
Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 1

Overview of Program
Comprehension
CPRE 556 Lecture 12

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 2

Program Comprehension

• International Workshop on Program
Comprehension http://www.ieee-
iwpc.org/iwpc2005/

• Annotated bibliography
http://www2.umassd.edu/swpi/processbi
bliography/bibcodereading2.html#Deimel
90

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 3

Understanding Programs

• Goes far beyond the ability to read syntax.
• Serious economic issue for the industry.
• Program comprehension is required for:

– Defect identification
– Tracing the defect source
– Code inspection
– Preparation of test cases
– Good documentation
– Code revisions and enhancements

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 4

Macro vs. Micro Level
Understanding

• Macro-level: understanding software at large
with focus on the global and cross-cutting
characteristics (e.g. class relationships).

• Micro-level: understanding a specific part of
software in great detail (e.g. implementation of a
data structure such as a tree).

• We will focus on macro-level understanding.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 5

Code Reading Types

• Reading by step-wise abstraction
• Defect-based Reading
• Perspective-based Reading

Source: http://www2.umassd.edu/swpi/1docs/comprehension.html

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 6

Reading: step-wise abstraction

• Determine the function of critical subroutines,
works through the program hierarchy until the
function of the program is determined.

• A bottom-up strategy- map the code to
suggested problem domain activity.

• Basili & Selby investigated the effectiveness:
– the technique detects more software faults, and has a

higher fault detection rate than functional or structural
testing.

Source: http://www2.umassd.edu/swpi/1docs/comprehension.html

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 7

Defect-based Reading

• Defects are categorized and
characterized, a set of questions
developed for each defect class to guide
the reader.

• Experiments conducted at the University
of Maryland suggest that defect-based
reading is more effective to ad hoc
reading.

Source: http://www2.umassd.edu/swpi/1docs/comprehension.html

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 8

Perspective-based Reading

• Similar to defect-based reading, but instead of
defects readers have different roles (tester,
designer and user) to guide them in reading.

• Experiments conducted at the University of
Maryland suggest that defect-based reading is
more effective to ad hoc reading.

• Perspective-based reading has been applied to
the inspection of requirements documents.

Source: http://www2.umassd.edu/swpi/1docs/comprehension.html

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 9

Cognitive Processes in Program
Comprehension

• A mental model describes an engineer’s mental
representation of the program to be understood.
A cognitive model describes the cognitive
processes and information structures used to
form the mental model. Three cognitive
processes:
– Expectation-based comprehension (Brooks 1983).
– Inference-based Comprehension (Soloway 1984).
– Bottom-up processing (Schneiderman & Mayer,

1979).
• Which strategy would be more useful in familiar

domain?

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 10

Empirical Studies

• Empirical studies of cognitive processes
using “Talk-Aloud Protocol”.

• Subjects are asked to verbalize their
thought process of program
understanding.

• Analysis schemas have been developed.
• Results from different subjects are

compared to check for consistency of
results.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 11

Talk-aloud Excerpt

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 12

Expectation-based Comprehension

• What would be verbalization?

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 13

Program Slicing
• Given a set of program elements S, a slice is a

projection of the program that includes only
program elements that might affect (either
directly or transitively) the values of the variables
used at members of S.

• A technique for visualizing dependencies and
restricting attention to just the components of a
program.

• Two main types: backward slicing and forward
slicing.

• Project: http://www.cs.wisc.edu/wpis/html/

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 14

Effort Estimation for Program
Comprehension

• Econometric model -
http://portal.acm.org/citation.cfm?id=837837

• Case study: a subset of 26 programs from a
banking application written in COBOL; 31,981
lines of code (locs), overall effort for restoration
required about 170 man/hours.

• Efforts depend on: the objective of restoration,
adequacy and capability of the tools used,
engineer's experience, the knowledge of the
applicative domain available etc.

• The model provides a way quantify and estimate
the efforts.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 15

Restoration

• The restoration process considered in the
study included:
– Classify data as applicative domain data,

control data, structural data.
– Rename variables using meaningful names.
– Extract modules with high internal cohesion.
– Localize variables declared to be global but

used locally.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 16

Reverse Engineering
• Identify software components, their interrelationships,

and represent these entities at a higher level of
abstraction.
– Redocumentation: Perhaps the weakest form of reverse

engineering.
– Design Rediscovery: use domain knowledge and other external

information to create a model of the system at a higher level of
abstraction.

– Restructuring: Transform the system within the same level of
abstraction maintaining the same functionality and semantics.

– Reengineering: Most radical, involves both reverse and forward
engineering to reexamine which functionalities need to be
retained, deleted or added.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 17

Difficulties
• Gap between the application model and the

program.
• Computer science education is largely about

mapping from the abstract to the detailed
implementation, but there is little to assist in the
reverse mapping.

• Over time, program structure drifts from the
original specification. It becomes difficult to
reconcile and synchronize the documented
design and the current implemented design.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 18

Tools for Program Comprehension

1. Source code comprehension tools:
http://grok2.tripod.com/code_comprehen
sion.html

2. A Survey of Program Comprehension
and Reverse Engineering Tools by
Nelson,
http://arxiv.org/ftp/cs/papers/0503/05030
68.pdf

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 19

Approaches for Automated

• Textual, lexical and syntactic analysis.
• Graphing program artifacts.
• Execution and testing.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 20

Using Electronic Library
• IEEE Xplore:

http://www.lib.iastate.edu/collections/db/ieeexx.html
• Process:

– Suppose you get following reference after searching on Google
http://portal.acm.org/citation.cfm?id=837837

– Google search shows that the paper appeared in International
Workshop on Program Comprehension (IWPC) in 96.

– Click on Xplore, click on conferences, then type IWPC in the
search box and go.

– You will get a yearly listing of all IWPC proceedings.
– Click on the appropriate year, the Table of Content comes up.
– Click on the PDF link for the paper.

• WCRE is another conference with several relevant
papers for this course.

Lecture Notes - Copyright © 2006. S. C. Kothari, All rights reserved. 21

References
1. Brooks, R., (1983) Towards a Theory of the Comprehension of

Computer Programs. International Journal of Man-Machine
Studies, Vol. 18.

2. Soloway, E., (1984) Empirical Studies of Programming
Knowledge. IEEE Transactions on Software Engineering, IEEE
Computer Society, Vol. SE-10, No. 5.

3. Schneiderman, B., Mayer, R., (1979) Syntactic / Semantic
Interactions in Programmer Behavior. International Journal of
Computer and Information Sciences, Vol. 8, No. 3.

4. Von Mayrhauser, A., Lang, S., (1999) A Coding Scheme to
Support Analysis of Software Comprehension. IEEE Transactions
on Software Engineering, Vol. 25, No. 4, July/August.

