as a tree).

 We will focus on macro-level understanding.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.



Code Reading Types

 Reading by step-wise abstraction
* Defect-based Reading
e Perspective-based Reading

Source: http://www?2.umassd.edu/swpi/ldocs/comprehension.html
Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.




Reading: step-wise abstraction

« Determine the function of critical subroutines,
works through the program hierarchy until the
function of the program is determined.

« A bottom-up strategy- map the code to
suggested problem domain activity.

e Basili & Selby investigated the effectiveness:

— the technique detects more software faults, and has a
higher fault detection rate than functional or structural

testing.

Source: http://www?2.umassd.edu/swpi/ldocs/comprehension.html
Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.




Defect-based Reading

* Defects are categorized and
characterized, a set of questions
developed for each defect class to guide
the reader.

« Experiments conducted at the University
of Maryland suggest that defect-based
reading Is more effective to ad hoc
reading.

Source: http://www?2.umassd.edu/swpi/ldocs/comprehension.html

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.



Perspective-based Reading

o Similar to defect-based reading, but instead of
defects readers have different roles (tester,
designer and user) to guide them in reading.

e EXperiments conducted at the University of
Maryland suggest that defect-based reading Is
more effective to ad hoc reading.

e Perspective-based reading has been applied to
the inspection of requirements documents.

Source: http://www?2.umassd.edu/swpi/ldocs/comprehension.html

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.



Cognitive Processes in Program

Comprehension

A mental model describes an engineer’'s mental
representation of the program to be understood.
A cognitive model describes the cognitive

processes and information structures used to

form the mental model. Three cognitive

DFOCESSES:

— Expectation-based comprehension (Brooks 1983).
— Inference-based Comprehension (Soloway 1984).

— Bottom-up processing (Schneiderman & Mayer,
1979).

* Which strategy would be more useful in familiar
domain?

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.



Empirical Studies

Empirical studies of cognitive processes
using “Talk-Aloud Protocol”.

Subjects are asked to verbalize their
thought process of program
understanding.

Analysis schemas have been developed.

Results from different subjects are
compared to check for consistency of
results.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 10



Talk-aloud Excerpt

ACCOUNTING - COMPEEHENSION
SUBJECT ID: | I :
PHEASES: 81 TO 100

21. CHECE-TWENTY-ONE-OUT

22 This looks like ID numbers

23 Orlooks like we 're printing a check

24 HEADLINE

g25. EEPORT-NAME,

26. WOERK-STUDY REOSTER

87. TITLELINE

28. NAME, SOCIAL-SECURITY-NUMEBER.
BUDGET. GEOSS-PAY, NET-PAY, LOCATION-
LINE,DATE.LOCATION. PAGE

go. Next page

90. DEPARTMENT-LINE

91. TOTALS FOR DEPARTMENT, NUMBEER OF
STUDENTS

az. DEPARTMENT-CT.looks like a count

83. DEPT-GROSS5-AC, DEPT-NO, DEPT-TYPE.
something to do with ordering perhaps

84. DEPT-NET

935, And there are flags beside the COUNT, the GROSS,
and the NET

06. UNIVERSITY -LINE loocks like the same thing,

87. GEAND TOTAL

08, Sc up above we have loocks like a DEPARTMENT -
LINE and then the UNIVERSITY-LINE iz =a
GEAND-TOTAL-LINE

99 MAILING is the LABLES bit

100. FIRST-NAME,

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.

11



Expectation-based Comprehension

 \What would be verbalization?

/* Code Segment */

for (i=0; i<n-1;i++) {

for (j=0; j<n-1-i; j++)

if (afj+1] < aljf) {

tmp = afj];
afjj = afj+1];
afj+1] =tmp;

.IE

}

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.

12



Program Slicing

Given a set of program elements S, a slice is a
projection of the program that includes only
program elements that might affect (either
directly or transitively) the values of the variables
used at members of S.

A technique for visualizing dependencies and
restricting attention to just the components of a
program.

Two main types: backward slicing and forward
slicing.
Project: http://www.cs.wisc.edu/wpis/html/

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 13



Effort Estimation for Program

Comprehension

Econometric model - |
http://portal.acm.org/citation.cfim?id=837837

Case study: a subset of 26 programs from a
banking application written in COBOL; 31,981
lines of code (locs), overall effort for restoration
required about 170 man/hours.

Efforts depend on: the objective of restoration,
adequacy and capability of the tools used,
engineer's experience, the knowledge of the
applicative domain available etc.

The model provides a way quantify and estimate
the efforts.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 14



Restoration

* The restoration process considered in the
study included:

— Classify data as applicative domain data,
control data, structural data.

— Rename variables using meaningful names.
— Extract modules with high internal cohesion.

— Localize variables declared to be global but
used locally.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.

15



Reverse Engineering

 |dentify software components, their interrelationships,
and represent these entities at a higher level of
abstraction.

— Redocumentation: Perhaps the weakest form of reverse
engineering.
— Design Rediscovery: use domain knowledge and other external

Information to create a model of the system at a higher level of
abstraction.

— Restructuring: Transform the system within the same level of
abstraction maintaining the same functionality and semantics.

— Reengineering: Most radical, involves both reverse and forward
engineering to reexamine which functionalities need to be
retained, deleted or added.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.

16



Difficulties

e Gap between the application model and the
program.

« Computer science education is largely about
mapping from the abstract to the detailed
iImplementation, but there is little to assist in the
reverse mapping.

e Over time, program structure drifts from the
original specification. It becomes difficult to
reconcile and synchronize the documented
design and the current implemented design.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.

17



Tools for Program Comprehension

1. Source code comprehension tools:

http://grok2.tripod.com/code comprehen
sion.html

2. A Survey of Program Comprehension
and Reverse Engineering Tools by
Nelson,
http://arxiv.org/ftp/cs/papers/0503/05030
68.pdf

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 18



Approaches for Automated

e Textual, lexical and syntactic analysis.
e Graphing program artifacts.
e Execution and testing.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.

19



Using Electronic Library

IEEE Xplore:
http://www.lib.lastate.edu/collections/db/ieeexx.html

Process:

Suppose you get following reference after searching on Google
http://portal.acm.org/citation.cfm?id=837837

Google search shows that the paper appeared in International
Workshop on Program Comprehension (IWPC) in 96.

Click on Xplore, click on conferences, then type IWPC in the
search box and go.

You will get a yearly listing of all IWPC proceedings.
Click on the appropriate year, the Table of Content comes up.
Click on the PDF link for the paper.

WCRE is another conference with several relevant
papers for this course.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved.



References

Brooks, R., (1983) Towards a Theory of the Comprehension of
Computer Programs. International Journal of Man-Machine
Studies, Vol. 18.

Soloway, E., (1984) Empirical Studies of Programming
Knowledge. IEEE Transactions on Software Engineering, IEEE
Computer Society, Vol. SE-10, No. 5.

Schneiderman, B., Mayer, R., (1979) Syntactic / Semantic
Interactions in Programmer Behavior. International Journal of
Computer and Information Sciences, Vol. 8, No. 3.

Von Mayrhauser, A., Lang, S., (1999) A Coding Scheme to
Support Analysis of Software Comprehension. IEEE Transactions
on Software Engineering, Vol. 25, No. 4, July/August.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 21



