922 vLst DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

will consist of the time for the first inverter to discharge (charge) the input of
the second inverter through the pass transistor gated by ¢; plus the time for the
second inverter to charge (discharge) the interconnection capacitance up to the
input of the pass transistor gated by ¢,.

Each path trace for a signal is started from a rising or falling input specified
by the user. As the signal path proceeds through inverters or logic gates, the
appropriate rising or falling direction is determined to correctly model asymmetric
stage delays. The path-trace analysis is done with a depth-first search algorithm.
Thus, a signal path is followed until it reaches a circuit output or is stopped by a
static signal specified by the user (like the ¢, condition examined in the previous
paragraph). Delay information from previous paths is maintained at each node so
that the signal path can be aborted on later path traces through the same node if
the cumulative delay is less than the stored value.

As with all state-independent timing analysis methods, the possibility of
reporting false paths exists. A simple example is given in Fig. 10.8-6, where a
signal path is gated by a signal and its complement. From a logical viewpoint,
there is not a signal path from node a to node ¢ because one of the AND gates
will be disabled by x or X. Since timing analysis is state-independent, this logical
constraint is not recognized, and the path from node a through node b to node ¢
will be considered and its delay calculated. A 1-of-n selector circuit is a classic
example of this condition. In normal operation, only one path through the selector
circuit will be enabled at any time, but state-independent timing analysis finds all
n paths. In most timing analyzers the capability exists to set signals to a stable
value to disable paths; however, this capability must be used carefully to avoid
accidentally disabling critical delay paths.

To facilitate fast operation, Crystal uses a simple delay model consisting of
an equivalent resistance for the drive transistor and a resistance and capacitance
for the interconnections and load devices. The transistor drive model is table-
driven with the equivalent resistance selected based on input signal slope and
capacitive load value. This is not as accurate as a circuit-level simulation but is
much faster. Once critical delay paths are found, they can be investigated with a
circuit simulator if more accurate results are required.

In summary, timing analysis is an important tool for integrated circuit
design. By using state-independent path tracing, it performs a function that is
difficult, if not impossible, to perform with timed logic simulators. The execution
time for timing analysis programs is determined by the size of the circuit

B

X FIGURE 10.8-6
Logically impossible path.

DESIGN AUTOMATION AND VERIFICATION 923

being analyzed. While timing analysis is used to find and correct critical delay
paths, correct functional operation can be verified with a logic simulator. Thus,
logic simulation and timing analysis function as partners to ensure that a digital
integrated circuit is functionally correct and that it operates at the proper speed.

10.9 REGISTER-TRANSFER-LEVEL SIMULATION

Specifications for the operation of digital integrated circuits are often given
in terms of high-level operations on information. These high-level operations
describe transformations on data as it moves from one storage device or register
to another such device. For this reason, descriptions of this type are known as
register-transfer-level descriptions.

Register-transfer-level descriptions provide a useful level of abstraction for
the description and simulation of digital systems. The logic simulators described
previously require too much detail about the exact logical structure of an inte-
grated circuit for early design simulation. Also, because of the detailed specifi-
cation of the logical structure of the circuit, complete logic simulation of an entire
circuit such as a microprocessor requires impractically large computer resources.
Alternatively, at the highest level, a natural language description of the function
of a digital system is often ambiguous and vague. A concise natural language
description of a next-generation computer might be, “build a new computer that
is like computer XYZ, but is twice as fast and uses less power.” To fill this gap
between natural language descriptions and logical definitions, high-level descrip-
tion and simulation languages have been developed. Of these, register-transfer-
level simulation languages allow specification and simulation of operations on
data words, in addition to single-bit operations.

The operation of a digital system can be defined precisely through the use of
a register-transfer-level description. In fact, one such language, ISPS (Instruction
Set Processor Specification), was developed to allow unambiguous description
and specification of computer operation.??> The ISPS language allows data bits
to be grouped into words. Logic and arithmetic operations are allowed on both
bit-level and word-level entities as they are moved between storage registers.
Operations common to most programming languages, such as conditional state-
ments, if-then-else constructs, case statements, and procedures, arc allowed.
Thus, a register-transfer language is a special programming language tailored to
describing the operation of digital systems.

10.9.1 Simple RTL

For demonstration purposes, a primitive register-transfer language (RTL) will be
defined and used to describe the execution of one instruction from an early 8-bit
microprocessor. This primitive RTL is defined in Table 10.9-1. The first operation
required is the transfer operation—the contents of one group of bits (register) are
placed into another storage device. Second, the common arithmetic operations
of add and subtract are provided. Third, a simple conditional capability to alter
control flow is added.

924 VLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

TABLE 10.9-1
Primitve RTL Definition

Operation Description
A <B transfer

C «A+B addition

D «<A-B subtraction

PC<BifA =0 conditional

The operation to be described using this RTL is the extended load of the
A accumulator of the Motorola 6802 microprocessor. This microprocessor has a
16-bit address bus and a separate 8-bit data bus. The A accumulator is an 8-bit
register. Execution of this instruction requires four memory cycles: fetch the 8-bit
instruction, obtain the high byte of the operand address, obtain the low byte of the
operand address, and obtain the data from the operand address. The approximate
register-transfer-level steps are given in Table 10.9-2 and are explained next.

The first step moves contents of the program counter (PC) to the address
bus (AB) in preparation for fetching the instruction byte. While the processor is
waiting for the memory to respond, the program counter is incremented. After a
delay time, the DBI (data bus input) is moved to the instruction register (IR). This
ends the first memory cycle. As the instruction is being decoded, the incremented
PC is moved to the address bus in preparation to fetch the next byte. The PC is
incremented again, and the contents of the DBI are moved to the internal data
bus (DB) and on to a temporary register (TMP) to complete the second cycle.
To begin the third memory cycle, the previously incremented PC is moved to the
AB and the PC value is incremented. The DBI contents are moved to DB where
they are held in preparation for the cycle that outputs the data address (this is
slightly oversimplified). The fourth and final cycle moves the data from DB to
the low-order bits of the address bus (ABL) and the contents of TMP to the high-
order bits of the address bus (ABH). At this point, the extended 16-bit address of

TABLE 10.9-2
Microprocessor Instruction Execution
Cycle Operation Explanation
1 AB <« PC pc to address bus
PC <«PC+1 incr pc
IR < DBI data to ir
2 AB <« PC pc to address bus
PC «<PC +1 incr pc
TMP <« DB « DBI data to tmp
3 AB < PC pc to address bus
PC «<PC +1 incr pe
DB <« DBI data to dynamic store
4 ABL < DB data adr to address bus
ABH <« TMP data adr to address bus

ACCA « DB « DBI

data to accumulator

DESIGN AUTOMATION AND VERIFICATION 925

the data is present on the address bus. The memory responds with the requested
data, and this data is moved from DBI to DB and into accumulator A (ACCA) to
complete execution of the instruction. These RTL statements describe at a high
level the execution of a simple microprocessor instruction.

10.9.2 ISPS Specification and Simulation

The Instruction Set Processor Specification (ISPS) language was developed for
the certification, architectural evaluation, simulation, fault analysis, and design
automation of instruction set processors. The language provides a behavioral
rather than a structural description. There are no part numbers, pin assignments,
layouts, or technologies defined. Of course, some structural information such as
register lengths, data path widths, and connections of components are necessarily
a part of the simulation. The operation of each part of a processor is specified
algorithmically by its behavior.

The ISPS notation includes an interface and entities. First, the carriers (mem-
ory) elements are defined. This usually includes an array of memory locations
with a specified bit width and number of words. Second, the procedures necessary
for the execution of the processor statements are defined. This usually includes
instruction decoding, effective address calculation, arithmetic and logical oper-
ation definitions, and memory load/store functions. ISPS provides a typical set
of program operators, including assignment, if, case, and repeat. Additionally,
provisions are made for concurrent or sequential processing. It is possible to
specify the bit length of words. Aliases are available for variables, and bit fields
of variables can be addressed directly by other variables. Normal number repre-
sentations include binary, hex, decimal, and octal. An example will be presented
to demonstrate briefly some of the capabilities of the ISPS language.

The Motorola 68000 microprocessor will be used as the example to describe
typical ISPS capabilities. Figure 10.9-1 shows the definition of the memory and
processor state. The memory is defined here as 1 K 16-bit words with the name
M and the alias Memory. The processor state includes definition of the program
counter (PC) and extended program counter (PCA), the register array (REG), the
instruction register (IR), and other required processor state holders. In each case,
the number of registers and the width in bits are defined. Multiple references to
some resources are specified. For example, an array of sixteen 32-bit registers
(REG) is defined. Then the data registers (D) are specified as the first eight
registers, and the address registers (A) are specified as the second eight registers
of the register array.

Partial instruction execution for the 68000 microprocessor is defined in Fig.
10.9-2. In the figure, calculation of a displacement for the indexed address mode
is demonstrated, and the effective address calculation is partially defined. Note
the use of the Begin/End statements to define a block of operations and the
use of “:=" as the assignment operator. A decode statement provides a multi-
way branch depending on the value of one or more bits. For example, in the
displacement calculation, bit 11 of the memory addressed by the PC defines
whether the instruction is a word index (bit 11 = 0) or a long index (bit 11 = 1).

926 vLs1 DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

M68000 :=
BEGIN

Memory.State
M\Memory[0:1K]<15:0>,

**Processor.State*”

PCA\Program.Counter.with.A0<23:0>,
PC\Program.Counter<22:0> :=PCA<23:1>,

REG\Registers[0:15]<31:0>,
D\Data.Registers[0:7]<31:0> :=REG[0:7]<31:0>,

A\Adr .Registers[0:7]<31:0> :=REG[8:15]<31:0>,
IR\Instruction.Register<15:0>,

OP\OP.Code<1:0> =IR<15:14>,
SIZE\OP.Size<1:0> :=|1R<13:12>,
DREG\Destination.Reg<2:0> :=I1R<11:9>,
DM\Destination.Mode<2:0> :=1R<8:6>,
SM\Source.Mode<2:0> :=1R<5:3>,
SREG\Source.Reg<2:0> :=1R<2:0>,

T\Temporary.Reg<31:0>,
PCT\Temp.PC<23:0>,
EA\Effective.Address<23:0>,
EAE\EA.without .A0<22:0> :=EA<23:1>,
BYTE\HiLo.Byte< > :=EA<0>

FIGURE 10.9-1 _
ISPS description of M68000 microprocessor state.

The effective address calculation of Fig. 10.9-2 demonstrates use of the decode
statement with a 3-bit field. This field is used to specify indirect, postincrement,
predecrement, displacement, indexed, and assorted (not shown) address modes.
A complete ISPS description of a state-of-the-art microprocessor is sev-
eral pages in length. Such a description is invaluablée for two reasons. First, the
description provides an unambiguous specification of the operation of the micro-
processor (note that the description could be unambiguous and still be incorrect).
Second, the description can be simulated to verify desired operation or to explore
architectural characteristics of design choices early in the design cycle.

10.9.3 RTL Simulation with LISP

A less formal but very powerful means to simulate high-level behavior for a digital
system is through special-purpose programs in a general-purpose programming
language such as LISP or C. In fact, LISP is particularly well suited to this task
because of its interactive nature and its symbolic representation capability. The
behavior of each element of the digital system can be represented as a separate
function. In the case of a simulation for a computer architecture, each instruction
can be represented by a LISP function. These functions can be executed and
changed interactively to examine or to verify operation of the instruction set. An
example will be used to demonstrate this.

*UOTINDAX? UOTIONIISUI QOS9IN JO uondiIosap SJSI [erred
-6’01 JANDOIA

‘pu3
. ‘pu3z
‘(1+40d=0d 1xeN [d]lv+v3I=v3 1xoN()siq)=: Xapuji\Okt,
*(1+0d=9d 1xeN[H]lv+va=vaixeN[Od]IN=>v3)=:1uswade|ds1qQ\ IO},
‘pu3l
[4]lv=v3
1 XaNpu3
y—[dlv=[glv=: Buo\0t.
‘2-[dlv=I[4d]lv=: PIOM\ L L,
L1-[dlv=[d]lv=: a1hg\ 10,
uibag
<= 3ZI1S @apoaeQ
uibeag
29Q°94d\ 00},
‘pu3
pu3
‘v+ldlv=[d]lv=: Buo\ 0},
‘g+ldlv=[dlv=: PIOM\ L L,
‘1+[dlv=[d]lv=: 81hg\ 10,
uibag
<= 3JZ|S @8poaeq
1xaN[d]lv=v3
ui1bag
=: Ju| " 180d\ 10,
[Hlv=v3a=: 1994 1PUI\OLO,
ui1bag
NO!1vH3dO Q3aLlvi3y i <=0OW epoda(Q
AHOWIWN ANV HOd AHOWAW NI i uibeg
§S3HAAQV 3IAI1103443 STI4103dS i =:<>(<0:2>H'<0:2>0N)IPV:8A1108})}3\VID
‘pu3j
S1Qa + va=v3
1xeNpu3
xapu| -Buog\},
X8pu| " pPIOM\ 0.
uibag
<=<11>[2d]ln epodeg
"3AON X3ANI 3HL i 1X8N<O: 2> [odIn=> sIa
NI IN3IW3OVI4SIA aGNV X3ANI i utbeag
A9 3ISNVO 13S440 S3LVINDIVO i =: <0 €g>luswese|dsIQ\SIa
LU0l lNd8X3°U0i}oONI)SU]|,,

I

[<21:51>[0d]1n]Day=v3
‘<0:6)1>[<2L:s1>[0d1IWIDaY=>X3

927

928 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

A partial LISP definition of a RISC processor is given in Fig. 10.9-3. A
subset of the arithmetic, logical, and load functions is presented. Other functions,
especially PC modification instructions, must be included to allow full execution
of a RISC program. Each instruction is represented by a separate function with
arguments that are derived from the bit fields of the instruction.

The add instruction of Fig. 10.9-3 will be examined to clarify the instruction
definitions provided by the LISP functions in the figure. This instruction is a
triadic instruction on this RISC processor. That is, the instruction requires three
arguments: two sources and a destination. On many computers, because of
instruction word width limitations, the add instruction is dyadic, requiring the
destination and one source to be specified by the same bit field. The arguments

(defun add (rs s2 dest)
(setq rd (+ rs s2))
(store (reg (eard dest)) rd)
(setq pc (addi1 pc)))

(defun sub (rs s2 dest)
(setqg rd (- rs s2))
(store (reg (eard dest)) rd)
(setq pc (addi1 pc)))

(defun and (rs s2 dest)
(setq rd (and rs s2))
(store (reg (eard dest)) rd)
(setqg pc (add1 pc)))

(defun or (rs s2 dest)
(setg rd (or rs s2))
(store (reg (eard dest)) rd)
(setq pc (addt1 pc)))

(defun xor (rs s2 dest)
(setq rd (xor rs s2))
(store (reg (eard dest)) rd)
(setg pc (add1 pc)))

(defun sll (rs s2 dest)
(setq rd (shiftl rs s2))
(store (reg (eard dest)) rd)
(setq pc (addil pc)))

(defun sra (rs s2 dest)
(setg rd (shiftra rs s2))
(store (reg (eard dest)) rd)
(setq pc (add1 pc)))

(defun 1dl (rs s2 dest)
(setqg rd (plus rs s2))
(store (mem (dest)))
(setq pc (add1 pc)))

FIGURE 10.9-3 .
Partial LISP definition of RISC processor.

DESIGN AUTOMATION AND VERIFICATION 929

to the triadic add instruction presented here include rs as one source, s2 as the
second source, and dest as the destination for the add. The first line of the function
defines the operation and the required arguments as “defun add (rs s2 dest).”

The operation of the function body for the add instruction of Fig. 10.9-3
can be explained as follows. The second line of the function definition sets a
temporary variable rd to the sum of the contents of rs and s2. The third line
invokes two functions (definitions not shown in the example) to store the results
of the add in a register array. The eard function calculates the effective address
within the register array for the store. The eard function must include the effects
of the overlapped register storage mechanism usually employed within a RISC
processor. The store function places the contents of the previously calculated rd
into the proper slot within the register array. The final line of the add function
increments the program counter pc by one.

A top-level program is required to accept a test instruction stream, decode
the instruction into the appropriate bit fields, and then call the instruction primitive
definitions of Fig. 10.9-3 with the arguments set appropriately. The operation
of the program can be observed by including print statements at appropriate
places, by tracing the execution of the program, or by examining the program’s
side effects on the register array, pc, other processor state holders, and memory
contents.

Because of the ease with which variations in instruction definition can be
tested, an interactive simulation through a LISP program is a powerful tool for
system development. The interactive nature of LISP provides an excellent means
to correct errors and to test new ideas quickly. There is no need to wait for
compile and load steps between each change in the model. As a final comment,
it should be noted that the example presented for the RISC processor did not
include any effects of word length or arithmetic overflow. Additional statements
are necessary to include these effects.

In this section the concepts of high-level definition and simulation of digital
systems were introduced. A primitive RTL was used to define the execution
of a simple microprocessor instruction. Then the ISPS language was presented
as one example of an RTL language that was designed to specify and evaluate
instruction processor architectures. Finally, an example was presented that used
LISP as a powerful, but informal, method of simulating and evaluating digital
system architectures.

10.10 HARDWARE DESIGN LANGUAGES

Machine-readable descriptions of integrated circuit designs have become an
important factor in designing VLSI circuits. These descriptions are often defined
in terms of design languages that, like computer languages, have specific syntax
and semantics. Such design languages have been used to describe circuits from
the geometrical level up through the architectural level. As new designs become
increasingly dependent on CAD tools, machine-readable descriptions become
extremely important. Two hardware design languages have evolved as ANSI
(American National Standards Institute) standards within the last few years. One

930 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

of these, EDIF (Electronic Design Interchange Format), is intended to describe
designs from the layout level through the logic level. Another such language,
VHDL (VHSIC Hardware Description Language), is used to characterize both
the function and structure of designs from logical primitives through architectural
descriptions. The basics of these two languages will be introduced here along
with simple examples of each.

10.10.1 EDIF Design Description

As integrated circuit designs increased in complexity and the use of comput-
ers became prominent within the semiconductor industry, the need for a com-
mon interchange format for integrated circuit design information arose. With
such a standard, silicon foundries could accept design descriptions from many
sources, CAD vendors could create widely applicable programs to process
designs, and designers would benefit from wider availability of CAD tools and
silicon processing. The EDIF (Electronic Design Interchange Format) standard
was created by interested companies to fulfill this need.

Key elements in the design of the EDIF language were broad applicability
and easy extensibility. To meet these goals, EDIF was designed with a syntax that
is similar to LISP with all data represented as symbolic expressions. Primitive
data such as strings, signals, ports, layers, numbers, and identifiers are the atoms
of EDIF. These atoms are formed into more complex structures as lists; many
times, the first element of a list is a keyword that gives a particular meaning
to the subsequent elements of the list. This syntax is easily parsed, and the
keywords —not the syntax—provide the semantics of the language. Thus, it is
desirable to design EDIF parsers that respond to the particular set of keywords
for their intended function. Unrecognized keywords may be ignored successfully,
allowing upward compatibility with new extensions of the language.

EDIF is intended neither as a programming language nor a database lan-
guage, but rather as an efficient interchange format for integrated circuit designs.
The LISP-like structure is relatively compact and yet maintains a textlike property
that allows it to be read and written directly by humans. An EDIF description may
contain mask descriptions, technology information, net lists, test instructions,
documentation, and other user-defined information. The structure is hierarchical
in that larger design descriptions can be built from component descriptions and
libraries of standard elements.

The basic organizational entity for describing designs within EDIF is the
cell. A cell may contain different representations or views of a design. For
example, one view might contain mask layout information while another view
may contain behavioral-level modeling information. A view may be one of several
types such as physical, document, behavior, topology, or stranger. Each view will
contain a specific type of information about the cell. For example, the physical
view may contain geometric figures for circuit schematics or mask artwork, but
it will not contain behavioral information. The topology view might contain net
list descriptions, schematic diagrams, or symbolic layout. The document view
could contain a textual description of a design, figures describing the design, or

DESIGN AUTOMATION AND VERIFICATION 931

specifications for the behavior of the design. The stranger view is provided for
data that does not meet the conventions of the other view types.

Each view of a cell may specify its interface to the external world. This
interface includes a list of external ports and their characteristics. The interface
description does not specify how the cell performs its function internally but
rather defines how the cell will relate to its environment. A second part of the
cell definition is its contents. The contents provide the detailed implementation
for each view. This could include instances of other cells or could be the actual
definition of mask geometry for the cell layout. A net list view and a mask layout
view for a full adder are described here as examples of EDIF contents.

10.10.2 EDIF Net List View of Full Adder

The net list view is available in EDIF to describe collections of cells and their
interconnections. Cell instances have interface sections that describe their ports.
Within the EDIF net list view, the joined construct is used to show the intercon-
nection of cells and interface ports. A sample EDIF file segment that describes
the net list for the full adder of Fig. 10.10-1 is given in Fig. 10.10-2. This net
list view starts with an interface description that declares the three input ports and
two output ports of the full adder. This is followed by the contents section, which
declares local signals, instantiates component cells of the full adder, and then
joins appropriate signals to realize the full-adder circuit. The component cells are
from a p-well CMOS library of cells. The reader should verify that the EDIF net
list of Fig. 10.10-2 accurately describes the full-adder circuit of Fig. 10.10-1.

10.10.3 EDIF Mask Layout View of Full Adder

EDIF allows hierarchical descriptions of mask layout information. Public domain
formats such as CIF, as well as company proprietary formats for artwork descrip-
tions, can be described within EDIF. As an example, a partial layout of the cell-

BO Lo
X1
CIN
N\ L1
Al
J/ o1 COuT
A2 L2

FIGURE 10.10-1
Full-adder circuit.

932 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

(cell FullAdder
(view Topology Netlist
(interface
(declare input port (BO B1 CIN))
(declare output port (SUM COUT))

(contents

(declare local signal (LO L1 L2))
(instance pwellcmoslib:xor X1)
(instance pwellcmoslib:xor X2)
(instance pwellcmoslib:and A1)
(instance pwellcmoslib:and A2)
(instance pwellcmoslib:or O1)
(joined B0 X1:a Al1:a)
(joined B1 X1:b A1:b)
(joined CIN X2:b A2:b)
(joined LO X1:c X2:a A2:a)
(joined L1 A1:c O1:a)
(joined L2 A2:c O1:b)
(joined SUM X2:c¢)
(joined COUT O1:c)

)
)

FIGURE 10.10-2
EDIF description of net list for full adder.

based full adder of Fig. 10.10-1 is described in CIF as shown in Fig. 10.10-3a. To
simplify the figure, only the interconnection layout for the input signals B0, B1,
and CIN is provided by the CIF description. The description presumes that the
CIF layout descriptions for the five component cells of the full adder have been
instantiated. Definitions for the CIF statements used in this example are provided
in Fig. 10.10-3b. This CIF example allows a comparison with the corresponding
EDIF description for the interconnection layout of the cell-based full adder of Fig.
10.10-1, as provided in Fig. 10.10-4. The EDIF description contains definitions
of the cell name (CONNE), celltype (GENERIC), view (physical), viewtype
(MASKLAYOUT), and the figures (rectangle) that form the interconnections
among the full-adder cells. Each rectangle is described by the endpoints of one
of the diagonal lines that pass through a corner of and bisect the rectangle. The
EDIF keywords used here should be self-explanatory. For additional detail on
EDIF layout descriptions, see the EDIF standard®.

Since its introduction and later adoption as a standard, the EDIF language
has become widely accepted within the semiconductor industry for the interchange
of design information. It is now supported as an interchange mechanism by
most CAD vendors. Thus, for example, results from design entry or computer-
based analysis on a workstation can be moved to a different workstation or to
a mainframe computer for further processing. A full description of the EDIF
standard is provided by ANSI/EIA standard EDIF 2 0 0.3

DESIGN AUTOMATION AND VERIFICATION 933

Q
»

2;
CONNE ;
MET1 ;

80 80 40 700;
200 80 100 840;
1200 80 600 980;
COND ;
40 40 40 700;

40 40 160 840;
40 40 720 980;
40 40 1160 980;
POLY;

120 40 140 220;
40 460 60 430;
40 740 60 1110;
80 80 40 700;
120 40 140 1460,
40 40 180 380;
40 440 140 580;
40 440 140 1100;
80 80 160 840;
40 40 180 1300;
120 40 820 220;
40 740 740 570;
80 80 720 980;
80 80 1160 980;
40 300 1140 1170;
40 40 1180 1300;

mo OO rOmPrr ODWEor ©

F L}
2 T O O;
(@
DS 2 ; define symbol number 2
9 ABCDE label (cell name)
L MET1 layer definition (metal)

B DX DY X Y rectangle, length DX, width DY,

location X,Y

DF end of symbol definition
CNTXY call symbol N, transiate by X,Y
E end of CIF definition

(b)

Figure 10.10-3
CIF layout example, (@) CIF layout file for input connections to cell-based full adder of Fig.
10.10-1, (b) Definition of CIF statements used in part a.

"€-01°01 "8t JO o[y 41D 01 Surpuodsoriod o[y inoke| [esrsyd J1ay
_ $-01°01 2an31g

(

(((ozet ooct 1d) (0821 091} 1d) o |Bueyoay)
((o2er o09t1L 3d) (020t 0211l 1d) o)Bueyosy)
((ozotL oozt 1d) (o¥6 ozti 1d) ojbuejosy)
((o2ol 09z 1d) (o¥e 089 1d) a|bueyoas)
((ove 092 1d) (002 o0gsz 1d) a(bBueyosal)
((ovz o088 1d) (002 092 1d) o|bueioel)
((o2eL 002 1d) (082L 09} 1d) o|buejoal)
((os88 00z 1d) (008 021 31d) ajbuejoay)
((ozel 091 1d) (088 02t 1d) ejbueyioal)
((oo8 091 1d) (09¢ o2t 1d) a|buejoay) . -
((oov o0o0c 1d) (o09¢c 09I 1d) ajbueyosus)
((os¥L 002 .1d) (opvvt 08 1d) o|bBuejosl)
((ovz 08 1d) (099 0 1d) a|Bueyioal)
((ogv1L 08 1d) (ovz o¥ 1d) o|Buejoay)
((099 08 1d) (00z o¥ 1d) a|Bueiosus)
((o¥z o0z 1d) (00z 08 1d) a|bueyoas) Ajog @4nb1y)
(((ooot o8ti 1d) (096 OviIi 1d) ojbuejaay)
((oooL ovz 1d) (096 00z 1d) a|Bueidsau)
((o98 o081 1d) (028 OovlL 1d) a|bBue}oas)
({022 .09 1d) (089 02 1d) sjbueioas) juony ai1nbiy)
(((ozoL 0021 1d) (ove6 0 1d) o|bBuejoel)
((o88 00z 1d) (008 0 1d) a|bBueydsas)
((o¥z 08 1d) (099 0 1d) a|bueioas) Li1aN @4nb1})
. ’ S]1uajuod)
. (edoejioiul)
(LNOAVINSVYN @dAime1n)
|eo1sAyd maia)
(0143aN3D edAj)189)
INNOD 1 19892)

934

DESIGN AUTOMATION AND VERIFICATION 935

10.10.4 VHDL Design Description

VHDL was developed for the design, description, and simulation of VHSIC
components. VHSIC is the acronym for the Very High Speed Integrated Circuits
program of the U.S. Department of Defense. Thus, the language was originally
developed to describe hardware designs for military purposes. Because the need
for a standard hardware description language is industrywide, the VHDL language
was adopted by the IEEE and formalized as an industry standard.

VHDL is concerned primarily with description of the functional operation
and/or the logical organization of designs.?* This description is accomplished
by first specifying the inputs and outputs of a system or device. Then either its
behavior (outputs as functions of inputs) or its structure (in terms of intercon-
nected subcomponents) is specified. The primary abstraction in VHDL is called
a design entity. A design entity has two parts: the interface description and one
or more body descriptions.

An interface description must perform several functions. It must define the
logical interface to the outside world. It must specify the input and output ports and
their characteristics. Additionally, operating conditions and characteristics may be
included. To accomplish this, the interface description provides a port declaration
for each input and output of the design entity. Each port declaration includes a
port name and an associated mode and fype. The mode specifies direction as in,
out, inout, buffer, or linkage. The type qualifies the data that flows through a port.
Standard types include BIT, INTEGER, REAL, CHARACTER, and BIT_VECTOR.
Additionally, user-defined types are acceptable.

As a simple example with well-defined interface characteristics, the interface
description for the full adder of Fig. 10.10-1 is given in Fig. 10.10-5. The full
adder has three binary inputs, BO, B1, and CIN, and two binary outputs, SUM
and COUT. The interface description may be thought of as the “black box” view
of the design entity. '

The body description of VHDL defines the internal operation or organization
of the hardware, providing an “open box” view of the design entity. The internal
operation is often termed a behavioral description, while the organization is
called a structural description. These descriptions can occur at one of several
levels, such as a logical definition, a register-transfer definition, or an algorithmic
definition. The body description contains a header that provides a name for the
description and identifies the associated interface description. The block...end
block section contains all the descriptive information about the internal operation
and organization of the hardware.

entity FULL_ADDER is

port (BO,B1: in BIT; —— one-bit addend
CIN: in BIT; —— carry input
SUM: out BIT; —- single-bit sum
COUT: out BIT); —— carry output

end FULL_ADDER;

FIGURE 10.10-5
VHDL interface description for full adder.

936 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

architecture GATE_IMPLEMENTATION of FULL_ADDER is
—— component declarations
component AND_GATE port (X,Y: in BIT; Z: out BIT); end component;
component XOR_GATE port (X,Y: in BIT; Z: out BIT); end component;
component OR_GATE port (X,Y: in BIT; Z: out BIT); end component;
-— local signal declarations
signal LO, Lt, L2: BIT;
begin
—-— component instantiations
: XOR_GATE port (BO, B1, LO);
X2: XOR_GATE port (LO, CIN, SUM);
A2: AND_GATE port (CIN, LO, L2);
A1: AND_GATE port (BO, Bt1, L1);
O1: OR_GATE port (L1, L2, COUT);
end GATE_IMPLEMENTATION;

FIGURE 10.10-6
VHDL gate-level description for full adder.

The full-adder example of Fig. 10.10-1 will be used to demonstrate three
different body descriptions. A gate-level implementation of a full adder is defined
in Fig. 10.10-6. GATE_IMPLEMENTATION describes a common network of
simple logic gates that realizes the full-adder function. This definition for the full
adder uses AND, XOR, and OR gate components that must be defined elsewhere.
The component declarations include an interface description for each of the
logic gates. Following the component declarations, a signal declaration specifies
signals that are used internally in the full-adder implementation. (Remember that
the interface description of the full adder specifies signals that appear externally.)
Finally, a procedure block describes the interconnection of the previously declared
components that realizes the full-adder function. GATE_IMPLEMENTATION is
a structural definition; that is, information is given about how to interconnect
the components that compose the full adder. Without further knowledge of the
behavior of components used in the definition, insufficient information is provided
for simulation of the full adder.

The full adder can also be defined through a register-transfer-level
description. The RTL_IMPLEMENTATION of Fig. 10.10-7 provides such a
description. RTL_IMPLEMENTATION is a behavioral-level description. The
structure of the implementation is left undefined; only the logical relationship

architecture RTL_IMPLEMENTATION of FULL_ADDER is
signal LO, L1, L2: BIT;
begin
LO <= B0 xor B1;
SUM <= LO xor CIN;
L1 <= B0 and B1;
L2 <= L0 and CIN;
COUT <= L1 or L2;
end RTL_IMPLEMENTATION;

FIGURE 10.10-7
VHDL RTL description of full adder.

DESIGN AUTOMATION AND VERIFICATION 937

of the signals is given. The description is given in terms of external signals
defined in the interface description and three internal signals defined within the
RTL description. The procedure block defines the relationship among the external
and internal signals in terms of standard logic functions. Assuming that standard
logical operations are known by the VHDL simulator, the behavior of the full
adder could be simulated. Although this description does not specify structure
for the full adder, an implied structure is provided in this case because there is a
well-known mapping from the logic operations to standard hardware components.

As a final description of the operation of the full adder, an algorithmic
declaration is given as ALG_IMPLEMENTATION, shown in Fig. 10.10-8. The
ALG_IMPLEMENTATION declaration of the full adder is another behavioral
description. This definition bears little relationship to the underlying physical
implementation. Instead, a procedure is given to calculate the outputs of the
interface description based on the inputs from the same description. This decla-
ration is sufficient to simulate the operation of the full adder but provides little
indication about its structure. This type of description is most useful for high-
level definition and simulation of hardware operation. A high-level description
can be provided early in the design to allow use of simulation to verify expected
system behavior. Typically, an algorithmic description can have many different
physical realizations.

A complex hardware system is normally described by a hierarchy of VHDL
design entities. Initially, subcomponents of the design are defined by component
declarations that are similar to the interface descriptions given earlier for the full
adder. These components are interconnected to form more complex structures
as defined within body descriptions. These complex structures may, in turn, be
used as components in still more complex definitions. Ultimately, the definitions

architecture ALG_IMPLEMENTATION of FULL_ADDER is

begin
process (B0, B1, CIN)
variable S: BIT_VECTOR (1 to 3) := BO & B1 & CIN;
variable Num: INTEGER range 0 to 3 := 0;
begin
for I in 1 to 3 loop
if S(I) = "1’ then
Num := Num + 1;
end if;
end loop;

case Num is

when 0 => SUM <= '0’; COUT <= '0";
when 1 => SUM <= ’'1’; COUT <= '0°’;
when 2 => SUM <= '0’; COUT <= "1’ ;
when 3 => SUM <= '1’'; COUT <= '1’;

end case;
end process;
end ALG_IMPLEMENTATION;

FIGURE 10.10-8
VHDL Algorithmic description of full adder.

938 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

of lower-level components, such as logic gates, are bound to VHDL library
definitions of primitive components. Then a particular instance of the component
is created along with its interconnections to other components, as defined within
the VHDL block statements. Thus, a VHDL description can be created for an
arbitrarily complex digital system design.

In this section, the two primary hardware design languages, EDIF and
VHDL, were introduced. Both have become ANSI standards, EDIF in 1987 and
VHDL in 1988. A full adder was used to provide simple examples of some of
the capabilities of each standard. Both EDIF and VHDL are in the process of
becoming widely accepted and supported by manufacturers and CAD vendors.
EDIF functions primarily to allow simplified interchange of circuit and layout
information between companies and within the same company. VHDL provides
high-level definition and simulation of complex digital systems. It can serve to
support analysis of design alternatives and to function as a common definition of
digital system operation in the presence of multiple vendors.

10.11 ALGORITHMIC LAYOUT GENERATION

Algorithmic generation of integrated circuit layout is often perceived as a solution
to the VLSI complexity problem. The basis of this well-known problem is that
integrated circuit design cost is increasing for complex chips while the product
life cycle is decreasing for these same chips. Design cost increases because of the
design time and computer resources that must be expended to complete a state-
of-the-art chip or system. Product life cycle is decreasing for these same designs
because of rapid advances in technology and fierce competition to get the next-
generation product to the market first.

Three approaches have been suggested to address this problem.?® The first
approach is to enhance the productivity of the human designer with faster com-
puter workstations and improved design analysis tools. To date, this approach
has been the most evident, and its description comprises the bulk of the topics in
this chapter. A second approach is to capture the knowledge of a human designer
with an expert system. This involves a knowledge base of concepts, rules, and
strategies. These are processed by an inference engine that produces design frag-
ments and design refinements to aid the design process. This approach is a sub-
ject of active research. A third approach is to algorithmically generate or synthe-
size designs from high-level descriptions or from parameterized definitions. Each
variant of this approach tends to concentrate on a particular target architecture.
For example, the PLA generators discussed earlier accept Boolean equations and
generate layout in a well-defined form. More complex algorithmic generators are
often termed silicon compilers. This section describes two pioneering efforts in
this area and follows with a description of a state-of-the-art microprocessor chip
set that was designed with heavy dependence on a commercial silicon compiler.

10.11.1 Bristle Blocks Silicon Compiler

The Bristle Blocks silicon compiler was first described in 1979.%6 The goal of
the Bristle Blocks system was to produce a layout mask set from a single-page,

DESIGN AUTOMATION AND VERIFICATION 939

high-level description of an integrated circuit. Many designs have their high-
level structure and function frozen early in the design cycle, before the effects
of such decisions are well known. If, on the other hand, a designer could use a
few building blocks, organize them, and then obtain complete mask layouts and
simulations early in the design cycle, then experimental configurations could be
tried with a minimum of effort.

The Bristle Blocks system attempted to build designs based on a philos-
ophy that includes structured design, hierarchical design, and multiple design
representations. The structured design methodology encourages the use of reg-
ular computing structures. The design philosophy is hierarchical in that a chip
is divided into sections that are subdivided to exploit hierarchical DRCs and
simulations. Finally, the blocks are described via multiple design representations
of increasing abstraction including layout, sticks, transistors, logic, text, simula-
tion, and ultimately block as shown in Fig. 10.11-1. Note the general agreement
between these levels of abstraction and those given in Fig. 7.1-1 of Chapter 7.

The fundamental unit in the Bristle Blocks system is the cell. Each cell
can contain geometrical primitives and references to other cells. A cell can
be compared to an HLL (high-level language) subroutine that contains some
primitive operations and contains some references to other subroutines. A cell
has the capability of containing each of the seven representations just presented.
Each cell contains only local information. External connections are specified by
their location and type. The location indicates where along the cell boundary
the connection should occur, and the type specifies the kind of connection—
for example, external output pad. The Bristle Blocks methodology gets its name
from the connection points, which are like bristles along the edges of the cells.
A primary directive of this method is that local information is kept local to the
cell, while global information such as the location and routing to an external pad
is kept separately.

Blocks
[
Simulation
[
Text Increasing
T abstraction
Logic
l :
Increasing
Transistors detail
' '
Sticks
]
Layout FIGURE 10.11-1
Bristle Blocks design abstraction hierarchy.

940 vLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

Information specifying the various representations of cells is kept in cell
libraries and is accessed as needed. Each low-level cell must have been designed
before it can be used in the Bristle Blocks system. Each such cell is defined by
specifying the actual layout of the cell. It is felt that design of low-level cells
does not take much time because of their small size. Also, the design is relatively
error-free, and designer ingenuity is most beneficial at this design level.

The format of chip design using Bristle Blocks consists of physical, logical,
and temporal information. The physical format is composed of a central core
of operational logic and an instruction decoder, with these elements surrounded
by interface pads as in Fig. 10.11-2. The instruction decoder and pads are
automatically generated based on the requirements of the core section. The logical
format consists of core execution units that are interconnected by two buses. In
general, the order of placement of the core units is irrelevant to the operation of
the system. The appropriate control functions are generated from microcode words
that are provided from an external source and applied to the decoder inputs. The
temporal format is a nonoverlapping two-phase clock. One clock phase controls
the transfer of data between execution units via the buses. The other clock phase
controls execution within the core execution units. During the execution clock
phase, the buses are precharged to a high state.

The operation of the Bristle Blocks compiler requires three passes: a core
pass, a control pass, and a pad pass. The first pass constructs the core execution
units from user input and library cell definitions. The control pass adds the
instruction decoder to generate signals required by control connection points in

Pads
| 1| | | I I O
Execution Execution N Execution Execution
Data _ [ynit unit unit || unit Data
Pads 1 — 2 — 3 4 Pads
[| [| L |
Buffers
Decoders
17 17 17 17 1 11
Control Pads

FIGURE 10.11-2
Physical format for Bristle Blocks compiler layout.

DESIGN AUTOMATION AND VERIFICATION 941

the core section. The pad pass adds pads to the perimeter of the chip and routes
connections to the pads. User input to the compiler consists of three types of
information. First, the microcode width and field decomposition of the control
word is specified. Then the data word width and the buses that run through the
core of the chip are defined. Finally, the execution units of the chip’s core are
defined along with any parameter values required to expand the units.

During the core layout phase, the various core cells must be interconnected.
To minimize intercell routing of wires, it is advantageous for the cells to maintain
a common pitch for interface connections. This requires a common width for all
cells, so all cells must be designed to match the width of the widest cell. If a
wider cell is added in the future, then all other cells would have to be redesigned
to match the new constraint. A solution to this dilemma is to provide stretchable
cells. This idea is a major contribution of this methodology. Each core cell is
designed with places to stretch so that the cell width is constrained only by a
minimum dimension. During the first pass, all core cells are scanned to determine
the cell that constrains the minimum width. Then all other cells are stretched to
match this width.

Other layout details are fixed during the first phase as well. For example,
power requirements may indicate widening of the power buses. Each individual
core cell is designed under interface constraints necessary to allow it to mesh with
any other core cell without causing design or electrical rule violations. Finally, a
bus start and stop capability along with precharge circuits are added to each bus.

The control phase generates control signal buffers to drive the control lines
required by the core execution units. Then the appropriate instruction decoder
is added to provide the control signals. The final stage of pad layout collects
all pad connection points, sorts the points into clockwise order, and then routes
connections to the pads.

The Bristle Blocks system generates data path chips based on micropro-
gram control from an external source. Chip area for layout was reported to be
within about 10% of hand layout using the same structured design methodology.
Although attempts were made to generalize the structure implied by the Bristle
Blocks methodology, other architectures are sufficiently different so as to require
separate classes of Bristle Blocks compilers. Several commercial vendors have
used the Bristle Blocks methodology as a basis for their products.

10.11.2 MacPitts Silicon Compiler

A flexible register-transfer-type language called MacPitts was described in 1982 to
address the generation of microprogram-sequenced data path designs.?’ Designs
described in this high-level language are compiled into a technology-independent
intermediate form. The intermediate form is then compiled into a CIF geometrical
layout description, which can be submitted to a silicon foundry for fabrication.
The latter compilation is accomplished by limiting the possible degrees of freedom
in mask layout and restricting the layout to a fixed target architecture. The target
architecture consists of two distinct sections: a data path and a control unit. This
architecture is shown in Fig. 10.11-3. '

942 vLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

Out In /10 In /10 In
A A A

—— - L _ e
| \ Y i | Y 1
! [
| [
: [

. . — |
| [} [[
| 2 2 g |

[} [[}
: 2 qg,. =1 : Control
! & » & | unit
! I
: i
i |

IR, SN, S _t ________ }__]
___________ -_?____.________ e _ _————3 Datapath
Y Y ~] '

| |

' i
Input l; :
port 'l 5| B 5 | 8 5 | S 5 | 8 '

NEE- G| S g8 2 | € || Ouput

o | ~ port

o | V&8 g8 g8 &[] °
pori | |

| |

' I

e s s — J

Gnd Clk Voo

FIGURE 10.11-3
MacPitts data path/control architecture.

The data path consists of registers of width specified by the MacPitts source
program. Operators for testing and modifying the data stored in the registers are
also created. Data is communicated to the external world through parallel buses of
wires called ports. A particular port can be an input port, a tri-state port, or an
1/0 port. The operations performed by the data path are specified by the control
unit. In general, the control unit generates signals that cause the data path to
perform certain operations. The data path returns signals that can be used to alter
the control sequence. In addition, the control unit communicates to the external
world through single-wire signals that may be input, output, tri-state, or I/O lines.

The data path is unconventional because it contains more than just a register
array and an ALU, as is common in many microprocessors. Rather, the data
path may contain many functional units interspersed among the registers. As
many functional units as are needed to compute a set of parallel operations may
be included between global buses. The functional units are interconnected by
dedicated local buses as required by the function they perform. A given unit may
take its input from several possible sources, so a multiplexer is often included
to select the particular input for an operation. The output of the units is either

DESIGN AUTOMATION AND VERIFICATION 943

a full word used by the data path or possibly a test result that is used directly by
the control unit. A unit like an adder can generate both a word (sum) for the data
path and a test signal (overflow) for the control unit. The number and type of
register/operator units provided in the data path differ from system to system as
specified by the MacPitts source language.

The control unit is implemented as a simplified variation of a finite-state
machine. A typical FSM consists of combinatorial logic and a state register; the
combinatorial logic computes the output signals and the next-state information.
If the program flow is sequential, this general form of FSM is less efficient than
simply using a counter to present the next state. The MacPitts compiler generates
a FSM consisting of a counter and a state stack to allow subroutine calls. The
logic portion of the control unit is implemented by a Weinberger array layout
style consisting of interconnected NOR gates. This regular form for logic allows
multilevel realizations of logic within the control unit for increased efficiency
compared with a PLA-style implementation.

The MacPitts silicon compiler is an example of the use of algorithmic-
level design specifications and an automation of the refinement process used to
create a layout description. Standard design practice cycles between a synthesis
step to create a design and an analysis step to demonstrate that the design
meets prescribed objectives. Usually, the analysis step requires location and
removal of flaws that are injected during the design synthesis. If the MacPitts
compilation correctly generates layout corresponding to the high-level description,
the design task is reduced to one of properly specifying that high-level description.
An additional potential advantage of this design method accrues because of
the technology independence of the intermediate-level representation generated
from the high-level MacPitts source language. Because a technology-dependent
synthesizer is used to create the layout from the intermediate-level representation,
only this portion of the synthesis system needs to be replaced to generate the same
design in a different technology.

10.11.3 Commercial Silicon Compilers

Following the early efforts described in this section, several commercial ventures
were started to develop silicon compiler technology. New companies were formed
to capitalize on the potential of this methodology, and existing CAD vendors
developed efforts in the synthesis and silicon compilation areas. For the most
part, silicon compilation has been applied only in isolated cases without great
commercial success. However, a possible exception that may demonstrate the
maturing of silicon compiler technology is described next.

A recently announced product, the Motorola 88000 RISC processor, was
developed largely with silicon compiler technology.?® Skilled IC designers com-
pleted the design of the 164,000-transistor CPU chip in only 20 calendar months,
a productivity increase reported to be a factor of 10 to 20. A second team built
the companion 750,000-transistor cache chip in only 11 months. The individual
leaf cells of these products were laid out manually, but parameterized module
generators speeded the design once the leaf cells were complete.

944 VLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

The design was started in a top-down manner with executable behavioral-
level specifications. Then designers began to implement the logic and layout
design of selected blocks. These low-level blocks were used to simulate the timing
requirements for the chip, with architectural changes made based on the simulation
results. Reusable, parameterized module generators were created for blocks such
as adders, subtracters, multipliers, register files, and decoders. Module generators
were also written for high-speed static RAM, tag memory, and translation buffers
on a memory management chip. Through the use of parameterized modules,
designers were able to make architectural revisions late in the design. Since
the module generators are reusable, further versions of this chip set should be
relatively easy to create. Also, because of the technology-independent description,
the design should be easier to port to another process or technology.

The result reported here is an important step in the application of silicon
compilers to commercial chip development. It may be noted that the apparent
success in this case is a result of automating the assembly process of handcrafted
leaf cells. Silicon compilation has also been extended to analog design for circuits
such as CMOS op amps.? It will be interesting to watch the development of
silicon compilers with broader applicability and with true synthesis capabilities.

10.12 SUMMARY

The use of computers has become essential to the design of VLSI circuits because
of the complexity of such circuits. Computers are used to create, store, verify,
modify, and interchange design information. The application areas of computer-
based tools are broad and extend over the range of design hierarchies shown in Fig.
7.1-1. In fact, one expert in the area has classified computer-based tools according
to their level of hierarchy and date of widespread use. This evolution commenced
with the 1970s, when computers were used to aid in the design and checking of
integrated circuit layout. The early 1980s saw an influx of computer-based tools
for circuit and logic design, including schematic capture tools. Then the late
1980s saw the introduction of computer-based tools that work at the RTL level
of design. These include synthesis tools that automatically create lower levels of
the design hierarchy from previously designed cells. In the early 1990s, tools that
work at the system level will likely become prominent. Synthesis and analysis
tools, both based on high-level block diagrams and behavioral descriptions of a
design, are examples of this capability.

As each new generation of CAD tools becomes prominent, new tool ideas
and new companies are formed. Eventually, the market settles on a few concepts
and firms that represent the most useful innovations with the best evolutionary
ties to existing design tools. At each stage of this development, the world of VLSI
design opens to a broader cadre of designers who require less knowledge of the
underlying technology to make productive use of VLSI. For example, the number
of logic designers is much greater than the number of integrated circuit layout
specialists. In the 1980s, when computer tools based on logic descriptions became
widely available, a far greater number of designers could use VLSI technology.
The number of system designers and programmers who could use VLSI based

DESIGN AUTOMATION AND VERIFICATION 945

on RTL or algorithmic descriptions is, in turn, much larger than the number of
skilled logic designers. Thus, it has been the trend that more and more designers
have access to the capabilities of VLSI technology as time progresses. Computer-
based tools are the primary driving force for this trend.

The material in this chapter represents an introduction to many of the com-
puter-based tools that are used in design automation and design verification. The
section headings indicate coverage of integrated circuit layout, symbolic circuit
representation, computer check plots, design rule checks, circuit extraction, dig-
ital circuit simulation, switch and logic simulation, timing analysis, RTL simula-
tion, hardware design languages, and algorithmic layout generation. Other impor-
tant areas of integrated circuit CAD that are not introduced in this chapter include
process simulation, schematic capture, place and route (discussed briefly in con-
junction with gate arrays in Chapter 9), mixed-mode simulation (combined analog
and digital simulation—a growing number of integrated circuits contain both ana-
log and digital sections), testability and fault analysis, and logic synthesis. Each
of these areas provides its own important contributions to the design of VLSI
circuits.

The intent of this chapter has been to cover many of the CAD tools and
methods that blend with the material presented in the first nine chapters and to
introduce some tools that are just now coming into prominence, such as hardware
design languages and algorithmic layout generation. Two primary sources of
information regarding new CAD tools in any of the areas mentioned above are (1)
the Design Automation Conference (DAC) held each summer and sponsored by
the Association of Computing Machinery (ACM) and the IEEE Computer Society,
and (2) the International Conference on Computer-Aided Design (ICCAD) held
each fall and sponsored by the IEEE.

REFERENCES

1. C. A. Mead and L. S. Conway: Introduction to VLSI Systems, Addison-Wesley, Reading,
Mass., 1980,

2. 1076-1987 VHDL Language Reference Manual, IEEE Catalog No. SH11957, 1987.

3. EDIF, Electronic Design Interchange Format, Version 2 0 0, Electronic Industries Association,
ANSI/EIA-548-1988.

4. J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor: “Magic: A
VLSI Layout System,” Proc. 21st Design Automation Conf., pp. 152-159, June 1984,

5. D. S. Harrison, Peter Moore, R. L. Spickelmier, and A. R. Newton: “Data Mangement and
Graphics Editing in the Berkeley Design Environment,” Int. Conf. on Computer-Aided Design,
pp. 24-27, 1986.

6. P. Six, L. Claesen, J. Rabaey, and H. De Man: “An Intelligent Module Generator Environment,”
Proc. 23rd Design Automation Conf., pp. 730-735, June, 1986.

7. J. D. Williams: “STICKS: A Graphical Compiler for High-Level LSI Design,” AFIPS Conf.
Proc., vol. 47, pp. 289-295, June 1978.

8. R. Zinszner, Hugo De Man, K. Croes: “Technology Independent Symbolic Layout Tools,” Int.
Conf. on Computer Aided Design, pp. 12-13, September 1983.

9. A. Weinberger: “Large Scale Integration of MOS Complex Logic: A Layout Method,” IEEE J.
Solid State Electron., vol. SC-2, no. 4, pp. 182-190, December 1967.

10. S. P. Reiss and J. E. Savage: “SLAP—A Methodology for Silicon Layout,” Proc. Int. Conf.
on Circuits and Computers, ICCC 82, pp. 281-284, September 1982.

946 vLSI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

11.
12.

13.

14.

15.

16. L

Richard F. Lyon: “Simplified Design Rules for VLSI Layouts,” LAMBDA, vol. II, no. 1, 1981.
C. Baker and C. Terman: “Tools for Verifying Integrated Circuit Designs,” LAMBDA, vol. I,
no. 4, pp. 22-30, 1980.
A. E. Harwood: A VLSI Design Rule Check Program Generator, Master’s Thesis, Texas A&M
University, December 1985.
T. Blank: “A Survey of Hardware Accelerators Used on Computer-aided Design,” IEEE Design
& Test, vol. 1, no. 3, pp. 21-39, August 1984.
R. A. Saleh, J. E. Kleckner, and A. R. Newton: “Iterated Timing Analysis in SPLICE1,” IEEE
Int. Conf. on Computer-Aided Design, pp. 139-140, September 1983.

. M. Vidigal, S. R. Nassif, and S. W. Director: “CINNAMON: Coupled Integration and Nodal
Analysis of MOS Networks,” Proc. 23rd Design Automation Conf., pp. 179-185, June 1986.

. C. J. Terman: “User’s Guide to NET, PRESIM, and RNL/NL,” MIT Laboratory for Computer

Science, pp. 1-48, September 1982.

. Gregory F. Pfister: “The Yorktown Simulation Engine: Introduction,” Proc. I9th Design

Automation Conf., pp. 51-73, 1982.

19. N. P. Jouppi: “TV: An nMOS Timing Analyzer,” Proc. Third Caltech Conf. on VLSI, pp.
71-85, 1983.

20. J. K. Ousterhout: “Crystal: A Timing Analyzer for nMOS VLSI Circuits,” Proc. Third Caltech
Conf. on VLSI, pp. 57-69, 1983.

21. J. Hennessy, N. Jouppi, S. Przybylski, C. Rowen, and T. Gross: “Design of a High Performance
VLSI Processor,” Proc. Third Caltech Conf. on VLSI, pp. 33-54, 1983.

22. M. G. H. Katevenis: Reduced Instruction Set Computer Architectures for VLSI, MIT Press,
Cambridge, Mass., 1984.

23. Mario R. Barbacci: “Instruction Set Processor Specifications (ISPS): The Notation and Its
Applications,” IEEE Trans. Comput., vol. ¢-30, no. 1, pp. 2540, January 1981.

24. James R. Armstrong: Chip-Level Modeling with VHDL, Prentice-Hall, Englewood Cliffs, NJ,
1989.

25. D. D. Gajski: “Silicon Compilers and Expert Systems for VLSL,” Proc. 21st Design Automation
Conf., pp. 86-87, June 1984.

26. D. Johannsen: “Bristle Blocks: A Silicon Compiler,” Proc. Caltech Conf. on VLSI, pp. 303—
313, January 1979.

27. J. M. Siskind, J. R. Southard, and K. W. Crouch: “Generating Custom High Performance VLSI
Designs from Succinct Algorithmic Descriptions,” Proc. MIT Conference on Advanced Research
in VLSI, pp. 28-39, January 1982.

28. R. Goering: “Silicon Compilation Boosts Productivity in 88000 Design,” Computer Design, p.
28, May 1, 1988.

29. L. R. Carley and R. A. Rutenbar, “How to Automate Analog IC Designs,” IEEE Spectrum, pp.
26-30, August 1988.

PROBLEMS

Section 10.1

10.1. Using engineering paper or the equivalent, plot the layout described by the fol-

lowing statements, based on the definitions of Table 10.1-1 and Table 10.1-2.

L1 L4
B01344 B00154
B01523 B018154
B01382 LS
B80415 B9122
L3 B41022
B05142 B91222

B3948 B11922

DESIGN AUTOMATION AND VERIFICATION 947

10.2. By hand, digitize the Manhattan layout shown in Fig. 10.1-4a. Assume that the
lines are metal that ends at the figure edges and the width and spacing are 2 units
each.

10.3. The layout for the block letter L is described by the following macro, based on
the definitions of Table 10.1-1 and Table 10.1-2.

M4

L1
B0041
BO115S
E
C410102

Show the layout resulting from the C statement above (a) if the rotation precedes
the translation and (b) if the order of translation and rotation is reversed. Is the first
order sufficient to create any desired layout?

Section 10.2

10.4. Show how to modify the description of Fig. 10.1-6 so that the parameter VERT
can be used to modify the vertical dimension and the parameter HORZ can be
used to modify the horizontal dimension.

10.5. Create a Sticks diagram for the circuit of Fig. 10.2-5.

10.6. Show the circuit diagram of a Weinberger array for an exclusive-OR gate with
inputs @ and b and output c.

10.7. Show a digraph for the logic specified by the following equations.

X =AB +CD
Y =BC+ X
Z =AB +AY + X

Section 10.3

10.8. Assume that a good layout density metric is 200 A2 per transistor. How many
transistors can reasonably be displayed on a 24-line by 80-character A/N CRT
display?

10.9. If a resolution of 5 dots per A is sufficient to display the details of a layout and
the layout requires 200 A2 per transistor, how many transistors can reasonably be
displayed on a laser printer with a resolution of 300 dots per inch and a page size
of 8 by 10 inches?

10.10. A Macintosh personal computer display has a resolution of 512 dots by 342 dots.
Using a metric of 5 dots per A for a readable display and 250 A2 per transistor,
how many transistors can be displayed on the Macintosh screen?

Section 10.4

10.11. Identify all the design rule errors listed in Fig. 10.4-7 on a copy of the check plot
of Fig. 10.4-6.

10.12. If a window template formed from a “plus” symbol is passed in raster scan fashion
over a design to check for spacing and width violations, some errors are missed.
Show an example of such an error.

948 vLsI DESIGN TECHNIQUES FOR ANALOG AND DIGITAL CIRCUITS

10.13.

Section

10.14.

10.15.

10.16.

Section
10.17.

Section

10.18.

10.19.

10.20.

Section

10.21.

Simple design rules are on the order of 1 to 3 A for spacings and widths. What
are the horizontal and vertical A dimensions required for a “plus” symbol used in
a raster scan DRC to check for Manhattan design rule violations?

10.5

Based on the capacitance values in Table 10.5-1, calculate the capacitance for
node 2* in Fig. 10.5-4 if layer 3 is polysilicon, layer 5 is a contact, layer 4 is
aluminum, and the extracted dimensions are in microns.

Using the raster scan algorithm described in this chapter, how many different node
numbers will be assigned in scanning the block letter H represented as a 5 X 7 dot
matrix? At what point in the scan (left to right and top to bottom) will the list of
nodes that must be merged be complete? (Give the x,y coordinates of the point.)
Some circuit extraction algorithms estimate connection resistance from the
extracted area and perimeter values assuming rectangular shapes. Derive an algo-
rithm based on area A and perimeter P to estimate resistance R in terms of resis-
tance per square (sheet resistance). Estimate the resistance for an area of 10 square
units and a perimeter of 22 units, assuming the terminals are on opposite sides.
Is there more than one possible answer?

10.6

If the time to simulate a circuit goes up as the 1.75 power of the number of nodes,
and a 100-node circuit requires 30 seconds of computer time, approximately how
much time would be required to simulate a circuit with 100,000 nodes?

10.7

Provide a logic diagram for the circuit defined by the following net list description.
The syntax is (function output input-1...input-n).

(invert sb s)
(nor x a s)
(nor y b sb)
(mor fxy)

Based on the switch-level results for the byte-wide adder presented in Sec. 10.7,
estimate the maximum clock frequency for the circuit, and explain what limits this
clock frequency.

Provide logic-level and transistor-level net list descriptions for the quasi-static
memory cells of Fig. 10.2-4 g and b. The function (pullup a) can be used to
describe a depletion pullup transistor attached to node a.

10.8

For a direct realization of the following logic equations, identify all signal paths.
Label the paths by using the logical names for signals. The path B,BC,X,Y is an
example of one path. Assuming unit delays for the logic gates, find the longest
and shortest paths.

X = AD + BC
= AC+ X + BD
Z = BY + ACX

10.22.

10.23.

10.24.
10.25.
10.26.
Section
10.27.
10.28.

10.29.

10.30.

Section

10.31.

10.32.
10.33.

10.34.

DESIGN AUTOMATION AND VERIFICATION 949

Assume a string of » ripple-carry full-adders where the carry out cout(n-1) of full-
adder (n-1) is sent to the carry in cin(n) of full adder n. If a timing analyzer is
used on this string of full-adders, what would you expect to find for the longest
path?

For a circuit with four input ports, three output ports, and one bidirectional port,
how many signal paths are possible? How does the number of paths increase as
the number of ports increases?

For the circuit of Fig. 10.2-5, (if possible) set the signal directions of each transistor
using the rules developed in this chapter.

For the circuit of Fig. 10.7-4, set the signal directions of all possible transistors
using the rules developed in this chapter.

If the a input of a two-input exclusive-OR gate is rising, what can you tell about
the output signal in terms of the b input?

10.9

Describe a 4 X 4-bit shift-and-rotate multiplication using the simple RTL defined
in the chapter. You may want to add shift and logical operators.

Based on the description in Fig. 10.9-1, identify and total the unique bits of
processor state defined for the 68000 processor.

Using the definition of the effective address operation of Fig. 10.9-2, indicate
the operations performed to compute the effective address for a word-length
postincrement instruction. How does the word-length predecrement instruction
differ?

Using the partial LISP definition of a RISC processor in Fig. 10.9-4 as an example,
write a LISP function for the NOT operation.

10.10

Based on the EDIF description given in Fig. 10.10-2 for the full-adder of Fig.
10.10-1, give an EDIF description of the NAND-NAND full-adder circuit of Fig.
10.7-2.

Using the EDIF physical layout description of Fig. 10.10-4 as an example, convert
the static memory cell definition of Fig. 10.1-6a to an equivalent EDIF description.
Give a VHDL interface description and structural body description for the NAND-
NAND full-adder circuit of Fig. 10.7-2.

Provide a VHDL interface description and RTL body description for the NAND-
NAND full-adder circuit of Fig. 10.7-2.

