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FEAT
Feature Exploration & Analysis Tool

CPRE 416-Software Evolution 
and Maintenance-Lecture 7-9
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Overview

• Developed University of British Columbia 
(UBC). Robillard Ph.D. thesis, November 
2003.

• Objective: locate, analyze, and describe 
scattered concerns in source code.

• A plug-in for the Eclipse Platform
• http://www.cs.ubc.ca/labs/spl/projects/feat/
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Basic Approach

• Understanding program = Extracting 
(gathering) information about a concern.

• Concern = relationships between program 
elements ( binary relations as the 
formalism)

• Program elements = artifacts that 
constitute a program

• Example: artifact: functions, relationship: 
calls, extracted information: call tree. 
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Concern Graph

• Describes concerns in source code in 
terms of relations between program 
elements.

• Notion of consistency between a concern 
graph and the corresponding source code.

• FEAT: build concern graphs, view the 
code related to a concern, and perform 
analyses on a concern representation.
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What is a Concern
• Any consideration a developer might have about 

the implementation of a program.
• For example, in a file server application based 

on the File Transfer Protocol, one possible 
concern is the requirement to log every file 
transfer command issued by the client programs.

• Corresponding source code =  calls to functions 
such as log(String), and their implementations. 

• This code is scattered throughout the all of the 
modules implementing file transfer commands.
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Problems To Be Solved 

• Concern Location and Understanding 
Problem.

• Concern Documentation Problem –
consistency and cost of documentation.
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Difficulties

• Scattering and tangling
– code scattered in many different modules.
– presence of code within a module, possibly 

overlapping, corresponding to different 
concerns.

• Causes: inadequate design, limitations of 
programming languages, emergence 
during program evolution, and code decay.
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Limitations of Simple Tools

• Lexical searching tools, such as grep
identify points in the code relevant to a 
concern.  

• Follow a discover-and-discard model that 
provides little or no help for managing, 
understanding, and preserving the 
information discovered.
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CG Requirements

• Language independent – applicable to concerns 
for code in any language.

• Flexible – to represent all kinds of program 
artifacts with various levels of granularity.

• Precise - a non-ambiguous mapping between 
CG and the corresponding source code.

• Robust - not be dependent on non-essential and 
brittle aspects of the source code, such as line 
numbers or indentation.
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Formal Representation
• A mathematical model based on relational 

algebra.
• A named relation Rn = (n,R) consists of a name 

n associated with a binary relation R.
• A program model (E,N) consists of a set of 

program elements E = {e1, e2, ..., em} and a set 
of named relations over E, N = {Rn1 ,Rn2 , 
...,Rnk}.

• Let N = {Rn1 ,Rn2 , ...,Rnk} be a set of named 
relations. names(N) = {n | there exists R : (n,R) 
belongs to N}.
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Program Model
• Equivalent to the definition of a labeled directed 

graph.
• The nodes are program elements.
• A named relation represents a subset of the 

edges with same label.
• The name “concern graph” is thus intended to 

capture the idea of a graph of elements (nodes) 
and named relations (labeled edges) 
representing the subset of a program model 
addressing a concern.
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Mapping Function
• Let PM = (E,N) be a program model. The 

mapping function M consists of:
– A criterion defining which elements declared in 

program P should be listed in E.
– A set of relation names supported by the model.
– The definition of an analysis function a(n, P) taking as 

parameters a relation name n and a program P, and 
returning a named relation Rn contained in  E × E 
representing the relationships between elements of P 
(meeting the mapping criterion), according to the 
semantics of n.

– Analysis functions are defined using first-order logic.
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Example 1 of Mapping Function

Mapping Function C1
E = {x | IsAFunction(x)} 
names(N) = {Calls, CalledBy}
a(Calls, P) = {(x, y)|Calls(x, y)}
a(CalledBy,P) = T(a(Calls, P))

T = Transpose
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Example 2 of Mapping Function
Mapping Function J1

E = {x | IsAClass(x)} 
names(N) = {Declares, Extends, SuperclassOf
, SubclassOf }
a(Declares, P) = {(x, y) | Declares(x, y)}
a(Extends, P) = {(x, y) | Extends(x, y)}
a(SuperclassOf , P) = TC(a(Extends, P))
a(SubclassOf , P) = T(a(SuperclassOf , P))

TC  = Transitive Closure
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Illustration of Mapping J1
public class A
{ 

int aField;
class B {}

}
class C extends A
{ 

void aMethod(){};
class D extends A {} 
class E extends D {}

}

P1J1

EP1 = {A, B, C, D, E} 

DeclaresP1 = {(A, B), (C, D), (C, 
E)} 

ExtendsP1 = {(C, A), (D, A), (E, 
D)} 

SuperclassOf P1 = {(C, A), (D, A), 
(E, D), (E, A)} 

SubclassOf P1 = {(A, C), (A, D), 
(D, E), (A, E)}
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Motivation: Beyond Relations

• Next we will discuss fragments. Why 
fragments?

• Review the concept of equivalence 
relations:
– A special type of relation that is reflexive, 

symmetric, and transitive.
– Backbone of abstractions – gives rise to 

interesting partitions of a given set.
• The set of students partitioned into teammates.
• The set of variables partitioned into typed subsets. 



Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 17

Subsetting Mechanism 

• Relations provide a mechanism to form 
interesting subsets.

• Given a set S, an element x, and a relation 
R, the subset RX is defined as:
– {Y | X R Y, i.e. all elements related to X}.

• If R is an equivalence relation then the 
subsets actually form a partition of the 
given set, i.e. distinct subsets are actually 
disjoint. 
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Why Fragments

• Fragments is nothing but a subsetting 
mechanism. It divides program artifacts 
into interesting subsets.

• We will quickly go through the rest of the 
slides and revisit the concept of fragments  
in the next lecture with a real-world 
program comprehension problem.
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Fragments
• A fragment fP is always defined on a program 

model PM. It consists of an intent part and a 
program subset part. 

• Example:
– Intent =  “all the subclasses of class C”
– Program =  “classes A and B”

• Formally, Intent consists of a (a) domain set, (b) 
a relation name, and a (c) range set.

• Example of Intent: For a fragment representing a 
function call from function a to function b, we 
would specify {a} as the domain, Calls as the 
relation name, and {b} as the range.
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• Introduced to define the program subset part of 
a fragment, it produces the relation 
corresponding to the intent.

• PM = (EP ,NP ) be a program model, DomP and 
RanP be two subsets of EP , and nP be the 
name element of a named relation Rn,P in NP.
proj(DomP, nP, RanP, PM) = 

Subset of Rn,P restricted to the given 
domain and range.

Projection Operator
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Formal Definition of Fragment

• PM = (EP ,NP ) be a program model, DomP
and RanP be two subsets of EP , and nP be 
the name element of a named relation 
Rn,P. We define a fragment fP = (DomP, nP, 
RanP, ProjP) where ProjP = proj(DomP, nP, 
RanP, PM). We say fP is defined on PM.
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Types of Domain/Range Specs
• A non-empty set of elements (e.g., Dom = {A}, 

Ran = {A, C, D}).
• The universal domain (or range), represented by 

the set EP . Specifying EP as the domain or 
range of a fragment will result in the projection 
including all elements in the domain of the 
specified relation.

• A subset specified as the range of a fragment 
projection. For example, to specify a domain as 
all of the members of class A in a program 
model PM, we would specify DomP =

• Ran(proj({A}, Declares, EP , PM)).
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Examples of Fragments -1

Mapping Function J2
E = {x | IsAType(x)  OR  IsAMethod(x)} 
names(N) = {I, Declares, Calls, CalledBy}
I = Identity relation
a(Declares, P) = {(x, y) | Declares(x, y)}
a(Calls, P) = {(x, y) | CallsStatic(x, y)}
a(CalledBy, P) = T(a(Calls, P))
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Examples of Fragments -2
public class A
{ 

public static void b(){};
public static void c(){ c();b(); 

D.f();}
}
class D
{

public static void e() { f(); } 
public static void f() {}

}

P2J2

EP2 = {A, b, c, D, e, f}
IP2 = {(A, A), (b, b), (c, c), (D, D), 
(e, e), (f, f)} 
DeclaresP2 = {(A, b), (A, c), (D, 
e), (D, f)} 
CallsP2 = {(c, b), (c, c), (c, f), (e, 
f)} 
CalledByP2 = {(b, c), (c, c), (f, c), 
(f, e)}
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Examples of Fragments - 3
Members of A

({A}, Declares,EP2, {(A, b), (A, c)})

Apply the range operator to the projection of the fragment. Result?

Callers of f

({f}, CalledBy,EP2, {(f, c), (f, e)})

Calls by Methods of A

(Ran(proj(({A}, Declares,EP2, P2J2))), Calls,EP2, {(c, b), (c, c), 
(c, f)})
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Mapping Functions for Java 
• E = {x | IsAClass(x) OR IsAnInterface OR IsAField(x) OR IsAMethod(x)} 
• names(N) = {Accesses, AccessedBy, Calls, CalledBy, Checks,
• Creates, Declares, ExtendsClass, ClassExtendedBy,
• ExtendsInterface, InterfaceExtendedBy,
• HasParameterType, HasReturnType, I, Implements,
• ImplementedBy, OfType, Overrides, OverridenBy,
• TransitivelyExtends,TransitivelyExtendedBy,
• TransitivelyImplements,TransitivelyImplementedBy}
• a(Accesses, P) = {(x, y) | Accesses(x, y)}
• a(AccessedBy, P) = T(a(Accesses, P))
• a(Calls, P) = {(x, y) | Calls(x, y)}
• a(CalledBy, P) = T(a(Calls, P))
• a(Checks, P) = {(x, y) | Checks(x, y)}
• a(Creates, P) = {(x, y) | Creates(x, y)}
• a(Declares, P) = {(x, y) | Declares(x, y)}
• a(ExtendsClass, P) = {(x, y) | ExtendsClass(x, y)}
• a(ClassExtendedBy, P) = T(a(ExtendsClass, P))
• a(ExtendsInterface, P) = {(x, y) | ExtendsInterface(x, y)}
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Mapping Functions for Java-
Contd.

• a(InterfaceExtendedBy, P) = T(a(ExtendsInterfaces, P))
• a(HasParameterType, P) = {(x, y) | HasParamterType(x, y)}
• a(HasReturnType, P) = {(x, y) | HasReturnType(x, y)}
• a(I, P) = {(x, y) | x = y}
• a(Implements, P) = {(x, y) | Implements(x, y)}
• a(ImplementedBy, P) = T(a(Implements, P))
• a(OfType, P) = {(x, y) | OfType(x, y)}
• a(Overrides, P) = {(x, y) | Overrides(x, y)}
• a(OverridenBy, P) = T(a(Overrides, P))
• a(TransitivelyExtends, P) = TC(a(ExtendsClass, P))
• a(TransitivelyExtendedBy, P) = T(a(TransitivelyExtends, P))
• a(TransitivelyImplements, P) = What should it be??
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Comments on the Model
• 22 Relations with two categories - structural or 

behavioral.
• Structural represent static declarative relations 

between elements – typically, the type of 
relations that would be documented in a UML 
static structure diagram

• Behavioral relations represent code within a 
method. For example, the Accesses relation and 
its transpose represent code reading or writing 
to a field, or the Calls relation and its transpose 
represent method calls.
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Model Caveats
• Intra-method elements not considered. Their hypothesis 

is that in most cases they are not needed to model 
scattered concerns.

• It does not support the distinction between different 
contexts in source code corresponding to a behavioral 
relation. For example, no distinction between calls to the 
same method. Their hypothesis is that context-
insensitivity is a reasonable choice because when a call 
to a non-library method contributes to the 
implementation of a concern, most of the calls to that 
method are usually part of the concern as well.

• Does not support exception handling.
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Recursive Definition of Concern
• Definition: Let PM be a program model. A concern CP = 

(FP , SP ) defined on PM is a tuple comprising a set of 
fragments FP = {f1, f2, ..., fn} and a set of concerns 
defined on PM,SP = {s1, s2, ..., sm}. FP or SP can be empty 
sets.

• A fragment in FP can also be in any sub-concern s in SP. 
Fragments and concerns are composed into other 
concerns based on the requirements of a user. A root 
concern, not included in any parent concern, represents 
the broadest abstraction for a particular concern. It is 
called a concern graph.

• Useful example ??
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Participants of Concern 

• Definition: Let fP = (Dom,n,Ran,Proj) be a 
fragment. Then, 
participants(fP ) = Dom(Proj ) U Ran(Proj ).

• Participants of a concern are obtained by 
union of participants of the fragments, 
done recursively over subconcerns.
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An Example of Defining A Concern

• Suppose we are interested in investigating the 
uses of classes A and D.

public class A
{ 

public static void b(){};
public static void c(){ c();b(); 

D.f();}
}
class D
{

public static void e() { f(); } 
public static void f() {}

}

P2J2

EP2 = {A, b, c, D, e, f}
IP2 = {(A, A), (b, b), (c, c), (D, D), 
(e, e), (f, f)} 
DeclaresP2 = {(A, b), (A, c), (D, 
e), (D, f)} 
CallsP2 = {(c, b), (c, c), (c, f), (e, 
f)} 
CalledByP2 = {(b, c), (c, c), (f, c), 
(f, e)}



Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 33

An Example of Defining A Concern – Contd.
• Suppose we are interested in investigating the 

uses of classes A and D.
• Based on the model P2J2, we first define a 

concern graph 
– G = (Ø, {Uses of A, Uses of D}), where both sub-

concerns are currently empty.
• Next, to complete the concern graph we add 

fragments describing all calls to methods of 
class A to Uses of A, and all calls to methods of 
class D to Uses of D, respectively. We now 
have:

Uses of A = (( ran( proj( ({A}, Declares,EP2, P2J2) ) ), CalledBy, EP2, {(b, c), (c, c)}), Ø)

Uses of A = (( ran( proj( ({D}, Declares,EP2, P2J2) ) ), CalledBy, EP2, {(f, c), (f, e)}), Ø)
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Concern Interaction 
• Definition: Let CP and DP be two 

concerns defined on a program model PM
= (EP ,NP ). The interaction between CP
and DP is defined as:
– interaction(CP,DP) = {(x, n, y, {(x, y)}) | x in 

participants(CP ) and y in participants(DP) and
there is a relation Rn s.t. (x, y) is in Rn.

The interaction between two concerns is a set of primitive fragments 
representing the relations between the participants of one concern and the 
participants of the other concern.



Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 35

Element Set Inconsistency

• Definition: Let P1M = (EP1,NP1) and P2M = 
(EP2,NP2) be the models corresponding to 
two versions of a program produced with 
the same mapping function M. Let x be a 
subset of  EP1.Then, 
– IsInconsistent(x,P2M) = x is not a subset of 

EP2
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Fragment Inconsistency

• Definition: Let P1M = (EP1,NP1) and P2M = 
(EP2,NP2) be the models corresponding to 
two versions of a program produced with 
the same mapping function M. Let fP1 =
(DomP1, nP1, RanP1, ProjP1) be a fragment 
defined on P1M.Then, 
– IsInconsistent(fP1, P2M) = IsInconsistent(DomP1,P2M) 

OR IsInconsistent(RanP1,P2M) OR
ProjP1 ≠ proj(DomP1, nP1,RanP1, P2M).
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Concern Inconsistency
• Definition: Let P1M = (EP1,NP1) and P2M = 

(EP2,NP2) be the models corresponding to 
two versions of a program produced with 
the same mapping function M. Let CP1 = 
(FP1, SP1) be a concern defined on 
P1.Then, 
– IsInconsistent(CP1, P2M) if there is an inconsistent 

fragment in FP1 or there is an inconsistent sub-
concern in SP1.
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Repair Operation

• Let P1M = (EP1,NP1) and P2M = (EP2,NP2) 
be the models corresponding to two 
versions of a program produced with the 
same mapping function M. Let fP1 =
(DomP1, nP1, RanP1, ProjP1) be an 
inconsistent fragment defined on 
P1M.Then,

Repair(fP1, P2M) = (DomP1, nP1, RanP1, proj(DomP1, nP1,RanP1, P2M))

In informal terms, the repair function simply replaces the inconsistent 
projection of a fragment with a new projection consistent with the second 
program model.
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Feature Analysis and Exploration  
Tool

• Model Extraction It extracts a model of a program 
based on the java mapping function.

• Concern Construction It allows a user to build and 
modify concern representations by specifying fragments 
on the model extracted from a program. It supports the 
saving of a concern representation to permanent 
storage, and the loading of a concern representation in 
the tool.

• Analysis It supports the analysis of the interactions 
between different concerns. It also supports the 
detection and repair of inconsistencies between a 
concern graph and a program.
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Empirical Studies 
• They have evaluated the cost and usefulness of 

concern graphs in a series of case studies 
involving the evolution of five different systems 
of different size and style (AVID, Jex, Redback, 
jEdit, ArgoUML) .

• Their conclusion is that concern graphs are 
inexpensive to create during program 
investigation, can help developers perform 
program evolution tasks more systematically, 
and are robust enough to be used with different 
versions of a system.
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Conclusions
• A formal model for describing concerns in 

source code. Model can be largely reused 
to support concern graphs in different 
languages.

• A specific instantiation of the model for 
the Java language. 

• A usable tool capable of supporting the 
concern graph approach for Java 
programs.
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What We Did not Cover
• An algorithm that can automatically infer concerns from a 

transcript of the program investigation of a developer. 
This algorithm serves as a proof of concept that such a 
technique is possible, and that it can produce 
documentation for scattered concerns.

• Five empirical studies of program evolution.
• A mechanism for the management of inconsistencies 

between a description of source code and an actual 
code base that can provide support for reasoning about 
the indirect cause of an inconsistency, in addition to the 
simple detection and repair of inconsistencies.


