
ECM:Effective Capacity Maximizer for High-Performance Compressed Caching

Seungcheol Baek†, Hyung Gyu Lee‡, Chrysostomos Nicopoulos§, Junghee Lee† and Jongman Kim†

†Georgia Institute of Technology, USA, {bsc11235, junghee.lee, jkim}@gatech.edu
‡Daegu University, South Korea, hglee@daegu.ac.kr

§University of Cyprus, nicopoulos@ucy.ac.cy

Abstract

Compressed Last-Level Cache (LLC) architectures have
been proposed to enhance system performance by efficiently
increasing the effective capacity of the cache, without phys-
ically increasing the cache size. In a compressed cache, the
cacheline size varies depending on the achieved compres-
sion ratio. We observe that this size information gives a use-
ful hint when selecting a victim, which can lead to increased
cache performance. However, no replacement policy tai-
lored to compressed LLCs has been investigated so far. This
paper introduces the notion of size-aware compressed cache
management as a way to maximize the performance of com-
pressed caches. Toward this end, the Effective Capacity
Maximizer (ECM) scheme is introduced, which targets com-
pressed LLCs. The proposed mechanism revolves around
three fundamental principles: Size-Aware Insertion (SAI),
a Dynamically Adjustable Threshold Scheme (DATS), and
Size-Aware Replacement (SAR). By adjusting the eviction
criteria, based on the compressed data size, one may in-
crease the effective cache capacity and minimize the miss
penalty. Extensive simulations with memory traces from
real applications running on a full-system simulator demon-
strate significant improvements compared to compressed
cache schemes employing the conventional Least-Recently
Used (LRU) and Dynamic Re-Reference Interval Predic-
tion (DRRIP) [11] replacement policies. Specifically, ECM
shows an average effective capacity increase of 15% over
LRU and 18.8% over DRRIP, an average cache miss reduc-
tion of 9.4% over LRU and 3.9% over DRRIP, and an av-
erage system performance improvement of 6.2% over LRU
and 3.3% over DRRIP.

1. Introduction

The seemingly irreversible shift toward multi-core mi-
croprocessor architectures has given rise to the Chip Multi-
Processor (CMP) archetype. This new paradigm has mag-
nified the “memory wall” phenomenon, which is the result
of the increasing performance gap between logic and off-
chip memory devices. As a result, the need for a high-
performance Last-Level Cache (LLC) has become impera-
tive, since a well-designed LLC is one of the most effective
ways to bridge the logic-memory chasm. With burgeoning
transistor integration densities [1], architects have partly re-
sponded to this challenge by dedicating increasing portions
of the CPU’s real estate to the LLC. Such large LLCs are
becoming common in the workstation and server segments.
Even though modern architectures provide large LLCs to
improve system performance, the size is not large enough
to completely hide slow off-chipmemory latencies, because
the working-set size of most applications tends to increase
over time, as well. Thus, effectively utilizing a given size

of cache has been one of the most important research chal-
lenges so far in the field of microprocessor design.

The compression of LLCs is one of the most attractive
solutions to cope with increasingly large working sets, be-
cause storing compressed data in a cache increases the ef-
fective (logical) cache capacity, without physically increas-
ing the cache size. Accordingly, this increased effective
cache capacity can hold a larger working set and thereby
improve the system performance significantly. This bene-
fit has led researchers to develop various compressed LLC
architectures by designing efficient compression algorithms
[4, 6, 7, 13, 18, 21], or by architecting compression-aware
cache structures to ease the allocation and management
of variable-sized compressed cachelines [2, 3, 6, 8, 9, 12,
20, 21]. Most of the prior efforts, however, focused on
minimizing the inherent deficiencies of compression-based
schemes, such as compression/decompression latency, ad-
dress remapping, and compaction overhead. While these
studies have led to significant improvements and have en-
abled the efficient use of compressed LLCs, no prior work
has developed a cache management policy (mainly cache-
line replacement policy) tailored to compressed caches. In
other words, existing cache management policies for com-
pressed caches employ the traditional cacheline replace-
ment policies, whereby only locality information is consid-
ered. However, our experiments in this work will clearly
show that the conventional cache replacement policies can-
not fully utilize the benefits of the compressed cache, be-
cause they fail to account for the cachelines’ variable size.

Unlike a conventional cache architecture, the physical
size of a stored cacheline after compression varies, based on
the achieved compression ratio. This means that the evic-
tion overhead (miss penalty) in a compressed LLC will also
vary, based on the size of the evicted and evictee cache-
lines. This work will demonstrate that if the size informa-
tion of the compressed cacheline is considered in the cache
management process, the increase in the effective capac-
ity of the compressed LLC will be maximized. A detailed
motivational example will be presented in Section 3. Con-
sequently, in addition to locality information, the cache-
line size information should also be one of the prime de-
terminants in identifying the appropriate victim cacheline
in compressed caches. When properly combined, these two
properties would maximize the effective cache capacity and
minimize the eviction overhead.

Motivated by this realization, this paper proposes a size-
aware cache management policy, called Effective Capac-
ity Maximizer (ECM), which is targeted at compressed
LLC architectures. ECM revolves around three fundamen-
tal and closely intertwined policies: Size-Aware Insertion
(SAI), a Dynamically Adjustable Threshold Scheme (DATS),
and Size-Aware Replacement (SAR). If the size of a com-
pressed cacheline is larger than a pre-defined threshold, the

978-1-4673-5587-2/13/$31.00 ©2013 IEEE

SAI policy (i.e., insertion) gives said incoming cacheline
higher priority to be evicted. DATS changes the threshold
in real-time usingworkload characteristics. The SAR policy
(i.e., eviction) selects the largest cacheline within a victim
pool, in order to minimize the eviction overhead and max-
imize the effective capacity. ECM is very lightweight in
terms of hardware implementation, and all mechanisms in-
volved mostly re-use existing components within the com-
pressed LLC infrastructure.

Extensive simulations with memory traces extracted
from real multi-threaded workloads running on a full-
system simulation framework validate the efficacy and effi-
ciency of the proposed ECM mechanism. Specifically, sim-
ulations with a 2 MB compressed LLC configured as phys-
ically 4-way set associative, and logically up to 16-way, in-
dicate that ECM increases the effective cache capacity in
a compressed LLC by an average of 15.0% and 18.8%, as
compared to the Least Recently Used (LRU) and Dynamic
Re-Reference Interval (DRRIP) [11] policies, respectively.
This effective capacity improvement increases cache per-
formance by reducing the number of misses by an average
of 9.4% over LRU and 3.9% over DRRIP. As a result, the
ECM technique improves overall system performance (IPC)
by 6.2% and 3.3%, as compared to a compressed LLC using
the LRU and DRRIP replacement policies, respectively.

The rest of the paper is organized as follows: Section 2
provides background information and related work in LLC
compression techniques and cache replacement policies,
and decoupled variable-segment cache architectures. Sec-
tion 3 presents a motivational example for the importance of
cacheline size information in the cache management policy
of compressed caches. Section 4 delves into the description,
implementation, and analysis of the proposed ECM. Section
5 describes the employed evaluation framework, while Sec-
tion 6 presents the various experiments and accompanying
analysis. Finally, Section 7 concludes the paper.

2. Background & Related Work

2.1. Compression Techniques and Cache
Replacement Policies in LLCs

Compression is an efficient way to increase the logical
capacity of the memory system without increasing its phys-
ical capacity. Such compression is known to be very useful
for the LLC memory architecture, where the capacity is one
of the most sensitive factors. There have been many stud-
ies on the employment of compression techniques within
the LLC micro-architecture. The focus so far has been
on designing the compression-aware cache structure, rather
than the compression algorithm itself. Existing approaches
can be classified into two broad categories: (1) variable-
segment caches, and (2) fixed-segment caches.

Variable-segment caches aim to maximize the effec-
tive capacity of the cache, even though they require non-
negligible space for remapping and compaction, which is
pure overhead [3, 20]. Since the number of occupied seg-
ments by the compressed data is variable, based on the com-
pression ratio, the latter directly impacts the effective capac-
ity. On the other hand, fixed-segment caches aim to exploit
compression without any severe cacheline compaction or
manipulation overhead, by fixing the number of segments
occupied by the compressed cacheline (usually up to 2 or
4) [2, 6, 12, 21]. Due to the fixed segment size, if the
compressed data size is very small, some segments might
have empty space, which is not available to other cache-
lines. Our experiments indicate that this situation happens

frequently under most compression algorithms – irrespec-
tive of their complexity. Most popular compression algo-
rithms exploit zero-value compression [4, 18, 21], which
achieves high compressibility, but still produces a lot of un-
usable empty space within the cache. This implies that com-
pression algorithms do not fully utilize the physical space
of the cache, even when the compression scheme is highly
efficient. Since our focus is on maximizing the effective
capacity, as well as reducing the cache miss penalty, we
will mainly exploit the variable-segment cache architecture
for the rest of this paper. Note, however, that the proposed
ECM will also work in a fixed-segment cache architecture.

Besides the cache size, the cacheline replacement pol-
icy (when cache misses occur) is also an important factor
that affects system performance. There has been extensive
research in developing efficient cache management poli-
cies [10, 11, 14, 17, 19]. Generally, it is accepted that the
LRU replacement policy (and its approximations) behaves
relatively well with most applications and access patterns
(e.g., recency-friendly and sequential streaming). How-
ever, LRU incurs performance degradation under thrash-
ing and mixed-access patterns. To address these problems,
one recent study proposed a Dynamic Re-Reference Inter-
val Prediction (DRRIP) replacement mechanism [11]. DR-
RIP comprises two cache management policies: Bimodal
RRIP (BRRIP) and Static RRIP (SRRIP). The BRRIP pol-
icy specifically addresses the performance of thrashing ac-
cess patterns, while the SRRIP policy aims to improve the
performance of mixed-access patterns. Since the Set Duel-
ingmethod [17] is used to select the best performing among
the two policies, the performance of DRRIP is shaped by
how well it performs under the two aforementioned cache
management policies.

Even though these advanced cache management algo-
rithms enhance the cache performance beyond the conven-
tional LRU policy – with low implementation cost – they
still focus on exploiting locality (re-reference rate) infor-
mation only. However, in compressed cache architectures,
where the size of each cacheline is variable and a function
of the compression ratio, the size information should also
be considered, because it directly determines the effective
cache size and the miss penalty. Nevertheless, no previous
work attempted to develop a cache replacement policy tar-
geting compressed caches. To the best of our knowledge,
this is the first work to propose a compressed cache archi-
tecture augmented with a customized cache management
policy that is aware of both the variable cacheline size in-
formation and the locality information.

2.2. Decoupled Variable-Segment Cache
Architectures

Figure 1 illustrates the structure of a single set of a de-
coupled variable-segment cache architecture, assuming a
64B cacheline size [3]. While each cache set is physi-
cally 4-way set associative, logical 16-way set associativity

Figure 1. One set of a decoupled variable-segment

cache.

Figure 2. The behavior of the LRU replacement policy and a size-aware replacement policy in a compressed decou-

pled variable-segment cache design.

can be achieved by using more tags alongside a variable-
segmented data area. More specifically, each set of the
cache is broken into 64 segments and the size of each seg-
ment is only 4 bytes (single-word). The effective capacity
for a single set is given by

physically 4-way ≤ effective capacity ≤ logically 16-way

where physically 4-way comes from the Data Area, and
logically 16-way is achieved through the Tag Area. For
instance, if there are only uncompressed cachelines, the
cache would operate like a typical 4-way set associative
cache. Conversely, if there are only highly compressed
cachelines, the cache would operate with 16-way set as-
sociativity. Therefore, each set can potentially increase its
effective capacity by up to four times (when storing 16 com-
pressed cachelines). Of course, one could have more than
16 cachelines in a set with larger tag space. The scalability
of the mechanism proposed in this work with the number of
logical ways will be explored in Section 6.5. Data segments
are stored contiguously in Address Tag order. The offset for
the first data segment of cacheline k (in a particular set) is

segment offset(k) =

k−1∑

i=0

actual size(i)

A cacheline’s actual size is determined by the Cacheline
size tag in the Tag Area (Figure 1).

3. Motivation for a Size-Aware Cache Replace-
ment Policy

In conventional cache architectures, the replacement
policies are optimized to minimize the off-chip memory ac-
cesses, based on data access patterns. However, as previ-
ously mentioned, in a compressed cache, the size informa-
tion of the cacheline is equally important and should be ex-
ploited in the optimization of both the cache structure itself

and the cache replacement policy. Without this combined
information, many of the benefits of compression could be
lost. In this section, we demonstrate, through an exam-
ple, why the size information should be considered in com-
pressed caches.

Figure 2 shows the behavior of a compressed cache
under the LRU replacement policy and a size-aware re-
placement policy. In this example, the cache is physically
configured as a 2-way set associative cache, but logically
configured as an 8-way set associative decoupled variable-
segment cache. When U2 – a new cacheline – is requested,
a cache miss occurs. Four cachelines (C1, C3, C4, and U1)
should be evicted under the LRU replacement policy. These
evictions will lead to an almost four-fold increase in the
miss penalty, as compared to the penalty of a conventional
cache without compression. After the evictions of said 4
cachelines, C2 will also be evicted when the second U1 re-
quest arrives. In addition, a compaction process to allo-
cate U1 should be performed in the data area, which results
in non-negligible overhead in decoupled variable-segment
caches. More importantly, at this moment, the Data Area
contains only 2 cachelines, which is the minimum of its po-
tential effective capacity. Even worse, the cache will ex-
perience 4 consecutive misses in the next 4 requests (C1,
C3, C4, and C2). Hence, in this conventional configuration,
a total of 6 cache misses and 6 cacheline evictions are ob-
served, and the average number of cachelines that the cache
set holds is 3.29.

On the other hand, we can vastly improve this situation
by considering the size information of the evicted cacheline.
As opposed to the previous example, we evict only U1 –
which is the largest-size cacheline in the Data Area – when
U2 first arrives. C1, C3, C4, and C2 can stay in the cache.
Even though U2 will again be replaced by U1 at the next
request for U1, the following four requests (C1, C3, C4,
and C2) after U1 will hit in the cache. Thus, in total, only

-30

-20

-10

 0

 10

 20

8
B

1
2

B
1

6
B

2
0

B
2

4
B

2
8

B
3

2
B

3
6

B
4

0
B

4
4

B
4

8
B

5
2

B
5

6
B

6
0

B
6

4
B

8
B

1
2

B
1

6
B

2
0

B
2

4
B

2
8

B
3

2
B

3
6

B
4

0
B

4
4

B
4

8
B

5
2

B
5

6
B

6
0

B
6

4
B

8
B

1
2

B
1

6
B

2
0

B
2

4
B

2
8

B
3

2
B

3
6

B
4

0
B

4
4

B
4

8
B

5
2

B
5

6
B

6
0

B
6

4
B

8
B

1
2

B
1

6
B

2
0

B
2

4
B

2
8

B
3

2
B

3
6

B
4

0
B

4
4

B
4

8
B

5
2

B
5

6
B

6
0

B
6

4
B

8
B

1
2

B
1

6
B

2
0

B
2

4
B

2
8

B
3

2
B

3
6

B
4

0
B

4
4

B
4

8
B

5
2

B
5

6
B

6
0

B
6

4
B

8
B

1
2

B
1

6
B

2
0

B
2

4
B

2
8

B
3

2
B

3
6

B
4

0
B

4
4

B
4

8
B

5
2

B
5

6
B

6
0

B
6

4
B

8
B

1
2

B
1

6
B

2
0

B
2

4
B

2
8

B
3

2
B

3
6

B
4

0
B

4
4

B
4

8
B

5
2

B
5

6
B

6
0

B
6

4
B

8
B

1
2

B
1

6
B

2
0

B
2

4
B

2
8

B
3

2
B

3
6

B
4

0
B

4
4

B
4

8
B

5
2

B
5

6
B

6
0

B
6

4
B

8
B

1
2

B
1

6
B

2
0

B
2

4
B

2
8

B
3

2
B

3
6

B
4

0
B

4
4

B
4

8
B

5
2

B
5

6
B

6
0

B
6

4
B

H
it

-R
at

e
%

 C
h

an
g

e

x264raytracefacesimcannealswaptionsfreqmineferretstreamclusterbodytrack

Figure 3. Hit-rate percentage change for each cacheline size over several PARSEC benchmarks [5].

2 cache misses and 2 cacheline evictions are observed, and
the average number of cachelines in a cache set increases to
5.0 in this configuration.

This example emphatically demonstrates that it is imper-
ative to consider the variable cacheline size in compressed
caches, in order to maximize the performance enhancement
afforded by the compression scheme.

4. The Effective Capacity Maximizer (ECM)
Cache Management Scheme

As described in the previous section, the exploitation of
cacheline size information when selecting a victim in com-
pressed LLCs is a necessary condition to maximize the ben-
efits of compression; namely, enhancing the effective ca-
pacity – which implies a reduction in the number of misses
– and reducing the miss penalty. The simplest way of us-
ing the size information is to always evict the biggest-size
cacheline first. However, our experiments have shown that
this simple eviction policy may yield many negative side
effects, because it does not consider the locality informa-
tion of the data at all. For example, the biggest-size cache-
line, which happens to exhibit high temporal locality, will
be evicted before it is reused in the cache. Conversely, a
highly compressed smallest-size cacheline having low tem-
poral locality will stay almost indefinitely in the cache oc-
cupying valuable space. Therefore, using the cacheline size
in isolation when selecting a victim will not be helpful in
maximizing the cache performance. This clearly indicates
that the size information should be considered togetherwith
locality.

Based on this observation, we propose a size- and
locality- aware cache management scheme, called Effec-
tive Capacity Maximizer (ECM), to further enhance the per-
formance of compressed LLCs. ECM’s operation revolves
around three policies: Size-Aware Insertion (SAI), a Dy-
namically Adjustable Threshold Scheme (DATS), and Size-
Aware Replacement (SAR). These basic policies can be
used in conjunction with most previous replacement poli-
cies. However, in this paper, we are partially exploiting the
basic framework from RRIP [11], because it supports rel-
atively high performance with low implementation cost, as
compared to other conventional implementations. In addi-
tion, the RRIP framework can easily provide most of the
information required by ECM.

4.1. The Size-Aware Insertion (SAI) Policy

4.1.1. The Potential Conflicts Between Locality and Size
Information: The main challenge in this work is the effec-
tive simultaneous consideration of the locality information
and the size information, in order to maximize the bene-
fits afforded by compression. Even though the locality and
size information of a certain cacheline can vary over the ex-
ecution timeline, one can simply classify a cacheline at a
given time, t, into four possible status types: (1) high lo-
cality and small size, (2) high locality and big size (almost
uncompressed), (3) low locality and small size, and (4) low
locality and big size. For types (1) and (4), the decision is
clear: keep (1) as long as possible, while evict (4) as soon
as possible. If the biggest portion of the application favors
these two types, the size-aware policy can easily be applied.
On the other hand, for types (2) and (3), where the size and
locality information are conflicting, a more complicated de-
cision scheme is needed. Otherwise, the cache will experi-
ence performance degradation, even if the effective capac-
ity increases through the consideration of size information.
The solution for type (3) can still be relatively simple. We
can evict this line type without any severe consequences,
because the possibility of reusing it is low. However, the
solution for type (2) is not easy, because the possibility of
reusing such lines is high, but they occupy many segments
(large space) in the cache. In order to consider this prob-
lematic case, a threshold-based classification process will
be performed.

Before proceeding with the description of the main idea,
we first analyze the relationship between the locality and
size information and identify which types of cachelines are
more dominant over others in real application workloads.
To extract this information, several applications selected
from the PARSEC benchmark suite [5] are executed under
the assumption of a compressed cache using a 3-bit DR-

RIP1. The details of our evaluation framework are presented
in Section 5. Figure 3 shows the hit ratio variation, based
on the cacheline size (in bytes). We measure the hit ratio
separately by cacheline size and normalize the values to the
average hit ratio of the cache. So, if the bar is above zero,
a larger number of hits (higher locality) is observed for that
specific cacheline size. Instead, if a bar is below zero, fewer
hits (low locality) are observed. Depending on the applica-
tion, high locality is observed both in small-size cachelines
– type (1) – and in big-size cachelines – type (2). Further,

1In this paper, we use 32-entry Set Dueling Monitors, a 10-bit single-

policy selection (PSEL) counter, and ǫ=1/3 for DRRIP [10, 11, 17].

Figure 4. The RRIP [11] and SAI Policy frameworks

with a 2-bit (M=2) Re-Reference Prediction Value

(RRPV).

type (3) and (4) cases are observed throughout the graph
as well. This means that there is no clear relationship be-
tween the size and the locality, but a non-negligible number
of type (2) cases (high locality and big size) are observed
when the cacheline size is more than 48 B in most applica-
tions. Hence, our policy aims to maximize the benefits even
under these conflicting cases.

4.1.2. The Re-Reference Interval Prediction (RRIP)
Framework: Figure 4(a) shows the Re-Reference Interval
Prediction (RRIP [11]) framework. In order to store one
of 2M possible Re-Reference Prediction Values (RRPVs),
M bits are used for each cacheline in the RRIP policy. If
a cacheline stores an RRPV of zero, it is predicted to be
re-referenced (re-used) in the near-immediate future. On
the other hand, if a cacheline stores an RRPV of 2M − 1,
the cacheline is predicted to be re-referenced in the dis-
tant future. In other words, smaller RRPV cachelines are
expected to be re-referenced sooner than cachelines with
larger RRPV. Therefore, on a cache miss, RRIP selects a

victim among the cachelines whose RRPV is 2M − 1 (dis-
tant re-reference interval). If there is no cacheline with an
RRPV of 2M −1, the RRPVs of all cachelines are increased
by 1, and this increasing process is repeated until a victim
cacheline is found. On a hit, the RRIP’s promotion policy
updates the RRPV of the cacheline to zero by predicting the
cacheline to be re-referenced in the near-immediate future.

When new data is initially fetched from the memory de-
vice into a specific cacheline, the Static RRIP (SRRIP) pol-

icy sets the cacheline’s initial RRPV as 2M − 2, which
indicates long re-reference interval, instead of distant re-
reference interval, to allow SRRIP more time to learn and
improve the re-reference prediction. However, when the
re-reference interval of all the cachelines is larger than the
available cache, SRRIP causes cache thrashing with no hits.
To address such scenarios, Bimodal RRIP (BRRIP) sets the
majority of new cachelines’ initial RRPVs as 2M − 1 (dis-
tant re-reference interval prediction), and it infrequently

inserts new cachelines with RRPV of 2M − 2 (long re-

reference interval prediction). Dynamic RRIP (DRRIP) de-
termines which policy is best suited for an application be-
tween SRRIP and BRRIP using Set Dueling [17].

4.1.3. The Size-Aware Insertion (SAI) Policy: The main
goal of the proposed SAI policy is to give the big-size
cacheline a higher chance of eviction while minimizing the
conflict with locality. For this purpose, we simply clas-
sify the cachelines into two types: big-size cachelines and
small-size cachelines. We then adjust the insertion point
of the cacheline’s re-reference interval based on this clas-
sification. The classified big-size cachelines are allocated
with higher RRPV than the small-size cachelines to force
the big-size cachelines to be evicted soon. However, if

we set the RRPV of big-size cachelines as 2M − 1 (dis-
tant re-reference interval prediction) like BRRIP, the big-
size cachelines with high locality may also be evicted soon,
due to the lack of time to learn locality information. There-

fore, we set the RRPV of big-size cachelines as 2M − 2
(long re-reference interval prediction) and that of small-size

cachelines as 2M−3 (intermediate re-reference interval pre-
diction), so that all the cachelines have enough time to learn
locality information. The SAI policy framework is shown
in Figure 4(b). Since the only modification is the insertion
point (RRPV) of the RRIP chain, no significant alteration
of the conventional approach is necessary to implement the
SAI policy.

4.2. The Dynamically Adjustable Thresh-
old Scheme (DATS)

Another critical issue in this scheme is how to classify a
cacheline as either big-size or small-size. This classification
is very important to balance the big-size cacheline thrashing
effect and the re-reference interval prediction.

4.2.1. The Static Threshold Scheme (STS): In the SAI
policy (Section 4.1.3), we can compare the size of the
cacheline with a predefined threshold, Th (2 ≤ Th < 16,
where 16 is the size of the uncompressed cacheline in num-
ber of segments, and 2 is the number of segments occu-
pied by the smallest possible compressed cacheline). Note
that each segment is 4 B long, and a threshold is defined
based on a number of segments. If the threshold is set too
high, it means that the re-reference rate will be given more
weight than the size information, while a lower threshold
value means the exact opposite. There is no strong correla-
tion between cacheline-size and re-reference interval, as ob-
served in Figure 3, so, through a sensitivity analysis study

 0

 1

 2

 3

 4

 5

 6

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

M
is

s
C

o
u

n
t

R
ed

u
ct

io
n

 o
v
er

 D
R

R
IP

 [
%

] STS-Th=4
STS-Th=7
STS-Th=9
STS-Th=12

Figure 5. The Static Threshold Scheme (STS) perfor-

mance in each PARSEC application [5]. Each curve

represents a different cacheline size threshold, rang-

ing from 4 segments (16 B) to 11 segments (44 B).

of statically setting the size-threshold value, we can empir-
ically identify the threshold value that shows the best per-
formance. We refer to this policy as the Static Threshold
Scheme (STS).

Even though one can find the performance-optimal
threshold value through sensitivity analysis of each appli-
cation, it is still not easy to implement this solution in real
systems, because this threshold value varies with the ap-
plications. Figure 5 shows the STS performance for sev-
eral selected static threshold values in each application.
The y-axis represents the percent miss count reduction in
a compressed LLC, compared to the DRRIP. As Figure
5 indicates, a static threshold value – which shows best
or worst performance – varies with the application. In
other words, a certain static threshold value can be best for
an application, but it also can be worst for another appli-
cation. In fact, for example, STS-Th=4 (a static thresh-
old value set at 4 segments, i.e., 16 B) shows best per-
formance with streamcluster, but worst performance
with raytrace.

4.2.2. The Dynamically Adjustable Threshold Scheme
(DATS): The optimal threshold value varies with not only
the application, but also the execution timeline of each ap-
plication. Figure 6 shows the effective capacity fluctuation
and physical memory usage of streamcluster using the
LRU replacement policy. The y-axis represents the cache
size of the compressed LLC, which is physically 2MB, but
can increase up to 8MB (logically), by overlaying a log-
ical 16-way configuration onto a physically 4-way setup.
The x-axis shows the timeline (cycles) for 0.9 billion cy-
cles. Note that, in a single set of a compressed cache, the
number of valid logical tags represents the effective capac-
ity, while the total number of valid data segments in the data
area represents the physical memory usage. Figure 6 high-
lights the fact that there are several sections of high effective
capacity (indicating many small-size cachelines are being
stored), and several sections of low effective capacity (indi-
cating big-size cachelines are being stored). Obviously, the
threshold value should be different for these sections.

Thus, a Dynamically Adjustable Threshold Scheme
(DATS) is required, which changes the threshold value
based on real-time effective capacity information and phys-
ical memory usage in a set, simultaneously. The threshold
value is updated every time a new cacheline is inserted in a
set (the threshold is calculated on a per-set basis). In order
to efficiently determine the dynamically changing Th while
minimizing the implementation overhead in a set, we derive
an equation as follows:

Th =

⌈(

(

NSuc ×WP

WL

)

+NSuc −

[

NSuc ×

(

1−
NTv

WL

)]

)

×

(

Sizetotal

NSuc ×WP

)⌉

NSuc indicates the number of segments occupied by an
uncompressed cacheline, while WP and WL indicate the
physical number of ways and the logical number of ways
in a set, respectively. These three terms are constant, i.e,
NSuc=16, WP=4, and WL=16 in this study. NTv indi-
cates the number of valid tags within a set (i.e., the effective
capacity) and Sizetotal indicates the total number of valid
segments in the data area of a set (i.e., the physical mem-
ory usage). Only these two variables are defined when a
new cacheline is inserted. The term (NSuc × WP) rep-
resents the total number of segments in the data area (i.e.,
64). The right-most term in the equation above (Sizetotal

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

C
a

ch
e

S
iz

e
[B

y
te

s]

Time [cycles]

DRRIP effective capacity (16-way)
DRRIP physical memory usage (16-way)

Figure 6. The effective capacity fluctuation and phys-

ical memory usage of streamcluster, when using

the LRU replacement policy.

/ (NSuc ×WP)) represents the physical memory usage ra-
tio. The left-most term ((NSuc ×WP) / WL) indicates the
average number of segments in a logical way (i.e., 4), and
this term is inserted as a bias. Based on the sum of this bias
andNSuc, the threshold Th will decrease asNTv increases
and Sizetotal decreases.

If the tags are fully used (NTv=WL=16), it means that
the average size of cachelines in a set is relatively small, just
like the high effective capacity sections shown in Figure 6.
In high effective capacity sections, we need to change the
threshold value with a sufficiently small-size value, so that
we can classify a cacheline as either big-size or small-size
in these sections. Furthermore, we also need to take into
account the physical memory usage, in order to change the
threshold more precisely, because, even if the tags are fully
used in a set, the physical memory usage can range from
32 segments (128 B) to 64 segments (256 B). Therefore, we
need to change the threshold with not only NTv, but also
Sizetotal. For example, when Sizetotal=32 segments, then
the threshold value will be (4 + 16 − 16) × (32/64) =
2, while for 64 segments the threshold will be (4 + 0) ×
(64/64) = 4, as per the equation above.

On the contrary, in the low effective capacity sections
– which indicate the presence of several big-size cache-
lines – we need to change the threshold value with a larger
size. In these sections, we also need to take into account
the physical data area size, because the small number of
valid tags does not reflect the fact that there are big-size
cachelines in the data area all the time. For example,
if there are 8 valid tags, then the physical data area size
can range from 16 segments (64 B) to 64 segments (256
B). Therefore, based on NTv and Sizetotal, the threshold
value will be (4 + 16 − 8) × (16/64) = 3 for 16 seg-
ments, or (4 + 16 − 8) × (64/64) = 12 for 64 segments.
If there are only uncompressed lines (i.e, NTv=WP=4
and Sizetotal=64 segments), the threshold value will be
(4 + 16 − 4) × (64/64) = 16. Thus, the size-aware in-
sertion mechanism will be disabled, because no cacheline
occupies more than 16 segments.

Since the NTv and Sizetotal parameters (1) are defined
at design-time using the tag area information, (2) they have
to be read, in order to check for a hit or miss when a new re-
quest arrives, and (3) they do not require any additional stor-
age elements (the threshold is updated whenever a cacheline
is inserted), this technique can be implemented in hardware
fairly easily and efficiently. Although the above equation
is derived from heuristics, we will demonstrate that it ef-
fectively balances the classification rate of the various com-
pressed cachelines.

4.3. The Size-Aware Replacement (SAR)
Policy

In the baseline RRIP [11] framework depicted in Fig-
ure 4, the victim is selected among the cachelines whose

RRPV is 2M -1 (distant re-reference interval; we refer to
these cachelines as an eviction pool). Conventionalmethods
tend to select the left-most victim (as shown in the figure),
or a random victim, if there is more than one cacheline in
the eviction pool. This is a reasonable choice, because all
the cachelines in the eviction pool have already been “stud-
ied” in terms of their re-reference interval, and they have
been predicted to be re-used in the distant future.

However, in compressed LLCs, the size information is
an equally important factor, which significantly affects the
performance of the cache. Thus, we exploit the size infor-
mation again in this policy. As previously explained, the
RRPVs of the cachelines in the eviction pool indicate dis-
tant re-reference intervals (they belong to types (3) and (4)
of Section 4.1.1). Thus, we may consider the size informa-
tion alone. In other words, the SAR policy simply selects
the biggest-size cacheline as the victim from the eviction
pool. Even though this is a very straightforward methodol-
ogy, it is very effective in compensating for the weakness of
the coarse-grained (binary) classification performed under
the STS or DATS policies. Remember that STS and DATS
classify new cachelines as big-size or small-size, based on a
threshold. For example, let us assume that there are two
cachelines having the same re-reference interval; one is
quite bigger than the other, but due to the coarse-grained
classification of STS and/or DATS, they were classified un-
der the same type of cacheline (either big-size, or small-
size). This means that their probability of being selected as
victims is also the same, even though their actual sizes are
not the same. Under the proposed scheme, the bigger-size
cacheline will be evicted earlier than the smaller one if both
cachelines find themselves in the eviction pool.

By evicting the largest-size cacheline first, SAR not only
makes as much space as possible for future cachelines, but it
also reduces the off-chip memory write requests. This is be-
cause SAR minimizes the number of evicted cachelines. In
other words, without SAR, the number of evicted cacheline
can increase so as to make enough space for a new cache-
line, as described in Section 3. As a result, the number of
flushed cachelines can also increase, which implies that the
write-back buffer may stall more frequently.

The SAR mechanism selects the biggest-sized cacheline
as a victim from the eviction pool, by using a 4-bit cacheline
size information tag situated in the tag area. Hence, SAR re-
quires 15 4-bit comparators in order to identify the biggest-
sized cacheline. The same comparators are also used by the
DATS mechanism, in order to classify cachelines as big-
size, or small-size. This is, in fact, the only overhead in-
curred. Since the proposed ECM scheme is intended to be
used on top of the RRIP [11] framework and a decoupled
variable-segment cache architecture [3], all pertinent struc-
tures are already in place by said mechanisms. Other than
the 15 comparators, no significant alteration or additional
storage is required.

5. Experimental Methodology

5.1. Simulation Framework

We have developed a trace-driven simulator to evaluate
the proposed ECM mechanism. Since the memory access
sequence and the compression ratio are the most important

Table 1. Simulated System Parameters.

Number of CMP Cores 4

Processor Core Type UltraSPARC-III+, 2 GHz

L1 caches (Private) I- and D-caches 32 KB, 4-way, 64 B

L1 response latency 3 cycles

L2 caches (Shared) 2 MB, 4-way, 64 B, NUCA, MESI

L2 response latency 20 cycles

L2 read hit overhead 5 cycles for decompression

L2 writeback buffer 8 entries

Compaction overhead 16 cycles

DRAM memory DDR2 4 GB

Memory response latency 450 cycles

factors for this evaluation, all traces have been extracted
from the Simics [15] full-system simulator, extended with
GEMS [16], while simulating a quad-core processor with
a two-level cache hierarchy. Nine multi-threaded bench-
marks from the PARSEC benchmark suite [5] are selected,
and each benchmark runs for 300 million instructions. The
L1 caches use an LRU replacement policy, and our study fo-
cuses on the cache management of the LLC. All the details
of the simulation parameters are described in Table 1.

5.2. The Compression Technique Employed
in the LLC

The baseline architecture targeted in this paper is one us-
ing compression only in the LLC. No compression is as-
sumed in the L1 caches, or in main memory. As a com-
pression algorithm for the LLC, we choose Frequent Pat-
tern Compression (FPC) [4] – a bit-level compression al-
gorithm – because its compression performance is rela-
tively high, with reasonable compression overhead, both in
terms of delay and implementation cost. We apply this FPC
within a word, so a compressed cacheline’s size varies from
8B (maximally compressed) to 64B (uncompressed). The
maximally compressed cacheline occupies only 2 segments,
while the uncompressed cacheline occupies 16 segments in
the decoupled variable-segment LLC, as illustrated in Fig-
ure 1. A 2MB physically 4-way LLC is used. We set the
maximum number of ways in a set to 16 (logical ways), so
the effective capacity can increase up to 8 MB, which is a
significant improvement.

In a compressed LLC, data compaction is required when
the cache has room for upcoming requests (read miss, write
hit, and write miss), but not in consecutive segments. In the
case of compaction on a read miss, we do not account for
the compaction overhead, because the compaction can be
done while the data is being fetched from the main mem-
ory. This implies that no additional delay is incurred due to
compaction. However, for both write hits and misses, the
cacheline size changes and compaction is necessary in most
requests. Without completing a compaction, data cannot be
written in the cache. Thus, the compaction overhead (shown
in Table 1) for write requests will be accurately accounted
for in our evaluation.

6. Evaluation and Analysis

6.1. Workload Characteristics

Before we proceed with the evaluation, it is important to
analyze the salient workload characteristics that are impor-
tant in the study of the proposed ECM mechanism. These
characteristics are the set-associativity sensitivity, the com-
pression ratio, the cacheline size proportions, and the lo-
cality attributes of each cacheline size. When we overlay a

 5

 10

 15

 20

 25

4 (2MB) 8 (4MB) 12 (6MB) 16 (8MB) 20 (10MB)

M
P

K
I

Number of Ways

bodytrack
streamcluster

ferret
freqmine

swaptions
canneal
facesim

raytrace
x264

(a) Cache Set-Associativity Sensitivity

 0

 0.2

 0.4

 0.6

 0.8

 1

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

 0

 20

 40

 60

 80

 100

C
o

m
p

re
ss

io
n

 R
a

ti
o

%
 o

f
T

o
ta

l

 2-segments (8B)
 3-segments (12B)
 4-segments (16B)
 5-segments (20B)
 6-segments (24B)
 7-segments (28B)
 8-segments (32B)
 9-segments (36B)
10-segments (40B)
11-segments (44B)
12-segments (48B)
13-segments (52B)
14-segments (56B)
15-segments (60B)
16-segments (64B)
Compression ratio

(b) Compression Ratio and Cacheline Proportions

Figure 7. Salient characteristics of the application

workloads used in this study.

logically 16-way cache on a physically 4-way 2 MB LLC
using compression, the maximum effective capacity is in-
creased up to 8 MB. This effect is, essentially, the same as
increasing the number of ways without changing the num-
ber of sets, as shown in Figure 7(a). The y-axis shows the
number of misses per thousand instructions (MPKI), while
the x-axis shows the number of ways. This set-associativity
sensitivity shows how much we can reduce the number
of misses by increasing the effective capacity for an ap-
plication. Figure 7(b) shows the compression ratios and
uncompressed/compressed cacheline proportions for the 9
evaluated benchmarks. A lower compression ratio indi-
cates higher compressibility. The benchmark bodytrack
– which is the most compressible application – has over
40% of the total cache lines compressed within 2 segments
(8 B). As previous compression studies have indicated, the
main reason for this high compressibility is the large num-
ber of zero values. The 16-segment bars (64 B) indicate
the incompressible cache line ratio; it accounts for 16% of
bodytrack. It may appear better to evict a big-size cache-
line to store a lot of small-size cachelines. However, merely
evicting a big-size cacheline can increase the miss rate, be-
cause of possibly high locality, as described in Section 4. As
indicated in Figure 3, the hit-rate changes for each cache-
line size, and each cacheline size exhibits different locality.
Usually, big-size cachelines also have high locality, but this
conclusion is strictly application-dependent.

6.2. Dissecting the Attributes of the ECM
Mechanism

In order to fully exploit the benefits of compression in
the LLC, the goal of the proposed ECM technique is to
maximize the effective cache capacity by considering lo-
cality and size information simultaneously. To achieve this
goal, ECM gives big-size cachelines a higher probability of

eviction and selects the largest-size cachelines that do not
exhibit good locality as victims. Therefore, both big-size
and small-size cacheline insertion points, and the threshold
values used to classify new cachelines, are very important
design parameters. In this subsection, we first analyze the
insertion points for big-size and small-size cachelines, and
then we demonstrate the performance of DATS, as com-
pared to STS, for various threshold values.

6.2.1. Insertion Sensitivity Study for ECM: Figure 8
shows the sensitivity of ECM as we statically change the
width of the M-bit register (holding the RRPV) on big-
size/small-size cacheline insertion. The x-axis represents

all 2M possible RRPVs for big-size/small-size cacheline in-
sertion with M=2 and 3, and this study is similar to the sen-
sitivity study by Jaleel et al. [11]. The ’BS-INS=b’ and ’SS-
INS=s’ labels (where ’b’ and ’s’ are numbers) indicate ECM
configurations where size-classified missing cachelines are
inserted with an RRPV of ’b’ for big-size (BS-INS=b) and
’s’ for small-size (SS-INS=s). The term ’D=d’ (where ’d’ is
a number) indicates the distance of RRPV between ’b’ and
’s.’ For each ECM configuration, the y-axis shows the max-
imum, average, and minimum values for the percent miss
count reduction in the compressed LLC across all the appli-
cations.

As illustrated in Figure 8, we set a higher RRPV of ’b’
than ’s,’ so that big-size cachelines have a higher proba-
bility of eviction. As we decrease the RRPV of ’b’ and
’s’ (closer to the near-immediate re-reference interval), the
maximumpercent miss count reduction also diminishes, be-
cause cachelines that do not have temporal locality may
pollute the compressed LLC with an extended travel time
within the RRIP chain. Likewise, with a constant RRPV
of ’b,’ decreasing the RRPV of ’s’ shows a smaller per-
cent miss count reduction, for the same reason. Regard-
ing the average percent miss count reduction, the constant

RRPV ’b’ of 2M − 2 (long re-reference interval) shows the
best performance, because the RRPV of 2M − 1 (distant re-
reference interval) cannot provide enough time for high lo-
cality cachelines to be re-referenced. Therefore, the average
percent miss count reduction is maximized when predicting

a missing cacheline with an RRPV of 2M − 2 (long) for

big-size cachelines, and 2M − 3 (intermediate) for small-
size cachelines. For the rest of the paper, unless otherwise
stated, we only provide results for ECM with the RRPV set

to 2M − 2 for big-size cachelines and 2M − 3 for small-size
cachelines, when M=3, D=1.

6.2.2. Evaluating the Performance of DATS: Figure 9
represents STS-best, STS-worst, and DATS values for the
percent miss count reduction, as compared to DRRIP. The
STS-best and STS-worst values are selected among the
static threshold value Th, where 2 ≤ Th < 16, for each
application. Note that the static threshold value – for the
STS-best and STS-worst results – varies with each appli-
cation. As Figure 9 indicates, DATS always exhibits bet-
ter performance than STS-worst, and it is very close to the
performance of STS-best. Specifically, DATS shows 32.9%
averagemiss count reduction over STS-worst, and STS-best
shows 8.3% average miss count reduction over DATS. Even
though DATS does not exhibit the best overall performance,
it clearly performs exceptionally well without requiring of-
fline profiling of the workloads.

As previously mentioned in Section 4, DATS determines
a new threshold on a per-set basis whenever a cacheline
is inserted in a set. Thus, DATS will be especially useful

 0

 5

 10

 15

 20

 25

 30

D
R

R
IP

B
S

-IN
S

=
3
, S

S
-IN

S
=

2
B

S
-IN

S
=

2
, S

S
-IN

S
=

1

B
S

-IN
S

=
3
, S

S
-IN

S
=

1

D
R

R
IP

B
S

-IN
S

=
7
, S

S
-IN

S
=

6
B

S
-IN

S
=

6
, S

S
-IN

S
=

5
B

S
-IN

S
=

5
, S

S
-IN

S
=

4
B

S
-IN

S
=

4
, S

S
-IN

S
=

3
B

S
-IN

S
=

3
, S

S
-IN

S
=

2
B

S
-IN

S
=

2
, S

S
-IN

S
=

1

B
S

-IN
S

=
7
, S

S
-IN

S
=

5
B

S
-IN

S
=

6
, S

S
-IN

S
=

4
B

S
-IN

S
=

5
, S

S
-IN

S
=

3
B

S
-IN

S
=

4
, S

S
-IN

S
=

2
B

S
-IN

S
=

3
, S

S
-IN

S
=

1

B
S

-IN
S

=
7
, S

S
-IN

S
=

4
B

S
-IN

S
=

6
, S

S
-IN

S
=

3
B

S
-IN

S
=

5
, S

S
-IN

S
=

2
B

S
-IN

S
=

4
, S

S
-IN

S
=

1

B
S

-IN
S

=
7
, S

S
-IN

S
=

3
B

S
-IN

S
=

6
, S

S
-IN

S
=

2
B

S
-IN

S
=

5
, S

S
-IN

S
=

1

B
S

-IN
S

=
7
, S

S
-IN

S
=

2
B

S
-IN

S
=

6
, S

S
-IN

S
=

1

B
S

-IN
S

=
7
, S

S
-IN

S
=

1

M
is

s
C

o
u

n
t

R
ed

u
ct

io
n

 o
v
er

 L
R

U
 [

%
]

min avg max

M=3, D=6M=3, D=5M=3, D=4M=3, D=3M=3, D=2M=3, D=1M=2, D=2M=2, D=1

Figure 8. Insertion sensitivity study for the proposed Effective Capacity Maximizer (ECM) mechanism. [BS-INS:

Big-Size cacheline INSertion; SS-INS: Small-Size cacheline INSertion; M=Size of RRPV value in number of bits;

D=Distance in RRPV value between BS-INS=b and SS-INS=s, where ’b’ and ’s’ are numbers]

 0

 2

 4

 6

 8

 10

 12

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

Avg

M
is

s
C

o
u

n
t

R
ed

u
ct

io
n

 o
v
er

 D
R

R
IP

 [
%

]

STS-Best
DATS

STS-Worst

Figure 9. Performance comparison between the Dy-

namically Adjustable Threshold Scheme (DATS) and

the Static Threshold Scheme (STS).

in environments running multi-programmedworkloads, be-
cause a single static threshold value would not benefit all
workloads. Furthermore, the optimal threshold value would
fluctuate more over time, because a set may be accessed by
multiple applications with disparate attributes. Hence, it is
reasonable to expect DATS to prove even more instrumental
and effective under multi-programmed workloads. Given
the conclusions extracted from this experiment, we hence-
forth provide results only for SAI (insertion) and ECM with
DATS.

6.3. Assessing the ECM Cache Manage-
ment Scheme

Figure 10 summarizes the compressed LLC performance
results of 3-bit (i.e., 3-bit RRPVs) SAI, SAR, and ECM
setups, normalized to the performance of DRRIP, for all
evaluated applications. The SAR scheme is implemented
on DRRIP. Note that ECM combines the SAI and SAR
schemes in a unified framework. The results for SAI and
SAR refer to systems that use said techniques in isolation.
Figure 10(a) shows the effective capacity enhancement.
SAR shows higher effective capacity enhancement than
SAI. This is because SAI gives big-size cachelines a higher
probability of eviction, while SAR evicts the biggest-size
cacheline first (i.e., SAR is more oriented toward size infor-
mation). ECM shows the best effective capacity enhance-
ment, because it gives higher priority to big-size cachelines

using SAI, and it evicts the biggest cacheline first using
SAR. SAI, SAR, and ECM show 5.9%, 13.8%, and 18.8%
average effective capacity enhancement, respectively.

The effective capacity enhancement in an application is
not always proportional to the compression ratio, because
big-size cachelines may stay longer in the cache (if they
have higher locality) than small-size cachelines. There-
fore, when we compare the proposed ECM mechanism’s
effective capacity enhancement to DRRIP, it is important
to note that the achieved enhancement depends on the hit-
rate changes of each cacheline size, as depicted in Figure 3,
and on the cacheline size proportions, as shown in Figure 7.
The facesim benchmark shows the best effective capac-
ity enhancement, 29.6%, because facesim exhibits high
locality on 8 B and 48 B size cachelines (which are abun-
dant), and low locality on the incompressible (biggest-size)
cachelines.

Figure 10(b) shows the miss count reduction. Even
though the effective capacity enhancement of SAI is less
than SAR across all the applications, some applications
show better miss count reduction – such as ferret,
canneal, and raytrace – because SAI considers local-
ity and size information at the same time, while SAR con-
siders only size information. ECM shows the best perfor-
mance across all applications with 3.9% average miss count
reduction, while SAI and SAR show 2.1% and 2.5% reduc-
tions, respectively.

Figure 10(c) shows the reduction in write-back delay cy-
cles. SAI shows 2.9% average write-back delay cycle re-
duction, because SAI reduces the off-chip memory write re-
quests by not only reducing the number of misses, but also
by giving higher probability of eviction to big-size cache-
lines. This reduces the probability of small-size cachelines
(which are numerous) to be evicted. This probability is fur-
ther reduced by SAR, which selects the largest-size cache-
line within the victim pool, so that the off-chip memory
write requests are minimized, as explained in Section 3.
SAR shows 10.8% average write-back delay cycle reduc-
tion, while ECM shows 12.9% reduction by exploiting both
SAI and SAR.

To sum up, by considering locality and size information
at the same time, ECM shows an increase in the effective
cache capacity, a decrease in miss count, and a reduction
in the write-back delay cycles. Most importantly, the in-

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

AvgE
ff

ec
ti

v
e

C
a
p

a
ci

ty
 E

n
h

a
n

ce
m

en
t

 N
o
rm

a
li

ze
d

 t
o
 D

R
R

IP

DRRIP SAI SAR ECM

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

Avg

M
is

s
C

o
u

n
t

R
ed

u
ct

io
n

 N
o
rm

a
li

ze
d

 t
o
 D

R
R

IP

DRRIP SAI SAR ECM

(a) Effective Capacity Enhancement (b) Cache Performance Improvement

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

Avg

W
ri

te
-b

a
ck

 D
el

a
y
 C

y
cl

e
 R

ed
u

ct
io

n
 N

o
rm

a
li

ze
d

 t
o
 D

R
R

IP

DRRIP SAI SAR ECM

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

AvgIP
C

 P
er

fo
rm

a
n

ce
 I

m
p

ro
v
em

en
t

 N
o
rm

a
li

ze
d

 t
o
 D

R
R

IP

DRRIP SAI SAR ECM

(c) Write-back Delay Cycle Reduction (d) System Performance Improvement

Figure 10. The overall performance results of the proposed ECM mechanism (combined SAI+SAR), as compared to

DRRIP, SAI (alone), and SAR (alone).

creased effective capacity allows further reduction in the
number of misses, which allows ECM to outperform DR-
RIP by reducing the miss penalty. Overall, SAI, SAR, and
ECM outperform DRRIP by an average of 1.4%, 2.3%, and
3.3% in Instructions-Per-Cycle (IPC) performance, respec-
tively, as indicated in Figure 10(d).

6.4. Performance Comparison with Existing
Techniques

In this sub-section, we compare the proposed ECM
mechanism with LRU without compression (LRU-u), LRU
with compression (LRU-c), DRRIP without compression
(DRRIP-u), and DRRIP with compression (DRRIP-c). Fig-
ure 11(a) shows the effective capacity normalized to the
LRU-u, which indicates a 2 MB uncompressed LLC. When
we apply LRU-c, the average effective capacity enhance-
ment is 108.5%, while DRRIP-c achieves a 101.2% en-
hancement. The proposed ECM technique improves the ef-
fective capacity by an average of 138.6%, at around 4.77
MB, as compared to the uncompressed LLC. The proposed
ECM mechanism shows an average effective capacity in-
crease of 15% over LRU-c.

DRRIP-c, which only considers locality and does not
consider the compressed cacheline size information, shows
less effective capacity enhancement than LRU-c across
all the applications. Figure 11(b) shows the effec-
tive capacity fluctuation with physical memory usage of
streamcluster, which experiences the least effective
capacity enhancement under DRRIP-c, as opposed to LRU-
c, at around -7.3%. During 0.9 billion cycles, DRRIP-
c shows lower effective capacity than LRU-c, but higher
physical memory usage. This indicates that big-size cache-
lines are frequently re-referenced while residing in the
compressed LLC, and they occupy more physical area
than small-size cachelines. In fact, big-size cachelines in

streamcluster exhibit higher hit rates than small-size
cachelines, as indicated in Figure 3. In sharp contrast, ECM
maximizes the effective capacity uniformly throughout the
timeline by considering locality and size information at the
same time.

Figure 11(c) shows the miss count reduction, as com-
pared to LRU-u. The swaption and raytrace bench-
marks are ranked first and second in terms of miss count
reduction, with 77.6% and 64.9% decreases, respectively,
over LRU-u. This is because they are the most set-
associativity-sensitive applications, as indicated in Figure
7(a). Thus, they benefit the most from enhancements in the
effective cache capacity. As we observed in Figure 11(a),
DRRIP-c yields lower effective capacity enhancement than
LRU. Despite this attribute, DRRIP-c achieves higher miss
count reduction than LRU-c: DRRIP-c exhibits a 37.9%
average miss count reduction over LRU-u, while LRU-c
shows a 31.1% reduction. The proposed ECM mechanism
shows an average miss count reduction of 43.4% over LRU-
u and 9.4% over LRU-c.

Figure 11(d) shows the IPC performance normalized to
LRU-u. The swaption benchmark shows the best IPC
performance improvement at 41.7%, because of a large
miss count reduction over LRU-u. The streamcluster
benchmark is ranked second, with a 39.9% IPC perfor-
mance improvement. The facesim and freqmine
benchmarks show IPC performance degradation when we
use LRU-c. On the contrary, by using ECM, facesim can
actually exploit compression and it shows a small 3.2% IPC
performance improvement. However, freqmine shows a
3.1% IPC performance degradation even under ECM. These
problematic benchmarks are applications that do not benefit
from compression and suffer from excessive decompression
overhead. For such applications, an adaptive cache com-
pression technique may be used, like the one proposed by

 1

 1.5

 2

 2.5

 3

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

AvgE
ff

ec
ti

v
e

C
a
p

a
ci

ty
 E

n
h

a
n

ce
m

en
t

 N
o
rm

a
li

ze
d

 t
o
 L

R
U

-u

LRU-u DRRIP-u LRU-c DRRIP-c ECM

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

C
a

ch
e

S
iz

e
[B

y
te

s]

Time [cycles]

ECM effective capacity
LRU-c effective capacity

DRRIP-c effective capacity

ECM physical memory usage
LRU-c physical memory usage

DRRIP-c physical memory usage

(a) Effective Capacity (b) Memory Usage of the streamcluster Benchmark

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

Avg

M
is

s
C

o
u

n
t

R
ed

u
ct

io
n

 N
o
rm

a
li

ze
d

 t
o
 L

R
U

-u

LRU-u DRRIP-u LRU-c DRRIP-c ECM

 0.9

 1

 1.1

 1.2

 1.3

 1.4

bodytrack

streamcluster

ferret
freqmine

swaptions

canneal
facesim

raytrace
x264

Avg
IP

C
 P

er
fo

rm
a
n

ce
 N

o
rm

a
li

ze
d

 t
o
 L

R
U

-u

LRU-u DRRIP-u LRU-c DRRIP-c ECM

(c) Miss Count Reduction (d) System Performance

Figure 11. Comparing ECM with existing techniques.

Alameldeen et al. [3]. Regardless, over all benchmarks,
the proposed ECM scheme shows an 18.4% average IPC
improvement over LRU-u, while LRU-c shows an 11.3%
average IPC improvement. The proposed ECM mechanism
shows a 6.2% average IPC improvement over LRU-c.

6.5. The Performance Sensitivity of ECM
to Cache Size and Logical Set Asso-
ciativity

Figure 12(a) shows the IPC performance under ECM,
normalized to LLCs (with LRU-u) of different sizes: 1 MB,
2 MB, 4 MB, 8 MB, and 16 MB. As always, all LLCs
are logically 16-way overlaid on top of a physically 4-way
cache. Therefore, each cache’s effective capacity size in-
creases up to 4 MB, 8 MB, 16 MB, 32 MB, and 64 MB,
respectively, when we apply a compression technique. The
y-axis shows the average IPC performance normalized to
the uncompressed LLC of the respective LLC size, under
LRU replacement. ECM outperforms LRU-c by 4.2-6.4%
for various cache sizes. Moreover, ECM shows the best re-
sults – 23.6% IPC performance improvement – when com-
pared to an 8 MB LLC with LRU-u.

We also conducted an ECM sensitivity study for differ-
ent logical way sizes: 8-way, 12-way, 16-way, and 20-way
on a 2 MB physically 4-way cache. Therefore, the effective
capacity increases up to 4 MB, 6 MB, 8 MB, and 10 MB,
respectively. The results are shown in Figure 12(b). The
y-axis shows the average IPC performance normalized to
LRU-u for each respective logical-way size. ECM outper-
forms LRU-c by 4.1-7.8% for various logical-way sizes. If
we increase the number of logical ways, we can increase the
ECM improvement over LRU. Clearly, these results show
that ECM is scalable with both the cache size and the num-
ber of logical ways.

7. Conclusion

Rapidly escalating transistor integration densities have
accentuated the perennial divergence between logic and
memory performance. The “memory wall” phenomenon
hinders the performance gains that may be reaped from
the abundance of on-chip computational resources. Con-
sequently, the design of the memory hierarchy, and specifi-
cally the Last-Level Cache (LLC), has garnered special at-
tention from computer architects over the last several years.
Despite the steady increase in the size of on-chip LLCs, the
latter can still benefit from even larger capacities. An ef-
ficient way to increase the effective cache capacity without
increasing the physical size is to compress the LLC. In com-
pressed caches, the cacheline size becomes variable and de-
pends on the achieved compression ratio.

In this work, we demonstrate that the size information
of each compressed cacheline can be very helpful when
trying to choose an eviction victim. However, there are
currently no replacement policies tailored to compressed
LLCs, which can make use of such size information. This
paper aims to maximize the performance of compressed
LLCs through the use of a size-aware cache management
policy. The proposed Effective Capacity Maximizer (ECM)
mechanism employs a triptych of policies: (1) Size-Aware
Insertion (SAI), (2) a Dynamically Adjustable Threshold
Scheme (DATS) to classify cachelines, and (3) Size-Aware
Replacement (SAR).

ECM’s operation adjusts the eviction criteria based on
the compressed data size at any given time. This dy-
namic scheme is shown to substantially increase the effec-
tive cache capacity and minimize the miss penalty. Through
the use of extensive simulations with memory traces ex-
tracted from real application workloads running in a full-
system simulation environment, ECM is demonstrated to
achieve significant improvement over the LRU and DRRIP

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

1MB LLC 2MB LLC 4MB LLC 8MB LLC 16MB LLC

IP
C

 P
er

fo
rm

a
n

ce
 N

o
rm

a
li

ze
d

 t
o
 U

n
co

m
p

re
ss

io
n

LRU-u LRU-c DRRIP-c ECM

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

8-way 12-way 16-way 20-way

IP
C

 P
er

fo
rm

a
n

ce
 N

o
rm

a
li

ze
d

 t
o
 U

n
co

m
p

re
ss

io
n

LRU-u LRU-c DRRIP-c ECM

(a) Sensitivity to the LLC Size with 16 Logical Ways (b) Sensitivity to the Logical Ways with a 2 MB LLC

Figure 12. The performance sensitivity of ECM to cache size and logical set associativity.

replacement policies. Specifically, ECM exhibits an aver-
age effective capacity increase of 15% over LRU and 18.8%
over DRRIP, and an average cache miss reduction of 9.4%
over LRU and 3.9% over DRRIP. These gains combine to
yield 6.2% and 3.3% average system performance improve-
ment over LRU and DRRIP, respectively.

8. Acknowledgments

This work was partially supported by the ETRI R&D
program of KCC(Korea Communications Commission),
Korea[11921-03001, ”Development of Beyond Smart TV
Technology”]. It also falls under the Cyprus Research Pro-
motion Foundation’s Grant TΠE/ΠΛHPO/0609(BIE)/09
(co-funded by the Republic of Cyprus and the European Re-
gional Development Fund).

References

[1] International Technology Roadmap for Semiconductors,
Semiconductor Industry Association, 2010.

[2] A.-R. Adl-Tabatabai, A. M. Ghuloum, and S. O. Kanaujia.
Compression in cache design. In Proceedings of the 21st an-
nual international conference on Supercomputing, ICS ’07,
pages 190–201, New York, NY, USA, 2007. ACM.

[3] A. R. Alameldeen and D. A. Wood. Adaptive cache compres-
sion for high-performance processors. In Proceedings of the
31st annual international symposium on Computer architec-
ture, ISCA ’04, pages 212–, Washington, DC, USA, 2004.
IEEE Computer Society.

[4] A. R. Alameldeen and D. A. Wood. Frequent pattern com-
pression: A significance-based compression scheme for l2
caches. In Technical Report 1500, University of Wisconsin-
Madison, 2004. Computer Sciences Department.

[5] R. Bagrodia and et al. Parsec: A parallel simulation envi-
ronment for complex systems. Computer, 31:77–85, October
1998.

[6] X. Chen, L. Yang, R. Dick, L. Shang, and H. Lekatsas. C-
pack: A high-performance microprocessor cache compres-
sion algorithm. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 18(8):1196 –1208, aug. 2010.

[7] P. Franaszek, J. Robinson, and J. Thomas. Parallel compres-
sion with cooperative dictionary construction. In Proceedings
of the Conference on Data Compression, DCC ’96, pages
200–, Washington, DC, USA, 1996. IEEE Computer Society.

[8] E. Hallnor and S. Reinhardt. A unified compressed mem-
ory hierarchy. In High-Performance Computer Architecture,
2005. HPCA-11. 11th International Symposium on, pages
201 – 212, feb. 2005.

[9] E. G. Hallnor and S. K. Reinhardt. A compressed memory
hierarchy using an indirect index cache. In Proceedings of
the 3rd workshop on Memory performance issues: in con-
junction with the 31st international symposium on computer
architecture, WMPI ’04, pages 9–15, New York, NY, USA,
2004. ACM.

[10] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely,
Jr., and J. Emer. Adaptive insertion policies for manag-
ing shared caches. In Proceedings of the 17th international
conference on Parallel architectures and compilation tech-
niques, PACT ’08, pages 208–219, New York, NY, USA,
2008. ACM.

[11] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer.
High performance cache replacement using re-reference in-
terval prediction (rrip). In Proceedings of the 37th annual in-
ternational symposium on Computer architecture, ISCA ’10,
pages 60–71, New York, NY, USA, 2010. ACM.

[12] S. Kim, J. Lee, J. Kim, and S. Hong. Residue cache: a low-
energy low-area l2 cache architecture via compression and
partial hits. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO-44
’11, pages 420–429, New York, NY, USA, 2011. ACM.

[13] J.-S. Lee, W.-K. Hong, and S.-D. Kim. An on-chip cache
compression technique to reduce decompression overhead
and design complexity. J. Syst. Archit., 46(15):1365–1382,
Dec. 2000.

[14] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache bursts:
A new approach for eliminating dead blocks and increas-
ing cache efficiency. In Proceedings of the 41st annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO 41, pages 222–233, Washington, DC, USA, 2008.
IEEE Computer Society.

[15] P. S. Magnusson and et al. Simics: A full system simulation
platform. Computer, 35:50–58, February 2002.

[16] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Computer Architecture
News, 33:2005, 2005.

[17] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer.
Adaptive insertion policies for high performance caching.
In Proceedings of the 34th annual international symposium
on Computer architecture, ISCA ’07, pages 381–391, New
York, NY, USA, 2007. ACM.

[18] L. Villa, M. Zhang, and K. Asanović. Dynamic zero com-
pression for cache energy reduction. In Proceedings of the
33rd annual ACM/IEEE international symposium on Mi-
croarchitecture, MICRO 33, pages 214–220, New York, NY,
USA, 2000. ACM.

[19] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C.
Steely, Jr., and J. Emer. Ship: signature-based hit predictor
for high performance caching. In Proceedings of the 44th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-44 ’11, pages 430–441, New York, NY, USA,
2011. ACM.

[20] Y. Xie and G. Loh. Thread-aware dynamic shared cache
compression in multi-core processors. In Computer Design
(ICCD), 2011 IEEE 29th International Conference on, pages
135 –141, oct. 2011.

[21] J. Yang, Y. Zhang, and R. Gupta. Frequent value com-
pression in data caches. In Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture,
MICRO 33, pages 258–265, New York, NY, USA, 2000.
ACM.

