
How Does Buffer Overflow Attack
Work

S. C. Kothari
CPRE 556: Lecture 7, January 31, 2006

Electrical and Computer Engineering Dept.
Iowa State University

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

2

Security: When is it software
problem

• We can distinguish security problems by the
mechanisms requiring changes to eliminate the
vulnerability.

• Network Problem: requires changing networking
mechanisms such as network protocols.

• OS Problem: requires changing OS mechanisms
such OS resource management policies.

• Software Problem: requires changing software
implementation or design

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

3

Security Bugs Can Be Expensive

• Buffer overflow in IIS
– Estimated cost: $3.26 billion

• Buffer overflow in SQL Server
– Estimated cost: $1.2 billion

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

4

What Entrances Do the Hackers
Use

• Hackers exploit interactions with:
– Operating System
– User Interfaces
– File System
– Libraries

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

5

Buffer Overflow Attack (BOA)
• Deadly attack underlying many computer highjackings in

the past.
• Dominate the area of remote network penetration

vulnerabilities, where an anonymous Internet user seeks
to gain partial or total control of a host.

• Present the attacker the ability to inject and execute
attack code.

• Typically attack a root program and executes code
similar to “exec(sh)” to get a root shell.

• The attack is possible with C and C++ programs, not
with Java.

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

6

BOA Basic Idea

• The idea is simple: enter long strings into
input fields, could be APIs/exposed
internal objects

• This is an important bug because:
– copy/paste into inputs fields is a fairly

common practice
• Buffer overflow may be exploitable by a

hacker to get arbitrary code to run on a
system.

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

7

BOA Demonstration

• The demo developed with NSF support is
available at:
http://nsfsecurity.pr.erau.edu/bom/

• The demonstration illustrates the buffer
overflow attack as a high-level concept.

• The demo makes simplifications and does
not cover complex and subtle mechanism
employed by BOA. These will be covered
in this lecture.

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

8

BOA: One Possibility
• In this lecture we will discuss one possibility where the

attacker corrupts the activation record (AR).
• Each time a function is called an AR is created on the

stack.
• AR includes: return address, space for locals and

arguments, an a pointer to the previous record.
• Buffer is a local variable.
• Attacker stuffs the buffer so that it overflows and

replaces the return address with a new return address.
• Attacker stuffs code in the buffer and arranges the new

return address to point to the code stuffed in the buffer.
• Called ‘Stack Smashing,’ - favorite of attackers (e.g.

Morris Worm).

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

9

EX 1: Basics of Activation Record I
example1.c:
void function(int a, int b, int c) {

char buffer1[5];
char buffer2[10];

}

void main() {
function(1,2,3);

}

The call to function() is translated to:
pushl $3
pushl $2
pushl $1
call function

Pushes the 3 arguments to function
backwards into the stack, and
calls function()

Prolog: The first thing done in function:
pushl %ebp
movl %esp,%ebp
subl $20,%esp

Pushes EBP (frame pointer) onto the stack,
copies the current SP onto EBP, then allocates
space for the local variables by subtracting their
size from SP.

Draw the stack

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

10

EX1: Basics of Activation Record II

Low memory High memory
buffer2 buffer1 sfp ret a b c

<------ [] [] [] [] [] [] []

top of stack bottom of stack

BP (FP)SP

Offsets relative to BP are used as addresses within the function to
access local variables and parameters.

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

11

EX2: Buffer Overflow
void function(char *str) {

char buffer[16];

strcpy(buffer,str);
}

void main() {
char large_string[256];
int i;

for(i = 0; i < 255; i++)
large_string[i] = 'A';

function(large_string);
}

buffer sfp ret *str
<------ [][] [] []

large_string is filled with the character 'A'.
It's hex character value is 0x41. That
means that the return address is now
0x41414141. This is outside of the process
address space. That is why when the
function returns and tries to read the next
instruction from that address you get a
segmentation violation.

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

12

Example 3
example3.c:

void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
int *ret;

ret = buffer1 + 12;
(*ret) += 10;

}

void main() {
int x;

x = 0;
function(1,2,3);
x = 1;
printf("%d\n",x);

}

What is the outcome?

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

13

Example 3: What is the outcome?
The stack looks like:

buffer2 buffer1 sfp ret a b c
<------ [] [] [] [][][][]

buffer1 Buffer1+12

example3.c:

void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
int *ret;

ret = buffer1 + 12;
(*ret) += 10;

}

void main() {
int x;

x = 0;
function(1,2,3);
x = 1;
printf("%d\n",x);

}

So, we are incrementing the return
address by 8.

To see what is at the new return
address, let us see the dump of
assembler code for function main
generated using the gdb.

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

14

Example 3: What is the outcome?
example3.c:

void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
int *ret;

ret = buffer1 + 12;
(*ret) += 10;

}

void main() {
int x;

x = 0;
function(1,2,3);
x = 1;
printf("%d\n",x);

}

Dump of assembler code for function main:
0x8000490 <main>: pushl %ebp
0x8000491 <main+1>: movl %esp,%ebp
0x8000493 <main+3>: subl $0x4,%esp
0x8000496 <main+6>: movl $0x0,0xfffffffc(%ebp)
0x800049d <main+13>: pushl $0x3
0x800049f <main+15>: pushl $0x2
0x80004a1 <main+17>: pushl $0x1
0x80004a3 <main+19>: call 0x8000470 <function>
0x80004a8 <main+24>: addl $0xc,%esp
0x80004ab <main+27>: movl $0x1,0xfffffffc(%ebp)
0x80004b2 <main+34>: movl 0xfffffffc(%ebp),%eax
0x80004b5 <main+37>: pushl %eax
0x80004b6 <main+38>: pushl $0x80004f8
0x80004bb <main+43>: call 0x8000378 <printf>
0x80004c0 <main+48>: addl $0x8,%esp
0x80004c3 <main+51>: movl %ebp,%esp
0x80004c5 <main+53>: popl %ebp
0x80004c6 <main+54>: ret
0x80004c7 <main+55>: nop

+10

Note that we skipped the assignment x = 1.

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

15

How to make it execute other
code?

• The attacker wants the program to spawn
a shell. From the shell he can then issue
other commands as he wishes.

• The code to execute is placed in the buffer
and the return address is overwritten so it
points back into the buffer.

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

16

BOA Tricks
• BOA involves many additional tricks.
• For example, one problem is we need to guess exactly

where the address of our code will start. If we are off by
one byte more or less we will just get a segmentation
violation or a invalid instruction.

• Trick: Pad the front of our overflow buffer with NOP
instructions. Fill half of the buffer with NOP instructions.

• Chances of successful attacks are increased: If the
return address points anywhere in the string of NOPs,
they will just get executed until they reach the code that
the attacker really wants to execute.

Lecture Notes - Copyright © 2006
S. C. Kothari. All rights reserved.

17

References

• The examples are from the paper listed
on the CPRE 556 website:

– Smashing The Stack For Fun And Profit,
Aleph One.

