
Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 1

FEAT
Feature Exploration & Analysis Tool

CPRE 416-Software Evolution
and Maintenance-Lecture 7-9

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 2

Overview

• Developed University of British Columbia
(UBC). Robillard Ph.D. thesis, November
2003.

• Objective: locate, analyze, and describe
scattered concerns in source code.

• A plug-in for the Eclipse Platform
• http://www.cs.ubc.ca/labs/spl/projects/feat/

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 3

Basic Approach

• Understanding program = Extracting
(gathering) information about a concern.

• Concern = relationships between program
elements (binary relations as the
formalism)

• Program elements = artifacts that
constitute a program

• Example: artifact: functions, relationship:
calls, extracted information: call tree.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 4

Concern Graph

• Describes concerns in source code in
terms of relations between program
elements.

• Notion of consistency between a concern
graph and the corresponding source code.

• FEAT: build concern graphs, view the
code related to a concern, and perform
analyses on a concern representation.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 5

What is a Concern
• Any consideration a developer might have about

the implementation of a program.
• For example, in a file server application based

on the File Transfer Protocol, one possible
concern is the requirement to log every file
transfer command issued by the client programs.

• Corresponding source code = calls to functions
such as log(String), and their implementations.

• This code is scattered throughout the all of the
modules implementing file transfer commands.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 6

Problems To Be Solved

• Concern Location and Understanding
Problem.

• Concern Documentation Problem –
consistency and cost of documentation.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 7

Difficulties

• Scattering and tangling
– code scattered in many different modules.
– presence of code within a module, possibly

overlapping, corresponding to different
concerns.

• Causes: inadequate design, limitations of
programming languages, emergence
during program evolution, and code decay.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 8

Limitations of Simple Tools

• Lexical searching tools, such as grep
identify points in the code relevant to a
concern.

• Follow a discover-and-discard model that
provides little or no help for managing,
understanding, and preserving the
information discovered.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 9

CG Requirements

• Language independent – applicable to concerns
for code in any language.

• Flexible – to represent all kinds of program
artifacts with various levels of granularity.

• Precise - a non-ambiguous mapping between
CG and the corresponding source code.

• Robust - not be dependent on non-essential and
brittle aspects of the source code, such as line
numbers or indentation.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 10

Formal Representation
• A mathematical model based on relational

algebra.
• A named relation Rn = (n,R) consists of a name

n associated with a binary relation R.
• A program model (E,N) consists of a set of

program elements E = {e1, e2, ..., em} and a set
of named relations over E, N = {Rn1 ,Rn2 ,
...,Rnk}.

• Let N = {Rn1 ,Rn2 , ...,Rnk} be a set of named
relations. names(N) = {n | there exists R : (n,R)
belongs to N}.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 11

Program Model
• Equivalent to the definition of a labeled directed

graph.
• The nodes are program elements.
• A named relation represents a subset of the

edges with same label.
• The name “concern graph” is thus intended to

capture the idea of a graph of elements (nodes)
and named relations (labeled edges)
representing the subset of a program model
addressing a concern.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 12

Mapping Function
• Let PM = (E,N) be a program model. The

mapping function M consists of:
– A criterion defining which elements declared in

program P should be listed in E.
– A set of relation names supported by the model.
– The definition of an analysis function a(n, P) taking as

parameters a relation name n and a program P, and
returning a named relation Rn contained in E × E
representing the relationships between elements of P
(meeting the mapping criterion), according to the
semantics of n.

– Analysis functions are defined using first-order logic.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 13

Example 1 of Mapping Function

Mapping Function C1
E = {x | IsAFunction(x)}
names(N) = {Calls, CalledBy}
a(Calls, P) = {(x, y)|Calls(x, y)}
a(CalledBy,P) = T(a(Calls, P))

T = Transpose

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 14

Example 2 of Mapping Function
Mapping Function J1

E = {x | IsAClass(x)}
names(N) = {Declares, Extends, SuperclassOf
, SubclassOf }
a(Declares, P) = {(x, y) | Declares(x, y)}
a(Extends, P) = {(x, y) | Extends(x, y)}
a(SuperclassOf , P) = TC(a(Extends, P))
a(SubclassOf , P) = T(a(SuperclassOf , P))

TC = Transitive Closure

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 15

Illustration of Mapping J1
public class A
{

int aField;
class B {}

}
class C extends A
{

void aMethod(){};
class D extends A {}
class E extends D {}

}

P1J1

EP1 = {A, B, C, D, E}

DeclaresP1 = {(A, B), (C, D), (C,
E)}

ExtendsP1 = {(C, A), (D, A), (E,
D)}

SuperclassOf P1 = {(C, A), (D, A),
(E, D), (E, A)}

SubclassOf P1 = {(A, C), (A, D),
(D, E), (A, E)}

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 16

Motivation: Beyond Relations

• Next we will discuss fragments. Why
fragments?

• Review the concept of equivalence
relations:
– A special type of relation that is reflexive,

symmetric, and transitive.
– Backbone of abstractions – gives rise to

interesting partitions of a given set.
• The set of students partitioned into teammates.
• The set of variables partitioned into typed subsets.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 17

Subsetting Mechanism

• Relations provide a mechanism to form
interesting subsets.

• Given a set S, an element x, and a relation
R, the subset RX is defined as:
– {Y | X R Y, i.e. all elements related to X}.

• If R is an equivalence relation then the
subsets actually form a partition of the
given set, i.e. distinct subsets are actually
disjoint.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 18

Why Fragments

• Fragments is nothing but a subsetting
mechanism. It divides program artifacts
into interesting subsets.

• We will quickly go through the rest of the
slides and revisit the concept of fragments
in the next lecture with a real-world
program comprehension problem.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 19

Fragments
• A fragment fP is always defined on a program

model PM. It consists of an intent part and a
program subset part.

• Example:
– Intent = “all the subclasses of class C”
– Program = “classes A and B”

• Formally, Intent consists of a (a) domain set, (b)
a relation name, and a (c) range set.

• Example of Intent: For a fragment representing a
function call from function a to function b, we
would specify {a} as the domain, Calls as the
relation name, and {b} as the range.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 20

• Introduced to define the program subset part of
a fragment, it produces the relation
corresponding to the intent.

• PM = (EP ,NP) be a program model, DomP and
RanP be two subsets of EP , and nP be the
name element of a named relation Rn,P in NP.
proj(DomP, nP, RanP, PM) =

Subset of Rn,P restricted to the given
domain and range.

Projection Operator

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 21

Formal Definition of Fragment

• PM = (EP ,NP) be a program model, DomP
and RanP be two subsets of EP , and nP be
the name element of a named relation
Rn,P. We define a fragment fP = (DomP, nP,
RanP, ProjP) where ProjP = proj(DomP, nP,
RanP, PM). We say fP is defined on PM.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 22

Types of Domain/Range Specs
• A non-empty set of elements (e.g., Dom = {A},

Ran = {A, C, D}).
• The universal domain (or range), represented by

the set EP . Specifying EP as the domain or
range of a fragment will result in the projection
including all elements in the domain of the
specified relation.

• A subset specified as the range of a fragment
projection. For example, to specify a domain as
all of the members of class A in a program
model PM, we would specify DomP =

• Ran(proj({A}, Declares, EP , PM)).

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 23

Examples of Fragments -1

Mapping Function J2
E = {x | IsAType(x) OR IsAMethod(x)}
names(N) = {I, Declares, Calls, CalledBy}
I = Identity relation
a(Declares, P) = {(x, y) | Declares(x, y)}
a(Calls, P) = {(x, y) | CallsStatic(x, y)}
a(CalledBy, P) = T(a(Calls, P))

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 24

Examples of Fragments -2
public class A
{

public static void b(){};
public static void c(){ c();b();

D.f();}
}
class D
{

public static void e() { f(); }
public static void f() {}

}

P2J2

EP2 = {A, b, c, D, e, f}
IP2 = {(A, A), (b, b), (c, c), (D, D),
(e, e), (f, f)}
DeclaresP2 = {(A, b), (A, c), (D,
e), (D, f)}
CallsP2 = {(c, b), (c, c), (c, f), (e,
f)}
CalledByP2 = {(b, c), (c, c), (f, c),
(f, e)}

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 25

Examples of Fragments - 3
Members of A

({A}, Declares,EP2, {(A, b), (A, c)})

Apply the range operator to the projection of the fragment. Result?

Callers of f

({f}, CalledBy,EP2, {(f, c), (f, e)})

Calls by Methods of A

(Ran(proj(({A}, Declares,EP2, P2J2))), Calls,EP2, {(c, b), (c, c),
(c, f)})

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 26

Mapping Functions for Java
• E = {x | IsAClass(x) OR IsAnInterface OR IsAField(x) OR IsAMethod(x)}
• names(N) = {Accesses, AccessedBy, Calls, CalledBy, Checks,
• Creates, Declares, ExtendsClass, ClassExtendedBy,
• ExtendsInterface, InterfaceExtendedBy,
• HasParameterType, HasReturnType, I, Implements,
• ImplementedBy, OfType, Overrides, OverridenBy,
• TransitivelyExtends,TransitivelyExtendedBy,
• TransitivelyImplements,TransitivelyImplementedBy}
• a(Accesses, P) = {(x, y) | Accesses(x, y)}
• a(AccessedBy, P) = T(a(Accesses, P))
• a(Calls, P) = {(x, y) | Calls(x, y)}
• a(CalledBy, P) = T(a(Calls, P))
• a(Checks, P) = {(x, y) | Checks(x, y)}
• a(Creates, P) = {(x, y) | Creates(x, y)}
• a(Declares, P) = {(x, y) | Declares(x, y)}
• a(ExtendsClass, P) = {(x, y) | ExtendsClass(x, y)}
• a(ClassExtendedBy, P) = T(a(ExtendsClass, P))
• a(ExtendsInterface, P) = {(x, y) | ExtendsInterface(x, y)}

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 27

Mapping Functions for Java-
Contd.

• a(InterfaceExtendedBy, P) = T(a(ExtendsInterfaces, P))
• a(HasParameterType, P) = {(x, y) | HasParamterType(x, y)}
• a(HasReturnType, P) = {(x, y) | HasReturnType(x, y)}
• a(I, P) = {(x, y) | x = y}
• a(Implements, P) = {(x, y) | Implements(x, y)}
• a(ImplementedBy, P) = T(a(Implements, P))
• a(OfType, P) = {(x, y) | OfType(x, y)}
• a(Overrides, P) = {(x, y) | Overrides(x, y)}
• a(OverridenBy, P) = T(a(Overrides, P))
• a(TransitivelyExtends, P) = TC(a(ExtendsClass, P))
• a(TransitivelyExtendedBy, P) = T(a(TransitivelyExtends, P))
• a(TransitivelyImplements, P) = What should it be??

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 28

Comments on the Model
• 22 Relations with two categories - structural or

behavioral.
• Structural represent static declarative relations

between elements – typically, the type of
relations that would be documented in a UML
static structure diagram

• Behavioral relations represent code within a
method. For example, the Accesses relation and
its transpose represent code reading or writing
to a field, or the Calls relation and its transpose
represent method calls.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 29

Model Caveats
• Intra-method elements not considered. Their hypothesis

is that in most cases they are not needed to model
scattered concerns.

• It does not support the distinction between different
contexts in source code corresponding to a behavioral
relation. For example, no distinction between calls to the
same method. Their hypothesis is that context-
insensitivity is a reasonable choice because when a call
to a non-library method contributes to the
implementation of a concern, most of the calls to that
method are usually part of the concern as well.

• Does not support exception handling.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 30

Recursive Definition of Concern
• Definition: Let PM be a program model. A concern CP =

(FP , SP) defined on PM is a tuple comprising a set of
fragments FP = {f1, f2, ..., fn} and a set of concerns
defined on PM,SP = {s1, s2, ..., sm}. FP or SP can be empty
sets.

• A fragment in FP can also be in any sub-concern s in SP.
Fragments and concerns are composed into other
concerns based on the requirements of a user. A root
concern, not included in any parent concern, represents
the broadest abstraction for a particular concern. It is
called a concern graph.

• Useful example ??

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 31

Participants of Concern

• Definition: Let fP = (Dom,n,Ran,Proj) be a
fragment. Then,
participants(fP) = Dom(Proj) U Ran(Proj).

• Participants of a concern are obtained by
union of participants of the fragments,
done recursively over subconcerns.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 32

An Example of Defining A Concern

• Suppose we are interested in investigating the
uses of classes A and D.

public class A
{

public static void b(){};
public static void c(){ c();b();

D.f();}
}
class D
{

public static void e() { f(); }
public static void f() {}

}

P2J2

EP2 = {A, b, c, D, e, f}
IP2 = {(A, A), (b, b), (c, c), (D, D),
(e, e), (f, f)}
DeclaresP2 = {(A, b), (A, c), (D,
e), (D, f)}
CallsP2 = {(c, b), (c, c), (c, f), (e,
f)}
CalledByP2 = {(b, c), (c, c), (f, c),
(f, e)}

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 33

An Example of Defining A Concern – Contd.
• Suppose we are interested in investigating the

uses of classes A and D.
• Based on the model P2J2, we first define a

concern graph
– G = (Ø, {Uses of A, Uses of D}), where both sub-

concerns are currently empty.
• Next, to complete the concern graph we add

fragments describing all calls to methods of
class A to Uses of A, and all calls to methods of
class D to Uses of D, respectively. We now
have:

Uses of A = ((ran(proj(({A}, Declares,EP2, P2J2))), CalledBy, EP2, {(b, c), (c, c)}), Ø)

Uses of A = ((ran(proj(({D}, Declares,EP2, P2J2))), CalledBy, EP2, {(f, c), (f, e)}), Ø)

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 34

Concern Interaction
• Definition: Let CP and DP be two

concerns defined on a program model PM
= (EP ,NP). The interaction between CP
and DP is defined as:
– interaction(CP,DP) = {(x, n, y, {(x, y)}) | x in

participants(CP) and y in participants(DP) and
there is a relation Rn s.t. (x, y) is in Rn.

The interaction between two concerns is a set of primitive fragments
representing the relations between the participants of one concern and the
participants of the other concern.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 35

Element Set Inconsistency

• Definition: Let P1M = (EP1,NP1) and P2M =
(EP2,NP2) be the models corresponding to
two versions of a program produced with
the same mapping function M. Let x be a
subset of EP1.Then,
– IsInconsistent(x,P2M) = x is not a subset of

EP2

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 36

Fragment Inconsistency

• Definition: Let P1M = (EP1,NP1) and P2M =
(EP2,NP2) be the models corresponding to
two versions of a program produced with
the same mapping function M. Let fP1 =
(DomP1, nP1, RanP1, ProjP1) be a fragment
defined on P1M.Then,
– IsInconsistent(fP1, P2M) = IsInconsistent(DomP1,P2M)

OR IsInconsistent(RanP1,P2M) OR
ProjP1 ≠ proj(DomP1, nP1,RanP1, P2M).

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 37

Concern Inconsistency
• Definition: Let P1M = (EP1,NP1) and P2M =

(EP2,NP2) be the models corresponding to
two versions of a program produced with
the same mapping function M. Let CP1 =
(FP1, SP1) be a concern defined on
P1.Then,
– IsInconsistent(CP1, P2M) if there is an inconsistent

fragment in FP1 or there is an inconsistent sub-
concern in SP1.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 38

Repair Operation

• Let P1M = (EP1,NP1) and P2M = (EP2,NP2)
be the models corresponding to two
versions of a program produced with the
same mapping function M. Let fP1 =
(DomP1, nP1, RanP1, ProjP1) be an
inconsistent fragment defined on
P1M.Then,

Repair(fP1, P2M) = (DomP1, nP1, RanP1, proj(DomP1, nP1,RanP1, P2M))

In informal terms, the repair function simply replaces the inconsistent
projection of a fragment with a new projection consistent with the second
program model.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 39

Feature Analysis and Exploration
Tool

• Model Extraction It extracts a model of a program
based on the java mapping function.

• Concern Construction It allows a user to build and
modify concern representations by specifying fragments
on the model extracted from a program. It supports the
saving of a concern representation to permanent
storage, and the loading of a concern representation in
the tool.

• Analysis It supports the analysis of the interactions
between different concerns. It also supports the
detection and repair of inconsistencies between a
concern graph and a program.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 40

Empirical Studies
• They have evaluated the cost and usefulness of

concern graphs in a series of case studies
involving the evolution of five different systems
of different size and style (AVID, Jex, Redback,
jEdit, ArgoUML) .

• Their conclusion is that concern graphs are
inexpensive to create during program
investigation, can help developers perform
program evolution tasks more systematically,
and are robust enough to be used with different
versions of a system.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 41

Conclusions
• A formal model for describing concerns in

source code. Model can be largely reused
to support concern graphs in different
languages.

• A specific instantiation of the model for
the Java language.

• A usable tool capable of supporting the
concern graph approach for Java
programs.

Lecture Notes - Copyright © 2005. S. C. Kothari, All rights reserved. 42

What We Did not Cover
• An algorithm that can automatically infer concerns from a

transcript of the program investigation of a developer.
This algorithm serves as a proof of concept that such a
technique is possible, and that it can produce
documentation for scattered concerns.

• Five empirical studies of program evolution.
• A mechanism for the management of inconsistencies

between a description of source code and an actual
code base that can provide support for reasoning about
the indirect cause of an inconsistency, in addition to the
simple detection and repair of inconsistencies.

