
Static Program Analysis: What is
it and how it is used

S. C. Kothari
CPRE 556:Lectures 9-10, 2006

Electrical and Computer Engineering Dept.
Iowa State University

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 2

Static analysis
• Without executing the program, answer questions such

as:
– does the variable x always have the same value?
– will the value of x be read in the future?
– can the pointer p be null?
– which variables can p point to?
– is the variable x initialized before it is read?
– is the value of the integer variable x always positive?
– what is a lower and upper bound on the value of the integer

variable x?
– at which program points could x be assigned its current value?
– do p and q point to disjoint structures in the heap?

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 3

Describe all the errors
int main() {

char *p,*q;
p = NULL;
printf("%s",p);
q = (char *)malloc(100);
p = q;
free(q);
*p = ’x’;
free(p);
p = (char *)malloc(100);
p = (char *)malloc(100);
q = p;
strcat(p,q);

}

The standard tools such as
gcc -Wall and lint detect no
errors.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 4

Bad news ..
• Rice's theorem (also known as The Rice-Myhill-

Shapiro theorem - 1953) is an important result in the
theory of recursive functions. A property of partial
functions is trivial if it holds for all partial recursive
functions or for none. Rice's theorem states that, for any
non-trivial property of partial functions, the question of
whether a given algorithm computes a partial function
with this property is undecidable.
http://en.wikipedia.org/wiki/Rice's_theorem

• Implication of Rice’s theorem: all interesting questions
about the behavior of programs are undecidable.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 5

Rice’s theorem: an example

• Assume for example the existence of an
analyzer that decides if a variable in a
program has a constant value.

• This analyzer to also decide the halting
problem by using as input the program:

x = 17; if (TM(j)) x = 18;

• Here x has a constant value if and only if
the j’th Turing machine halts on empty
input.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 6

Using static analysis as an
engineering tool

• We want to solve practical problems like:
– finding bugs in the program
– identifying security holes
– making the program run faster or use less space etc.

• The solution is to settle for approximations that are still
precise enough to address our applications.

• Most often, such approximations are conservative,
meaning that all errors lean to the same side.

• Engineering challenge: Be correct as often as possible
while obtaining a reasonable performance.

• Also it may be able to define preconditions (to be
satisfied by the program) under which we can argue that
the analysis is in fact completely precise.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 7

TIP: Tiny Imperative Programming
Language

• The presentation uses a tiny imperative
programming language, called TIP.

• It is designed to have a minimal syntax
and yet to contain all the constructions that
make static analyses interesting and
challenging.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 8

TIP: Expressions

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 9

TIP: Statements

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 10

TIP: Functions

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 11

TIP: Pointers

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 12

TIP: Function Pointers

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 13

TIP: Programs

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 14

TIP: Program Examples

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 15

Factorial program written in TIP

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 16

Flow Sensitive Analysis

• Type analysis starts with the syntax tree of a
program and defines constraints over variables
assigned to nodes.

• It is a flow insensitive analysis, in the sense that
the results remain the same if a statement
sequence S1S2 is permuted into S2S1.

• Analyses that are flow sensitive use a control
flow graph, which is a different representation of
the program source.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 17

Control Flow Graphs

• A control flow graph (CFG) is a directed graph,
in which nodes correspond to program points
and edges represent possible flow of control.

• A CFG always has a single point of entry,
denoted entry, and a single point of exit,
denoted exit.

• If v is a node in a CFG then pred(v) denotes the
set of predecessor nodes and succ(v) the set of
successor nodes.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 18

Control Flow Graphs for
Statements

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 19

Control Flow Graphs for Control
Structures

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 20

Example: Program and its CFG

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 21

Dataflow Analysis

• To every node v in the CFG, we assign a set of
variables [[v]].

• For each construction in the programming
language, we then define a dataflow constraint
that relates the value of the variable of the
corresponding node to those of other nodes
(typically the neighbors).

• Instead of a formal theory of dataflow analysis,
we will discuss a set of interesting examples.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 22

Live Variables

• A variable is live at a program point if its
current value may be read during the
remaining execution of the program.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 23

Example: Liveness and its use
• y and z are never live at the same time, and that

the value written in the assignment z=z-1 is
never read. Thus, the program may safely be
optimized.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 24

Analysis to Compute Live Variables

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 25

Reaching Definitions

• The reaching definitions for a given program
point are those assignments that may have
defined the current values of variables.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 26

Notation

• For every CFG node v, let [[v]] denote the set
set of assignments that may define values of
variables at the program point after the node.

• Join(v) = Union of [[w]], w is a predecessor of v.
• If v is an assignment statement, let v(id) denote

the ID of the variable assigned at v.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 27

Computing the Reaching
Definitions

• Constraint equation for assignment:
[[v]] = Join(v) – { assignments-to v(id)} + {v}

• Constraint equation for other statements:
[[v]] = Join(v)

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 28

Def-use Graph

In a def-use graph, edges go
from definitions to possible uses.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 29

Def-use Graph

In a def-use graph, edges go
from definitions to possible uses.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 30

Analyses Types
• A forwards analysis is one that for each program

point computes information about the past
behavior.
– Characterized by the right-hand sides of constraints

only depending on predecessors of the CFG node.
• A backwards analysis is one that for each

program point computes information about the
future behavior.
– Characterized by the right-hand sides of constraints

only depending on successors of the CFG node

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 31

Analyses Types
• A may analysis is one that describes information

that may possibly be true and, thus, computes
an upper approximation
– Characterized by the right-hand sides of constraints

using a union operator to combine information.
• A must analysis is one that describes

information that must definitely be true and, thus,
computes a lower approximation.
– Characterized by the right-hand sides of constraints

using a intersection operator to combine information.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 32

Pointer Analysis

• Pointer manipulations:
– id = malloc
– id 1 = &id 2
– id 1 = id 2
– id 1 = *id 2
– *id 1 = id 2
– id = null

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 33

Pointer Constraints

The last two constraints are generated for every variable named id, but
we need in fact only consider those whose addresses are actually taken
in the given program. The null assignment corresponds to the constraint:

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 34

Cubic Algorithm

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 35

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 36

Analysis of the algorithm

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 37

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 38

Pointer Constraints

These constraints match the requirements of the cubic algorithm. The
resulting points-to function is defined as: pt(p) = [[p]].

The end result of a points-to analysis is a function pt that for each (pointer)
variable p returns the set pt(p) of possible pointer targets to which it may
evaluate.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 39

Example

This is so called Anderson’s algorithm. Note that while this algorithm is flow
insensitive, the directionality of the constraints implies that the dataflow is still
modeled with some accuracy.

constraints

solution

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 40

Steensgaard’s Algorithm

• Performs a coarser analysis essentially by
viewing assignments as being
bidirectional.

• Uses a set consisting of the malloc-I
tokens and two tokens of the form id and
*id for each variable named id.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 41

Constraints

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 42

Example

Steensgaard’s

constraints
Equivalence
classes

solution

Restricting to the addresses that are
actually taken in the program

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 43

Null Pointer Analysis
For every CFG node v we introduce a constraint variable [[v]] denoting a
symbol table giving the status for every variable at that program point.
For variable declarations:

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 44

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 45

Example

Anderson’s

algorithm

Null
constraints

solution

