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Static analysis  
• Without executing the program, answer questions such 

as:
– does the variable x always have the same value?
– will the value of x be read in the future?
– can the pointer p be null?
– which variables can p point to?
– is the variable x initialized before it is read?
– is the value of the integer variable x always positive?
– what is a lower and upper bound on the value of the integer 

variable x?
– at which program points could x be assigned its current value?
– do p and q point to disjoint structures in the heap?
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Describe all the errors
int main() {

char *p,*q;
p = NULL;
printf("%s",p);
q = (char *)malloc(100);
p = q;
free(q);
*p = ’x’;
free(p);
p = (char *)malloc(100);
p = (char *)malloc(100);
q = p;
strcat(p,q);

}

The standard tools such as 
gcc -Wall and lint detect no 
errors.
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Bad news ..
• Rice's theorem (also known as The Rice-Myhill-

Shapiro theorem - 1953) is an important result in the 
theory of recursive functions. A property of partial 
functions is trivial if it holds for all partial recursive 
functions or for none. Rice's theorem states that, for any 
non-trivial property of partial functions, the question of 
whether a given algorithm computes a partial function 
with this property is undecidable. 
http://en.wikipedia.org/wiki/Rice's_theorem

• Implication of Rice’s theorem:  all interesting questions 
about the behavior of programs are undecidable.
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Rice’s theorem: an example

• Assume for example the existence of an 
analyzer that decides if a variable in a 
program has a constant value.

• This analyzer to also decide the halting 
problem by using as input the program:

x = 17; if (TM(j)) x = 18;

• Here x has a constant value if and only if 
the j’th Turing machine halts on empty 
input.
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Using static analysis as an 
engineering tool

• We want to solve practical problems like: 
– finding bugs in the program
– identifying security holes
– making the program run faster or use less space etc.

• The solution is to settle for approximations that are still 
precise enough to address our applications.

• Most often, such approximations are conservative, 
meaning that all errors lean to the same side.

• Engineering challenge: Be correct as often as possible 
while obtaining a reasonable performance.

• Also it may be able to define preconditions (to be 
satisfied by the program) under which we can argue that 
the analysis is in fact completely precise.
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TIP: Tiny Imperative Programming 
Language 

• The presentation uses a tiny imperative 
programming language, called TIP.

• It is designed to have a minimal syntax 
and yet to contain all the constructions that 
make static analyses interesting and 
challenging.
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TIP: Expressions
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TIP: Statements



Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 10

TIP: Functions
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TIP: Pointers
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TIP: Function Pointers
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TIP: Programs
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TIP: Program Examples
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Factorial program written in TIP
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Flow Sensitive Analysis

• Type analysis starts with the syntax tree of a 
program and defines constraints over variables 
assigned to nodes. 

• It is a flow insensitive analysis, in the sense that 
the results remain the same if a statement 
sequence S1S2 is permuted into S2S1.

• Analyses that are flow sensitive use a control 
flow graph, which is a different representation of 
the program source.
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Control Flow Graphs

• A control flow graph (CFG) is a directed graph, 
in which nodes correspond to program points 
and edges represent possible flow of control.

• A CFG always has a single point of entry, 
denoted entry, and a single point of exit, 
denoted exit.

• If v is a node in a CFG then pred(v) denotes the 
set of predecessor nodes and succ(v) the set of 
successor nodes.



Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 18

Control Flow Graphs for 
Statements
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Control Flow Graphs for Control 
Structures
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Example: Program and its CFG
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Dataflow Analysis 

• To every node v in the CFG, we assign a set of 
variables [[v]]. 

• For each construction in the programming 
language, we then define a dataflow constraint 
that relates the value of the variable of the 
corresponding node to those of other nodes 
(typically the neighbors).

• Instead of a formal theory of dataflow analysis, 
we will discuss a set of interesting examples. 
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Live Variables

• A variable is live at a program point if its 
current value may be read during the 
remaining execution of the program.
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Example: Liveness and its use
• y and z are never live at the same time, and that 

the value written in the assignment z=z-1 is 
never read. Thus, the program may safely be 
optimized.
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Analysis to Compute Live Variables
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Reaching Definitions

• The reaching definitions for a given program 
point are those assignments that may have 
defined the current values of variables.
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Notation 

• For every CFG node v, let [[v]] denote the set 
set of assignments  that may define values of 
variables at the program point after the node.

• Join(v) = Union of [[w]], w is a predecessor of v. 
• If v is an assignment statement, let v(id) denote 

the ID of the variable assigned at v. 
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Computing the Reaching 
Definitions

• Constraint equation for assignment:  
[[v]]  = Join(v) – { assignments-to v(id)} + {v}

• Constraint equation for other statements:
[[v]] = Join(v)
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Def-use Graph

In a def-use graph, edges go 
from definitions to possible uses.
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Def-use Graph

In a def-use graph, edges go 
from definitions to possible uses.
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Analyses Types
• A forwards analysis is one that for each program 

point computes information about the past 
behavior.
– Characterized by the right-hand sides of constraints 

only depending on predecessors of the CFG node.
• A backwards analysis is one that for each 

program point computes information about the 
future behavior.
– Characterized by the right-hand sides of constraints 

only depending on successors of the CFG node
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Analyses Types
• A may analysis is one that describes information 

that may possibly be true and, thus, computes 
an upper approximation
– Characterized by the right-hand sides of constraints 

using a union operator to combine information.
• A must analysis is one that describes 

information that must definitely be true and, thus, 
computes a lower approximation.
– Characterized by the right-hand sides of constraints 

using a intersection operator to combine information.
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Pointer Analysis

• Pointer manipulations:
– id = malloc
– id 1 = &id 2
– id 1 = id 2
– id 1 = *id 2
– *id 1 = id 2
– id = null
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Pointer Constraints

The last two constraints are generated for every variable named id, but 
we need in fact only consider those whose addresses are actually taken 
in the given program. The null assignment corresponds to the constraint:



Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 34

Cubic Algorithm
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Analysis of the algorithm
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Pointer Constraints

These constraints match the requirements of the cubic algorithm. The 
resulting points-to function is defined as: pt(p) = [[p]].

The end result of a points-to analysis is a function pt that for each (pointer) 
variable p returns the set pt(p) of possible pointer targets to which it may 
evaluate.
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Example

This is so called Anderson’s algorithm. Note that while this algorithm is flow 
insensitive, the directionality of the constraints implies that the dataflow is still 
modeled with some accuracy.

constraints

solution
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Steensgaard’s Algorithm

• Performs a coarser analysis essentially by 
viewing assignments as being 
bidirectional.

• Uses a set consisting of the malloc-I 
tokens and two tokens of the form id and 
*id for each variable named id.
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Constraints
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Example

Steensgaard’s

constraints
Equivalence 
classes

solution

Restricting to the addresses that are 
actually taken in the program
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Null Pointer Analysis
For every CFG node v we introduce a constraint variable [[v]] denoting a 
symbol table giving the status for every variable at that program point.
For variable declarations:
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Example

Anderson’s

algorithm

Null 
constraints

solution


