
EE 505
Lecture 12

DAC Design

• DAC Architectures

• Sring DACs



Random Offset Voltages

Typical offset voltages:

MOS - 5mV to 50MV

BJT - 0.5mV to 5mV

These can be scaled with extreme device dimensions

Often more practical to include offset-compensation circuitry 

Review from last lecture



Summary of Offset Voltage Issues
• Random offset voltage is generally dominant and due to 

mismatch in device and model parameters

• MOS Devices have large VOS if area is small

• σ decreases approximately with 

• Multiple fingers for MOS devices offer benefits for 
common centroid layouts but too many fingers will 
ultimately degrade offset because perimeter/area ration 
will increase (AW and AL will become of concern)

• Offset voltage of dynamic comparators is often large and 
analysis not straightforward

• Offset compensation often used when low offsets 
important
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DAC Architectures
Types (Nyquist Rate)

• Voltage Scaling
– Resistor String DACs (string DACs)

– Interpolating

• Current Steering
– Binary Weighted Resistors

– R-2R Ladders

– Current Source Steering
• Thermometer Coded

• Binary Weighted

• Segmented

• Charge Redistribution
– Switched Capacitor

• Serial
– Algorithmic

– Cyclic or Re-circulating

– Pipelined 

• Integrating

• Resistor Switching

• MDACs (multiplying DACs)



Observations

• Yield Loss is the major penalty for not appropriately 
managing parasitics and matching and this loss can be 
ruthless

• The ultimate performance limit of essentially all DACs is 
the yield loss associated with parasitics and matching

• Many designers do not have or use good statistical 
models that accurately predict data converter 
performance

• If you work of a company that does not have good 
statistical device models
– Convince model groups of the importance of developing these 

models

– (or) develop appropriate test structures to characterize your 
process

• Existing nonlinear device models may not sufficiently 
accurately predict device nonlinearities for high-end 
data converter applications



DAC Architectures
Structures

• Hybrid or Segmented

• Mode of Operation
– Current Mode

– Voltage Mode

– Charge Mode

• Self-Calibrating
– Analog Calibration

• Foreground

• Background

– Digital Calibration
• Foreground

• Background

– Dynamic Element Matching

• Laser or Link Trimmed

• Thermometer Coded or Binary

• Radix 2 or non-radix 2

• Inherently Monotone



DAC Architectures

• Type of Classification may not be unique nor 
mutually exclusive

• Structure is not mutually exclusive

• All approaches listed are used (and probably 
some others as well)

• Some are much more popular than others
– Popular Architectures

• Resistor String (interpolating)

• Current Source Steering (with segmentation)

• Charge Redistribution

• Many new architectures are possible and 
some may be much better than the best 
currently available

• All have perfect performance if parasitic and 
matching performance are ignored !

• Major challenge is in determining 
appropriate architecture and managing the 
parasitics



Nonideal Effects of Concern

• Matching

• Parasitic Capacitances 

(including  Charge injection)

• Loading

• Nonlinearities

• Interconnect resistors

• Noise

• Speed

• Jitter

• Temperature Effects

• Aging

• Package stress



Observations

• Experienced Designers/Companies often produce superior data 
converter products

• Essentially all companies have access to the same literature, 
regularly reverse engineer successful competitors products and key 
benefits in successful competitors products are generally not locked 
up in patents

• High-end designs( speed and resolution) may get attention in the 
peer community but practical moderate performance converters 
usually make the cash flow

• Area (from a silicon cost viewpoint) is usually not the driving factor 
in high-end designs where attractive price/mfg cost ratios are 
common

• Considerable ongoing demand for data converter designers –
particularly in ASICs where DAC optimized for specific application



DAC Architectures
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DAC Architectures
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DAC Architectures

Current Steering
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DAC Architectures 

Inherently Insensitive to Nonlinearities in Switches and Resistors

• Termed “top plate switching”

• Thermometer coded

• Based upon unary cell

• Speed limited by Op Amp and clock transients
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DAC Architectures 

Inherently Insensitive to Nonlinearities in Switches and Resistors

Smaller ON resistance and less phase-shift from clock edges
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• Thermometer coded

• Based upon unary cell

• Speed limited by Op Amp
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Binary-Weighted Resistor Arrays

• Unary bit cells usually bundled to make resistors

• Same number of unary cells needed as for thermometer coded structure

• Need for decoder eliminated !

• DNL may be a major problem

• INL performance about same as thermometer coded if same unit resistors used

• Sizing and layout of switches is critical

Observe thermometer coding and binary weighted both offer some major 

advantages and some major limitations

DAC Architectures 
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DAC Architectures

R-2R (one variant)
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R-2R  Resistor Arrays
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DAC Architectures 

Current Steering
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DAC Architectures
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DAC Architectures
Charge Redistribution
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DAC Architectures
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MDAC

• Some define MDACs to be DAC structures that have current outputs

• Many DAC structures can perform well as a MDAC (possibly one quadrant)

• Performance of some DAC structures limited if VREF is varied



DAC Architectures
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DAC Architectures

n XOUT

DAC
INX

Single Slope

VOUT

IREF

Timer/Counter
nIND

VDD
φ1

φ2

C

Sample/Hold

CLK Divide by 2
n

Single-Slope DAC

RST



DAC Architectures
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R-String DAC
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Challenges:

• Managing INL

• Large number of devices for n large (2n

or 2n+1 lines)

• Decoder

• Routing thermometer/bubble clocks

• Transients during Boolean transitions

• Switch implementation

• Thevenin impedance facing VOUT highly 

code dependent

 Simple structure

 Inherently monotone

 Very low DNL

 Potential for being very fast

 Low Power Dissipation

 Widely Used Approach (with appropriate considerations)
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R-String DAC
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Basic  Switch

φ 

Switch Implementation

φ 

φ φ 

Other switch structures (such as bootstrapped switch) used but not for basic string DACs

single n-channel 

device

single p-channel 

device

transmission 

gate switch

• Large number required for large resolution

• Simple structure often used

• Use devices where cross-over occurs

• Good for both high and low term voltages

• Extra clock signal required

• Try to avoid this complexity

• Good when switch terminals near gnd

• Will not turn on when terminals near VDD

• Good when switch terminals near VDD

• Will not turn on when terminals near gnd



Switch Assignment
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Switch Impedances
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Switch Impedances
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Switch Parasitics
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• CBD and CBS can be significant and cause rise-fall times to be position dependent

• CGDOL can cause “kickback” or feed-forward

• CGS can slow turn-on and turn-off time of switch



R-String DAC
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Additional Challenges:

• Capacitance on VOUT can be large 
• larger for p-channel devices

• even larger for TG switches 

• Switch impedances position dependent

• Kickback from switches to R-string

• Capacitance on each node (though small) of R-

string from switch

• Thevenin impedance facing VOUT highly 

code dependent



R-String DAC
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Additional Challenges

• Delay in Decoder may be significant

• Delay in Decoder may be previous code 

and current code dependent

• Intermediate undesired Boolean outputs 

may occur
o These may cause undesired opening and closing 

of  switches

o Could momentarily short out taps on R-string

o Could introduce transients on all nodes of R-string 

that are code and previous code dependent



R-String DAC
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R-String DAC

Challenges

• Still many signals to route

• Large capacitance on VOUT (over 2n+1

diff caps)

• Multiple previous code dependencies 

cause output transition time to be quite 

unpredictable

• Considerable transients introduced on 

R-string

b3 b3 b2 b2 b1 b1
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XIN

n

Decoder
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Tree Decoder

• Uses matrix decoder as analog 

MUX

• Implements binary to decimal 

conversion with pass transistor 

analog logic

• Very structured layout

• Interconnection points are switches 
(combination of n-channel and p-channel)



R-String DAC 

b3 b3 b2 b2 b1 b1

R-String

VREF

XIN

n

Decoder

VOUT

Tree Decoder

Parasitic Capacitances in Tree Decoder



R-String DAC 

Previous-Code Dependent Settling
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< 0 1 0 >

Example:

V3

Assume all C’s initially with 0V

Red denotes V3, black denotes 0V, Purple some other voltage



R-String DAC 

Previous-Code Dependent Settling
Assume all C’s initially with 0V

Red denotes V3, green denotes V6, black denotes 0V, Purple some other voltage
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< 1 0 1 >

Example:

V3

V6

Transition from <010>  to <101>



R-String DAC 

Previous-Code Dependent Settling
Assume all C’s initially with 0V

Red denotes V3, green denotes V6, black denotes 0V, Purple some other voltage

Transition from <010>  to <101>
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< 1 0 1 >

Example:

V3

V6

White boxes show capacitors dependent 

upon previous code <010>



End of Lecture 12


