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Static analysis

« Without executing the program, answer questions such

as.

does the variable x always have the same value?
will the value of x be read in the future?

can the pointer p be null?

which variables can p point to?

IS the variable x initialized before it is read?

IS the value of the integer variable x always positive?

what is a lower and upper bound on the value of the integer
variable x?

at which program points could x be assigned its current value?
do p and q point to disjoint structures in the heap?
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Describe all the errors

int main() {

char *p,*q;
p = NULL; The standard tools such as

printf("%s",p); gcc -Wall and lint detect no
q = (char *)malloc(100); errors.

P=4q,

free(q);

*p =X

free(p);

p = (char *)malloc(100);

p = (char *)malloc(100);

q=p

strcat(p,q);
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Bad news ..

 Rice's theorem (also known as The Rice-Myhill-
Shapiro theorem - 1953) is an important result in the
theory of recursive functions. A property of partial
functions is trivial if it holds for all partial recursive
functions or for none. Rice's theorem states that, for any
non-trivial property of partial functions, the question of
whether a given algorithm computes a partial function
with this property is undecidable.
http://en.wikipedia.org/wiki/Rice's theorem

 Implication of Rice’s theorem: all interesting questions
about the behavior of programs are undecidable.
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Rice’s theorem: an example

 Assume for example the existence of an
analyzer that decides If a variable in a
program has a constant value.

e This analyzer to also decide the halting
problem by using as input the program:
X =17; if (TM())) x = 18;
 Here x has a constant value if and only If

the |’'th Turing machine halts on empty
iInput.
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Using static analysis as an
engineering tool

We want to solve practical problems like:
— finding bugs in the program
— 1dentifying security holes
— making the program run faster or use less space etc.

The solution is to settle for approximations that are still
precise enough to address our applications.

Most often, such approximations are conservative,
meaning that all errors lean to the same side.

Engineering challenge: Be correct as often as possible
while obtaining a reasonable performance.

Also it may be able to define preconditions (to be
satisfied by the program) under which we can argue that
the analysis is in fact completely precise.
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TIP: Tiny Imperative Programming
Language

 The presentation uses a tiny imperative
programming language, called TIP.

* ItIs designed to have a minimal syntax
and yet to contain all the constructions that
make static analyses interesting and
challenging.
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TIP: Expressions

The basic expressions all denote integer values:

E — intconst
— id
—~ E+F|E-E|E+«E|E/E|E>F |E ==
— (F)

— input

The input expression reads an integer from the input stream. The comparison
operators yvield O for false and 1 for true. Pointer expressions will be added later.
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TIP: Statements

The simple statements are familiar:

S+EJ=E;
— output F;
— 85
— it (E) {5}
— if (E) {5} else { 5}
— while (E) { 5 |

— var idy,...,,id,;

In the conditions we interpret 0 as false and all other values as true. The output
statement writes an integer value to the output stream. The var statement
declares a collection of uninitialized variables.
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TIP: Functions

Functions take anv number of arguments and return a single value:
F—id (id,...,id) {varid,...,id; S return £; }
Function calls are an extra kind of expression:

E—wd(E, . . ,E)
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TIP: Pointers

Finally, to allow dynamic memory, we introduce pointers into a heap:

F — wid
— malloc
— #E
— null

The first expression creates a pointer to a variable, the second expression al-
locates a new cell in the heap, and the third expression dereferences a pointer
value. In order to assign values to heap cells we allow another form of assign-
ment:

S—.‘**:.d=E;
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TIP: Function Pointers

Note that pointers and integers are distinct values, so pointer arithmetic is not
permitted. It is of course limiting that malloc only allocates a single heap cell,
but this is sufficient to illustrate the challenges that pointers impose.

We also allow function pointers to be denoted by function names. In order
to use those, we generalize function calls to:

E— (E)(CE, . E)

Function pointers serve as a simple model for objects or higher-order functions.
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TIP: Programs

A program is just a collection of functions:

P—-F. . F

The final function is the main one that initiates execution. Its arguments are

supplied in sequence from the beginning of the input stream, and the wvalue
that it returns is appended to the output stream. We make the notationally

simplifving assumption that all declared identifiers are unique in a program.
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TIP: Program Examples

itein) {
var I;
f=1; recin) {
while (n>0) { L
f = f#*n: if (n==0) { f=1; }
n=n-i: alse { f=n*reci(n-1); }
} return I,
return f; !
¥
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Factorial program written in TIP

foo(p,x) { nain() {
var I,q; var n,
if (#p==0) { f=1; } n = input;
else { return foo(&n,foo);
q = malloc; ¥
*Q = (*p)-1;
f=(*pi*{(x) (q,x));
¥
return I,;
;
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Flow Sensitive Analysis

e Type analysis starts with the syntax tree of a
program and defines constraints over variables
assigned to nodes.

 |tis a flow Iinsensitive analysis, in the sense that
the results remain the same If a statement
sequence S1S2 is permuted into S2S1.

* Analyses that are flow sensitive use a control
flow graph, which is a different representation of
the program source.
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Control Flow

Graphs

« A control flow graph (CFG) is a directed graph,
In which nodes correspond to program points

and edges represent possib

A CFG always has a single
denoted entry, and a single
denoted exit.

e [fvisanodeinaCFG then

e flow of control.

point of entry,
noint of exit,

pred(v) denotes the

set of predecessor nodes and succ(v) the set of

successor nodes.
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Control Flow Graphs for
Statements

? I S

id=E | output E | return E var id
o > QO Q

For the sequence 57 55, we eliminate the exit node of 5 and the entrv node of
Sa and glue the statements together: $

,ﬁl

E

'
Q
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Control Flow Graphs for Control
Structures
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Example: Program and its CFG

itein) {
var I;
f=1;
while (n>0) 1
T = f#*n;
n = n-1;
}

return I;

¥
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Dataflow Analysis

 To every node v in the CFG, we assign a set of
variables [[V]].

e For each construction in the programming
language, we then define a dataflow constraint
that relates the value of the variable of the
corresponding node to those of other nodes
(typically the neighbors).

* |Instead of a formal theory of dataflow analysis,
we will discuss a set of interesting examples.
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Live Variables

e A variable is live at a program point If its
current value may be read during the
remaining execution of the program.
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Example: Liveness and its use

e y and z are never live at the same time, and that

the value written in the assignment z=z-1 is
never read. Thus, the program may safely be
optimized.

Var x,Vz;
var x,v,Z; _
: X = input;
X = input; N
while (x>1) { while (x>1) {
y = x/2; — Yz = x/2;
if (y>3) x = x-V; if (yz>»3) x = x-yz;
z = x-4; YZ = X-4;
if (z»0) x = x/2; if (yz>0) x = x/2;
zZ = 2-1,; +
} output x;

output x;
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Analysis to Compute Live Variables
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Reaching Definitions

* The reaching definitions for a given program
point are those assignments that may have
defined the current values of variables.
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Notation

 For every CFG node v, let [[v]] denote the set
set of assignments that may define values of
variables at the program point after the node.

« Join(v) = Union of [[w]], w Is a predecessor of v.

e |f vis an assignment statement, let v(id) denote
the ID of the variable assigned at v.
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Computing the Reaching
Definitions

« Constraint equation for assignment:
[[V]] = Join(v) — { assignments-to v(id)} + {v}

o Constraint equation for other statements:
[[V]] = Join(V)
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Def-use Graph

Var xI,v,Z;
X = input;
while (x>1) {
v = x/2;
if (y>32) x = x-v;
Z = x—-4;
1f (z>0) x = x/2;
z = z-1;
1

output x;

In a def-use graph, edges go
from definitions to possible uses.
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Def-use Graph

Var xI,v,Z;
X = input;
while (x>1) {
v = x/2;
if (y>32) x = x-v;
Z = x—-4;
1f (z>0) x = x/2;
z = z-1;
1

output x;

In a def-use graph, edges go
from definitions to possible uses.
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Analyses Types

» A forwards analysis is one that for each program
point computes information about the past
behavior.

— Characterized by the right-hand sides of constraints
only depending on predecessors of the CFG node.

* A backwards analysis is one that for each

program point computes information about the
future behavior.

— Characterized by the right-hand sides of constraints
only depending on successors of the CFG node
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Analyses Types

A may analysis is one that describes information
that may possibly be true and, thus, computes
an upper approximation
— Characterized by the right-hand sides of constraints

using a union operator to combine information.

« A must analysis is one that describes
iInformation that must definitely be true and, thus,
computes a lower approximation.

— Characterized by the right-hand sides of constraints
using a intersection operator to combine information.
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Pointer Analysis

e Pointer manipulations:

—1d = malloc
—id1=¢&id?2
—id1l=id?2
—idl=%*d?2
—*d1=1d?2
—id = null
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Pointer Constraints

il = malloc: {malloc-i} C [ud]
id1 = &ida {&ftfg} _ :'eh]
idy = ids [[éﬁ_i'g]] - [é-!fl]]
id1 = *ida kid € [[:'112 = [[:e'ﬂ]] - [[:'-!'31]]
*id) = ido Gid € [[:e'sl == [[:'-!‘:2] - :u:‘f]

The last two constraints are generated for every variable named id, but
we need in fact only consider those whose addresses are actually taken
in the given program. The null assignment corresponds to the constraint:

0 C [id]
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Cubic Algorithm

We have a set of tokens {#;,...,t,} and a collection of variables =y, ... =,
whose values are subsets of token. Our task is to read a sequence of constraints
of the form {t} Cx or t€x = yZ 2 and produce the minimal solution.

The algorithm is based on a simple data structure. Each variable 1s mapped to a
node in a directed acyclic graph (DAG). Each node has an associated bitvector
belonging to {0, 1}, initially defined to be all 0°s. Each bit has an associated
lizst of pairs of variables, which 12 used to model conditional constraintz. The
edges in the DAG reflect inclusion constraints. The bitvectors will at all times
directly represent the minimal solution. An example graph may look like:

C\
"
,-'-""--Fafaf l,'l

/

®r b

xi

®3

Xy T

(X, 1Ky )
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Constraints are added one at a time. A constraint of the form {¢} C r is handled
by looking up the node associated with x and setting the corresponding bit to 1.
If its list of pairs was not empty, then an edge between the nodes corresponding
to y and z 15 added for every pair (y. z). A constraint of the formt € r = y C =
is handled by first testing if the bit corresponding to ¢ in the node corresponding
to o has value 1. If this 1s so, then an edge between the nodes corresponding to
y and z is added. Otherwise, the pair (y. z) 18 added to the list for that hit.

If a newly added edge forms a cycle. then all nodes on that cycle are merged
into a single node, which implies that their bitvectors are unioned together and
their pair lists are concatenated. The map from variables to nodes i1s updated
accordingly. In any case, to reestablish all inclusion relations we must propagate
the values of each newly set bit along all edges in the graph.
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Analysis of the algorithm

To analyze this algorithm, we assume that the numbers of tokens and con-
straints are both (}{n). This is clearly the case when analyzing programs, where
the numbers of variables, tokens, and constraints all are linear in the size of the
pProgra.

Merging DAG nodes on cyeles can be done at most ({n) times. Each merger
involves at most ((n) nodes and the union of their bitvectors is computed in
time at most O(n?). The total for this part is O(n?).

New edges are inserted at most ((n?) times. Constant sets are included at
most ()(n?) times, once for each {¢} C = constraint.
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Finally, to limit the cost of propagating bits along edges, we imagine that
\ Propag 2 B edg =

each pair of corresponding bits along an edge are connected by a tiny bitwire.
Whenever the source bit iz set to 1, that value is propagated along the bitwire

which then i1s broken:

lTTTT{

D4

Since we have at most n® bitwires, the total cost for propagation is O(n?).
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Pointer Constraints

il = malloc: tmalloc-i} C [d]
id1 = &ida: {-5‘5.'}32} — ."eh]
idy = ids: [[:'rf._-_.]] - [:'-!31]]
id1 = *ida: Bid € [[."eEg = [[."eﬂ]] - [[."-!31]]
*id) = ida: Gid € [[."eh = [[."eﬂ-g] - [[."rf]

These constraints match the requirements of the cubic algorithm. The

resulting points-to function is defined as: pt(p)

= [lpll.

The end result of a points-to analysis is a function pt that for each (pointer)
variable p returns the set pt(p) of possible pointer targets to which it may

evaluate.
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Example

var p,q,Xx,¥,Z; malloc-1 C [p]

p = malloc; [¥] < [x]

S [z] € [x]

=2, constraints &y € [p] = [2] < [y]
*p = Z; - la] "‘; [r]

P = q; {&y} C [q]

q = ky; &y € [p] = [y] < [=]
2 = ip) (¢} C [p]

p = &z; lsolution

rtip) = [p] = {nalloc-1, &y, k=z}
pt(q) = [q] = &y}
This is so called Anderson’s algorithm. Note that while this algorithm is flow

Insensitive, the directionality of the constraints implies that the dataflow is still
modeled with some accuracy.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 39



Steensgaard’s Algorithm

 Performs a coarser analysis essentially by
viewing assignments as being
bidirectional.

e Uses a set consisting of the malloc-|
tokens and two tokens of the form 1d and
*1d for each variable named id.
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Constraints

id = malloc: *1d ~ malloc-1i
i) a i 7 [
idy = &idsy: *idy ~ idg
id1 = ido: 1dq ~ 1dg
E-!'-'jl = *Eﬁrgl :'ﬂfl ¥ *-i;ﬂilg
*kid1 = idg: kid] ~ tdo

The generated constraints induce an equivalence relation on the tokens, which
can be computed in almost linear time. The resulting points-to function is
defined as:

pt(p) = {&id

#p ~ id} U {malloc-1i | *p ~ malloc-i}
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Example

var p,q.,x,¥.Z,

p = malloc; *p ~ malloc-1 P~ 9
X=7; x~ Y Py
=2z Steensgaard’s X~ Z N
;P_:q-'*:'i constraints g Pz Pz
2=ty | Enorc

X = *p;

P = &:Izj;

. _ ) _ - - 4
ptip) = pt(q) = {malloc-1. &x, &y, &=z} solution

l Restricting to the addresses that are
actually taken in the program

pt(p) = ptlgq) = {malloc-1, &y, &=z |
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Null Pointer Analysis

For every CFG node v we introduce a constraint variable [[v]] denoting a
symbol table giving the status for every variable at that program point.
For variable declarations:

For the nodes corresponding to the various pointer manipulations we have the

constrainta:

d = malloc: [v] = JOIN(v)[id — NN]|
d1 = &ida [[i:]] = .f{:-'ﬂ'lrri;i:-‘;][étfl — HI'I]
iy = ids: [v] = JOIN(v)[idy — JOIN{v){ida]]
idy = *ida: [[i:-‘]] = r:'ghz‘(.fﬂff‘wri;i:?}. 1y ét‘fz]
*-i;ﬂrl = H?‘:g [[i:-“]] = ﬂffi!llzjr}fj'«'rl:i::l fe?‘:l. -i‘ﬂilg:l
td = null [v] = JOIN(v)[id — IN]|

and for all other nodes the constraint:

[v] = JOIN(v)
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JOIN(v)= | | [w]
w pred( v)
right({o,z,y) = oz — aly) U U aip)]
kpEpt(y)

leftic.x,yy =0 [pr—olp)Ualy) ]
Epcpt(x)

Note that allocation sites will always be mapped to L, which reflects that we
are not tracking cardinality or connectivity of the heap. After the analysis. the
evaluation of #p is guaranteed to be safe at program peint o if [o](p) = NN.
The precision of this analysis depends of course on the quality of the underlving
points-to analysis.

?

where IN means mitialized and NN means not null.
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var p,q,Tr,n;

p = malloc; pi(p) = {malloc-1}
t(q) = {&p
q = &p; Anderson’s ;E; - %}P}
= . L r L
iL null; algorithm pt(n) ={}
q = 1,
constraints
[var p,q.r,n;] =p— 7.q— 7.r — T,n— 7| [var p.q.xr,n;] =[p— 7.q— T.r — 7.n— T
[p=mallec] = [var p,q,r.n;][p— NN] +«— [p=mallec] =[p— N, q— 7.r— 7,n+ 7|
[q=&p] = [p=mall NN Solution ra—gp] = [p+— NN, q— NN.x — 7,0 — 7]
q=&p] = [p=malloc][q — NN]| q=&p pr g NN.r+— 7.nr "
[n=null] = [q=&p][n — IN] [p=null] =[p+— NN.q+ NN, r+— ? n+— IN]
[*q=n] = [n=null][p +— [n=nullf({p) L [n=null](n)]  [*q=n] = [p+— IN.q+ NN.r — 7, n+ IN|
[*p=x] = [*q=n] [*p=r] =[p+r IN.q+ NN.r — 7,n+ IN|

By inspecting thi= information. a compiler could statically detect that when
¥p=r is evaluated, the variable p may contain null and the variable r may be
uninitialized.
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