
Web Applications Security: SQL
Injection Attack

S. C. Kothari
CPRE 556: Lecture 8, February 2, 2006

Electrical and Computer Engineering Dept.
Iowa State University

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

2

SQL Injection: What is it

• A technique for exploiting web applications that
use client-supplied data in SQL queries, but
without first stripping potentially harmful special
characters.

• Despite being simple to protect against, many
web applications are vulnerable to the attack.

• Similar to the Buffer Overflow, the attack is
possible because the input is not properly
checked.

• While similar, the buffer overflow and SQL
Injection require very different checks for inputs.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

3

Rain Forest Puppy
• Description on Linux Security Site: He's nice-looking,

polite and very intelligent. He goes by the name Rain
Forest Puppy, RFP for short. It's a name that might
suggest environmental leanings, but that would be a
serious miscalculation. RFP may turn out to be the
software industry's worst nightmare.

• He is credited with the earliest SQL Injection attack. He
used a vulnerability in the wwwthreads package to gain
administrative access and some 800 passwords to
PacketStorm's discussion forum.

• RFP Exploits: http://lists.virus.org/isn-
0012/msg00041.html

• Interview with RFP: http://www.safemode.org/rfp.html

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

4

SQL Injection by Example

• Next, we will show how an hacker uses
SQL injection.

• The examples are from the paper: SQL
Injection Attacks By Example,
http://www.unixwiz.net/techtips/sql-
injection.html

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

5

The Scenario

• Attacker has no prior knowledge of the
application or access to the source code.

• The login page had a traditional username-and-
password form, but also an email-me-my-
password link.

• The attacker decided to exploit the latter link.
• Game plan: discover the internals of the system

by submitting different inputs.
• It takes some intelligent guesswork.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

6

Initial Guess
• The attacker speculates that the

underlying SQL code looks something like
this:

SELECT fieldlist
FROM table
WHERE field = '$EMAIL';

• Here, $EMAIL is the address submitted on
the form by the user, and the quotation
marks around it set it off as a literal string.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

7

Step 1: check if input is sanitized

• Objective: check if the web application constructs an
SQL string literally without sanitizing.

• The way to check: enter a single quote as part of the
data. The attacker enters steve@unixwiz.net' - note
the closing quote mark. This yields:

SELECT fieldlist
FROM table
WHERE field = 'steve@unixwiz.net'';

• The SQL parser find the extra quote mark and aborts
with a syntax error.

• The error response is often a dead giveaway that user
input is not being sanitized properly and that the
application is ripe for exploitation.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

8

Step 1: Output

• The web application responds with a 500
error (server failure).

• This suggests that the "broken" input is
actually being parsed literally.

• The attacker knows that he/she has good
opportunities ahead.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

9

Step 2: exploit WHERE clause

• Objective: give legal input and learn more.
• Since the data appears to be going into the
WHERE clause, change the nature of that clause
in an SQL legal way and see what happens.
Enter anything' OR 'x'='x

SELECT fieldlist
FROM table
WHERE field = 'anything' OR 'x'='x';

• A single-component WHERE clause into a two-
component one, and the 'x'='x' clause is
guaranteed to be true no matter what the first
clause is.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

10

Step 2: Output

• Unlike the "real" query, which should return only
a single item each time, this version is likely to
return every item in the members database. The
only way to find out what the application will do
in this circumstance is to try it.

• In this case, the web application responds:
Your login information has been mailed to

random.person@example.com

• The attacker guesses that it's the first record
returned by the query.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

11

The attacker knows ..

• He can manipulate the query to his own ends.
• He has observed two different responses:

– Server error
– "Your login information has been mailed to email"

• The first response is for bad SQL while the latter
is to a well-formed SQL. This distinction will be
very useful when trying to guess the structure of
the query.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

12

Step 3: guessing field names
• The attacker guesses email as the name of the field.
• The way to check: This yields:

SELECT fieldlist
FROM table
WHERE field = ' x' AND email IS NULL; -- ';

• The intent is to use a proposed field name (email) in
the constructed query and find out if the SQL is valid or
not.

• The attacker does not care about matching the email
address (which is why he uses a dummy 'x'), and the --
marks the start of an SQL comment. This is an effective
way to "consume" the final quote provided by application
and not worry about matching them.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

13

Step 3: Output
• If the server responds with an error message, it means

the SQL is malformed and a syntax error was thrown. It's
most likely due to a bad field name.

• Any kind of valid response implies that the field name is
correct.

• This is the case whether we get the "email unknown" or
"password was sent" response.

• The use of the AND conjunction instead of OR is
intentional. The attacker does not want random users
inundated with "here is your password" emails from the
web application.

• Using the AND conjunction with an email address that
couldn't ever be valid, the attacker makes sure that the
query will always return zero rows.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

14

Going Forward

• The attacker may have to try different
field names email_address or mail
or the like. This process could involve
quite a lot of guessing.

• Let us suppose that the application
responds: "email address unknown"

• Now the attacker knows that the email
address is stored in a field email.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

15

Step 4: guessing more field
names

• Next the attacker guesses other field names like
password, user ID, name and validates his
guesses by submitting queries one at a time for
each guess. For example:

SELECT fieldlist
FROM table
WHERE field = ' x' AND userid IS NULL; -- ';

• Suppose the attacker found other field names:
email, passwd, login_id, full_name.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

16

Step 5: guessing the Table name

• There are several approaches. This one relies
on a subselect. For example, A standalone
query: SELECT COUNT(*) FROM tabname
returns the number of records in that table, and
of course fails if the table name is unknown.

SELECT email, passwd, login_id, full_name
FROM table
WHERE email = ' x' AND 1=(SELECT COUNT(*) FROM

tabname); -- ';

• The attacker does not care how many records
are there, only whether the table name is valid
or not.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

17

Step 5: Output
• Let us suppose that by iterating over several

guesses, the attacker eventually determined that
members was a valid table in the database.

• But is it the table used in this query? For that we
need yet another test using table.field
notation. It only worksfor tables that are actually
part of this query, not merely that the table
exists. For example:
SELECT email, passwd, login_id, full_name
FROM members
WHERE email = ' x' AND members.email IS NULL; --
';

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

18

The attacker knows ..
• At this point the attacker has a partial idea of the

structure of the members table.
• He knows of one username: the random

member who got initial "Here is your password"
email.

• Note that the attacker never received the
message itself, only the address it was sent to.

• Next, the attacker wants to get some more
names to work with, preferably those likely to
have access to more data.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

19

Step 6: Using the LIKE clause to
get more names

SELECT email, passwd, login_id,
full_name

FROM members
WHERE email = ' x' OR full_name
LIKE '%Bob% ';

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

20

Guessing the password

The attacker can certainly attempt brute
force guessing of passwords at the main
login page, but many systems make an
effort to detect or even prevent this. There
could be log files, account lockouts, or
other devices that would substantially
impede such efforts, but because of the
non-sanitized inputs, the attacker has
another avenue that is much less likely to
be so protected.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

21

Step 7: guess the password
SELECT email, passwd, login_id,
full_name

FROM members
WHERE email = ' bob@example.com' AND
passwd = 'hello123 ';

• The attacker knows he has found the password
when he receives the "your password has been
mailed to you" message. His target has now
been tipped off, but he does have his password.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

22

Important Discovery: The database
isn't read only

• So far, the attacker has done nothing but query
the database, and even though a SELECT is
read only, that doesn't mean that SQL is.

• Drastic example:
SELECT email, passwd, login_id, full_name
FROM members
WHERE email = ' x'; DROP TABLE members; -- ';

• This one attempts to drop (delete) the entire
members table.

• This shows that not only can the attacker run
separate SQL commands, but he can also
modify the database.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

23

Step 8: add a new member

• The attacker adds a new record to that table and
simply logs in directly with his newly-inserted
credentials.
SELECT email, passwd, login_id, full_name
FROM members
WHERE email = ' x';
INSERT INTO members
('email','passwd','login_id','full_name')

VALUES
('steve@unixwiz.net','hello','steve','Steve
Friedl');-- ';

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

24

Attacker faces roadblocks
1. There may not be enough room in the web form to enter

this much text directly.
2. The web application user might not have INSERT

permission on the members table.
3. There are other fields in the members table, and some

may require initial values, causing the INSERT to fail.
4. The application itself might not behave well due to the

auto-inserted NULL fields.
5. A valid "member" might require not only a record in the

members table, but associated information in other
tables (say, "access rights"), so adding to one table
alone might not be sufficient.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

25

Other Approaches
• Use xp_cmdshell: Microsoft's SQL Server supports a

stored procedure xp_cmdshell that permits what
amounts to arbitrary command execution, and if this is
permitted to the web user, complete compromise of
the web server is inevitable.

• This particular application provided a rich post-login
environment that was enough for the attacker. In other
cases the attacker can probably gather more hints
about the structure from other aspects of the website
(e.g., is there a "leave a comment" page? Are there
"support forums"?). Clearly, this is highly dependent on
the application and it relies very much on making good
guesses.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

26

What steps to take for ensuring
security

• Sanitize the input
– Insure that inputs do not contain dangerous codes, whether to

the SQL server or to HTML itself.
– Check: Input from users, parameters from URL,

values from cookie
– Strip out "bad stuff", such as quotes or semicolons or escapes.

It is hard to point to all of them. The language of the web is full
of special characters and strange markup (including alternate
ways of representing the same characters), and efforts to
authoritatively identify all "bad stuff" are unlikely to be
successful.

– Rather than "remove known bad data", it's better to "remove
everything but known good data“. Should consult internet
message standard RFC2822.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

27

What steps to take for ensuring
security

• Use bound parameters (the PREPARE
statement)

– There may be fields that must be allowed to contain
these "dangerous“ characters. Another approach is
the use of bound parameters, which are supported
by essentially all database programming interfaces.
In this technique, an SQL statement string is
created with placeholders - a question mark for
each parameter - and it's "compiled" ("prepared", in
SQL parlance) into an internal form. An example in
perl:

$sth = $dbh->prepare("SELECT email, userid FROM
members WHERE email = ? ;"

$sth->execute($email);

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

28

What steps to take for ensuring
security

• Limit database permissions and segregate
users

– In the case at hand, we observed just two
interactions that are made not in the context of a
logged-in user: "log in" and "send me password".
The web application ought to use a database
connection with the most limited rights possible:
query-only access to the members table, and no
access to any other table.

– Once the web application determined that a set of
valid credentials had been passed via the login
form, it would then switch that session to a
database connection with more rights.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

29

What steps to take for ensuring
security

• Use stored procedures for database access
– When the database server supports them, use stored

procedures for performing access on the application's behalf,
which can eliminate SQL entirely (assuming the stored
procedures themselves are written properly).

– By encapsulating the rules for a certain action - query, update,
delete, etc. - into a single procedure, it can be tested and
documented on a standalone basis and business rules
enforced (for instance, the "add new order“ procedure might
reject that order if the customer were over his credit limit).

– NOTE: It's always possible to write a stored procedure that
itself constructs a query dynamically: this provides no
protection against SQL Injection - it's only proper binding with
prepare/execute or direct SQL statements withbound variables
that provide this protection.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

30

What steps to take for ensuring
security

• Isolate the web server
– Even having taken all these mitigation steps,

it's nevertheless still possible to miss
something and leave the server open to
compromise. One ought to design the
network infrastructure to assume that the
bad guy will have full administrator access to
the machine, and then attempt to limit how
that can be leveraged to compromise other
things.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

31

What steps to take for ensuring
security

• Configure error reporting
– The default error reporting for some frameworks includes

developer debugging information, and this cannot be shown
to outside users. Imagine how much easier a time it makes for
an attacker if the full query is shown, pointing to the syntax
error involved. This information is useful to developers, but it
should be restricted - ifpossible - to just internal users.

– Note that not all databases are configured the same way, and
not all even support the same dialect of SQL (the "S" stands
for "Structured", not "Standard"). For instance, most versions
of MySQL do not support subselects, nor do they usually allow
multiple statements.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

32

Expected Work After the Lecture

• Learning more about one or more of the
following:
– Explores and report on tools for web application

security such the SPI Dynamics’ WebInspect™. How
do they work? What are their capabilities? Refer to
the guidelines on the course website for exploring
tools.
http://www.spidynamics.com/products/App_Dev/WI/in
dex.html

– Read and prepare a presentation on how to build
secure web applications, refer to the free guide,
http://unc.dl.sourceforge.net/sourceforge/owasp/guide
_v2a1.pdf

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

33

Expected Work After the Lecture

• You should report your interesting findings
in class or by sending me an email.

• If you send email, identify the lecture
number and your last name in the subject
line (e.g. Lecture 2-Smith) and also within
your message. Give proper references for
each of your findings.

• This will be considered as a part of class
participation.

Lecture Notes - Copyright © 2006.
S. C. Kothari, All rights reserved.

34

References

• The primary references are in the main
body of the presentation.

• White paper on SQL Injection,
http://www.spidynamics.com/whitepapers
/WhitepaperSQLInjection.pdf

• A SQL Injection Walkthrough,
http://www.securiteam.com/securityrevie
ws/5DP0N1P76E.html

