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Abstract 
The peak compute performance of GPUs has been increased 
by integrating more compute resources and operating them 
at higher frequency. However, such approaches significantly 
increase power consumption of GPUs, limiting further 
performance increase due to the power constraint. Facing 
such a challenge, we propose three techniques to improve 
power efficiency and performance of GPUs in this paper. 
First, we observe that many GPGPU applications are 
integer-intensive. For such applications, we combine a pair 
of dependent integer instructions into a composite 
instruction that can be executed by an enhanced fused 
multiply-add unit. Second, we observe that computations for 
many instructions are duplicated across multiple threads. 
We dynamically detect such instructions and execute them in 
a separate scalar unit. Finally, we observe that 16 or fewer 
bits are sufficient for accurate representation of operands 
and results of many instructions. Thus, we split the 32-bit 
datapath into two 16-bit datapath slices that can 
concurrently issue and execute up to two such instructions  
per cycle. All three proposed techniques can considerably 
increase utilization of compute resources, improving power 
efficiency and performance by 20% and 15%, respectively. 

1. Introduction 
GPUs are massively parallel processors with a large number 
of execution units and high-bandwidth memory channels to 
concurrently run thousands of hardware threads. Although 
GPUs are originally designed for graphics applications, they 
are also used to accelerate GPGPU applications that can 
efficiently utilize the rich compute resources of GPUs.  

As applications demand higher GPU performance, the 
manufacturers have integrated more compute resources and 
operated them at higher frequency, which has been mainly 
driven by technology scaling. However, such an approach 
significantly increases power consumption and thus it is not 
scalable under a power constraint. Note that the power 
reduction through technology scaling has been diminishing 
[1] while the power constraint that has not scaled [2]. Thus, 
we must considerably improve the power efficiency of GPUs 
to further increase the performance. 

The compute resources of GPUs are organized into 
groups, such as streaming multiprocessors (SMs) in 
NVIDIA® GPUs. Each SM supports a single-instruction 
multiple-thread (SIMT) pipeline (i.e., execution pipeline) 
that consists of execution units (EUs), main register file 
(MRF), fetch/decode/scheduling (FDS) logic, and on-chip 
shared memory. For compute-intensive applications, SMs 
can consume more than 85% of the total GPU dynamic 

power and the FDS logic, MRF and EUs can dissipate more 
than 45% of the total SM dynamic power [3]. In this paper, 
therefore, we focus on these power-hungry components in 
SMs to improve power efficiency and performance of GPUs 
executing GPGPU applications.  

Composite instructions: GPUs are typically optimized 
for floating-point-intensive applications. Thus, the execution 
pipeline of GPUs is usually comprised of a larger number 
floating-point (FP) fused multiply-add (FMA) units [4, 5, 6, 
7]. However, the GPUs are also employed for accelerating 
integer-intensive applications, such as data compression, 
data encryption, and medical image processing.  
Consequently, the FP FMA units are often enhanced to 
perform integer (INT) arithmetic, bitwise, and logical 
operations, allowing the GPUs to utilize the same execution 
pipeline for INT instructions. Exploiting such FP FMA units, 
we can fuse a pair dependent INT instructions into a 
composite instruction that can be efficiently executed by an 
enhanced FMA unit. The composite instructions, which are 
formed by the compiler, reduce the total number of 
fetched/executed instructions, thereby improving both power 
efficiency and performance of GPUs. 

Scalar unit: Many GPGPU applications exhibit 
considerable computational redundancy, which arises when 
all the threads in SIMT groups (i.e., a warp) produce the 
same result. Figure 1 shows that redundant computations 
constitute from 10% to 50% of the total fetched/executed 
instructions for the evaluated benchmarks (cf. the 
"Redundant" bars in Figure 1); refer to Section 6 for the 
detailed experimental methodology. The sources of this 
computational redundancy are (i) duplicated control 
instructions across threads in SIMT groups, (ii) operations 
with constants, (iii) memory address calculations, and (iv) 
inherent redundancy in pixel data in image and video 
processing applications. To exploit such computational 
redundancy within a warp, we dynamically detect an 
instruction that produces the same result across all the 
threads in a warp at runtime. Then we issue such an 
instruction to a separate scalar pipeline where its source and 
destination registers are kept in a separate scalar register file 
(SRF); a scalar unit is comprised of a scalar pipeline and a 
SRF. The scalar unit can improve both power efficiency and 
performance of GPUs by eliminating redundant 
computations and allowing the SIMT pipeline to 
concurrently execute another instruction. The baseline GPU 
assumed in this study (i.e., NVIDIA® Quadro FX5800) can 
issue up to two instructions (one non-transcendental to the 
FMA units and one transcendental to the special function 
units (SFUs)) per thread every cycle [8]. Note that we can 
utilize the same dual-issue capability for our technique to 
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issue computationally redundant instructions to the scalar 
pipeline for power efficiency and performance improvement. 

Sliced datapath: GPUs typically employ the 32-bit 
datapath. However, we observe that 16 or fewer bits are 
sufficient for accurate representations of operands and 
results of many instructions. Figure 1 shows that a large 
percentage of values read from and written to the MRF 
require 16 or fewer bits for their accurate representations (cf. 
the "RF16 reads" and "RF16 writes" bars in Figure 1). Since 
the most significant bits (MSBs) of these values only contain 
the sign-extended bits, the accesses of the complete 32-bit 
registers are not necessary. This can be exploited to reduce 
MRF access energy or improve GPU performance by 
spliting the 32-bit datapath into two 16-bit datapath slices; 
using only one 16-bit datapath slice reduces MRF access 
energy while issuing two (16-bit precision) instructions, each 
of which is sufficient with the 16-bit datapath for accurate 
computations improves GPU performance. While 16-bit data 
types are supported by some GPUs, they are used only to 
reduce memory bandwidth pressure [9]. Moreover, the use 
of such data types must be explicitly specified by the 
programmer. In contrast, our technique dynamically detects 
such instructions and schedules them to the 16-bit datapath 
slice(s) to reduce MRF access energy or improve GPU 
performance. 

The reminder of this paper is organized as follows. 
Section 2 depicts the baseline GPU architecture. Sections 2, 
4, and 5 present our techniques proposed to improve the 
power efficiency and performance of GPUs. Section 6 
evaluates the performance and power impact of the proposed 
techniques. Section 7 discusses the impact of the proposed 
techniques on future GPUs. Section 8 describes related 
work. Section 9 concludes this study.  

2. Baseline GPU Architecture 
In this study, we assume a baseline GPU architecture similar 
to the NVIDIA® Quadro FX5800 [8]. The baseline GPU, 
which is illustrated in Figure 2(a), consists of 30 SMs. Each 
SM contains an MRF (16384 32-bit registers), a warp 
scheduler, 8 EUs, 2 SFUs, and on-chip shared memory. The 
compute resources of an SM are organized into two SIMT 
clusters, as shown in Figure 2(b). Each SIMT cluster has 4 

EUs and 4 MRF banks. Each MRF bank is dual-ported (1-
read and 1-write ports) and has 512 128-bit entries. The 
multi-banked MRF architecture allows each SM to sustain 
the bandwidth of 24 32-bit reads and 8 32-bit writes every 
cycle per SM without employing multi-ported register file 
that can consume considerably more area and power. This 
bandwidth ensures that 8 single-precision FP FMA 
instructions, each of which needs to read 3 32-bit source 
operands and write 1 32-bit result, can be issued every cycle 
per SM. All the registers for a thread reside in the same bank 
and each thread performs multiple MRF accesses to read all 
of its source operands [8].  

Each SM schedules warps (i.e., threads in groups of 32 
threads). Each warp is issued over 4 cycles with 8 EUs. The 
EUs are typically comprised of FP FMA units enhanced to 
also execute INT instructions [4, 5, 6, 7]. We assume that the 
pipeline latency of the FMA units is 8 cycles. Consequently, 
most instructions (excluding double-precision and 
transcendental instructions) have 8-cycle read-after-write 
(RAW) latency [4, 5, 6]. Finally, the warp scheduler can 
issue up to two instructions to the FMA units and the SFUs 
per cycle [8].  

3. Composite Instructions 

3.1  Enhanced FMA Unit 
An FMA unit with INT execution enhancements is 
illustrated in Figure 3(a). For FP FMA operations, the FMA 
unit multiplies the significands of the FP operands using the 
signifand multiplier (SMUL) and aligns the product to the 
addend using the alignment shifter (ASFT). The alignment 

Figure 1: Percentage of total instructions that performed redundant computations and the percentage of RF accesses that utilize
16 bits or less. 

Figure 2: Baseline GPU architecture: (a) streaming 
multiprocessor (SM) and (b) SIMT cluster. 
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shifter ensures that both the product and the addend have the 
same exponent. The shifted product is added to the addend 
using the ALU and the result is left-shifted using the 
normalization shifter (NSFT) until all the leading zeros are 
shifted out. The leading zero counter (LZC) is used to 
determine the amount of the normalization shift. The 
normalized result is rounded using the rounding adder 
(RADD) and is re-normalized if required (in case of the 
overflow during rounding).   

The ALU can be also used to perform INT arithmetic, 
logical, and bit-wise operations. The ASFT and NSFT can be 
also used to perform right and left shifts on INT operands, 
respectively. The LZC, NSFT, and RADD are also used to 
convert FP to INT data types and vice versa. Finally, 32-bit 
INT multiplications can be performed using the SMUL. 
These INT execution enhancements are already supported by 
the baseline GPU to utilize the same FMA unit (and 
execution pipeline) for both INT and FP operations [4, 5, 6, 
7]. 

3.2 Motivation and Approach 
We propose to combine pairs of dependent INT instructions 
into composite instructions to reduce the number of 
fetched/executed instructions and increase the utilization of 
the FMA units. The main motivation behind this approach is 
that the energy-per-instruction (EPI) in GPUs is not 
dominated by the EUs; considerable energy is consumed by 
the  instruction cache/buffer, decoder, warp/instruction 
schedulers, register file, pipeline flip-flops and clock tree. 
We measure the energy consumption of the NVIDIA® 
FX5600 GPU using INT and FP micro-benchmarks. Our 
measurement indicates that executing two INT ALU 
instructions consumes about 74% more energy than a single 
FMA instruction on average. Thus, the energy reduction due 
to the reduced number of fetched/executed instructions 
offsets the energy overhead of using the FMA units 
enhanced to execute composite instructions. 

Dependent instructions to form a composite instruction 
are chosen such that they can easily be mapped to the 

compute resources within the FMA unit. The composite 
instructions are added to the instruction set architecture 
(ISA) of the GPU. Adding such instructions to a GPU ISA is 
simpler than adding them to a CPU ISA. This is because the 
GPUs typically employ an intermediate language (e.g., 
NVIDIA’s PTX) and the code based on it is converted to the 
a platform-specific ISA by the compiler in the GPU driver at 
runtime. The identification of dependent instruction pairs 
and the formation of composite instructions are performed 
statically at compile time. The motivation is to increase the 
amount of completed work per instruction (i.e., to reduce the 
number of fetched/executed instructions per work) while 
utilizing the same execution pipeline as much as possible.  

The MRF bandwidth is optimized to read three 32-bit 
operands every cycle per FMA unit and most INT operations 
require only two or fewer operands per instruction. As a 
result, we can combine two dependent INT operations such 
that they fully utilize the MRF read bandwidth. A composite 
register file (CRF) is added to each FMA unit to hold the 
intermediate results of composite instructions (i.e., the 
results of predecessor instructions in the combined pairs).  
Dependent operations in composite instructions read the 
source operands from the CRF. Figure 3(b) shows a CRF 
providing 32 32-bit registers and integrated with the FMA 
pipeline. The CRF is also dual-ported (1-read and 1-write 
ports) like MRF banks and it has a dedicated slot, which is 
indexed by the warp identification number (warp ID), for 
storing one intermediate result per thread. The 32-entry CRF 
ensures that one intermediate result can be stored for each 
active warp; the maximum number of active warp is 32 in 
the baseline GPU architecture. The use of the CRF also 
reduces the number of MRF accesses; the MRF consumes 
far more energy per access than the CRF because it has 
16384 32-bit registers per SM. 

3.3 Implementation Details 
The composite instructions, which can be supported by the 
FMA unit, are tabulated in Table 1, along with the FMA 
resources that are used for each composite instruction.  We 
enhance the FMA unit to implement bidirectional shifters for 
both ASFT and NSFT. This increases the number of 
supported composite instructions by allowing both the 
producer and consumer instructions to be either left or right 

Table 1: Composite instructions and the corresponding FMA 
resources utilized.

Composite instruction Resource utilized 

Multiply-shift SMUL-ALU 

Add/logic-shift ALU-NSFT 

Add/logic-add ALU-RADD 

Shift-add/logic ASFT-ALU 

Muliply-cvt SMUL-LZC-NSFT-RADD 

d/logic-cvt ALU-LZC-NSFT-RADD 

Shift-shift ASFT-NSFT 

Figure 3: SM execution unit: (a) baseline FMA unit and (b)
composite register file (CRF) integrated with an FMA unit. 
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shifts. In order to form composite instructions, the compiler 
can perform a pass over the code based on an intermediate 
language such as NVIDIA® PTX. The compiler pass 
identifies the pairs of INT operation listed in Table 1. If the 
intermediate results are required by other instructions, the 
compiler ensures that they are read from the CRF. 

During the formation of composite instructions, the 
compiler ensures that only one of instructions in a composite 
instruction performs a memory access to avoid pipeline 
stalls due to bank conflicts of the shared memory. Moreover, 
branch boundaries are never crossed during the search for 
instructions that can be combined. Finally, the compiler pass 
also ensures that the CRF entry is no longer needed by any 
dependent instruction before allowing another composite 
instruction to overwrite it. 

Figure 4(a) shows a code snippet from the DCT bench-
mark. The compiler is able to detect two composite instruc-
tions from the given code sequence (highlighted in the fig-
ure). Each pair of combined instructions is transformed into 
a single composite instruction as illustrated in Figure 4(b). 
The two composite instructions utilize the FMA resources 
ALU-NSFT and ALU-RADD, respectively. For the second 
composite instruction (i.e., PC: 0x228 in Figure 4 (b)), the 
intermediate result is stored in the CRF entry indexed by the 
corresponding warp ID. The instruction at PC 0x230 thus 
reads its operand from the CRF. 

4. Scalar Unit Exploiting Computational Re-
dundancy 

4.1 Motivation and Approach 
Many applications execute a significant percentage of 
instructions in which all the threads in a warp produce the 
same result. There are several reasons for this computational 
redundancy. First, each thread typically consists of two types 
of computations: control and data. While the data 
computations can be different across threads in a warp, the 
control computations (e.g. loop increments, memory address 
calculations) are often the same across all the threads in a 
wrap. Second, even for data processing, some applications 
exhibit data redundancy. For example, in image and video 
processing applications, the values of pixels in an image 
region processed by a warp may not not change if the region 
exhibits the same color. Moreover, computations involving 

constants also increase the probability of redundant 
computations since one of the operands is fixed across all 
the threads. Consequently, several image processing 
benchmarks that utilize many constant values have a high 
percentage of redundant computations (e.g. knn in Figure 1).  

We can exploit the computational redundancy to 
increase instruction throughput by adding a separate scalar 
unit to an SM. The scalar unit, which consists of an SRF and 
an FMA unit, is highlighted in Figure 5(a). If each input 
operand of an instruction is the same for all threads in a 
warp, the instruction is issued to the scalar unit; otherwise it 
utilizes the SIMT pipeline. Although our baseline GPU does 
not have a scalar unit, Intel’s Larrabee and AMD’s recently 
announced GPUs also include scalar units [10, 7], which can 
be independently power-gated for applications that do not 
exhibit significant computational redundancy. Therefore, the 
area and power overhead of our approach is negligible for 
such GPUs. 

4.2 Implementation 
In order to detect redundant operations, we keep track of a 
set of warp registers (i.e., 32 32-bit physical registers) that 
store the same value for all 32 physical registers. This is 
achieved by adding a comparison stage before the write-
back stage in the SIMT pipeline. The comparison stage 
checks whether or not the register write-back values across 
all the threads in a warp are the same. If all the values are the 
same, the scalar bit is set for the corresponding register in 
the warp scheduler (cf. Figure 5(c)) and a single 32-bit result 
is written to the SRF.  

The SRF has a single bank with 512 32-bit entries as 
illustrated in Figure 5(b). Operands for a scalar instruction 

Figure 4: Formation of composite instruction: (a) original 
instruction sequence and (b) new sequence with composite
instructions.

                          (a)                                               (b) 

PC Instruction 
0x218 xor_shr $r0<=$r2,$r0,0x1f 
0x220 sub $r5 <= $r5,$r4 
0x228 xor_add $r0<= $r4,$r5,$r0 
0x230 neg $r6 <= $crf[warp_id] 

PC Instruction 
0x218 xor $r0 <= $r2,$r0  
0x220 shr $r0 <= $r0,0x1f 
0x228 sub $r5 <= $r5,$r4 
0x230 xor $r4 <= $r4,$r5 
0x238 neg $r6 <= $r4  
0x240 add $r0 <= $r0,$r4 

Figure 5: SM modifications for scalar instructions: (a) 
modified SM, (b) scalar register file (SRF), and (c) scheduler 
modifications. 
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are read over multiple cycles, similar to the SIMT pipeline. 
This keeps both the SIMT and scalar pipelines in 
synchronization and also allows the dual-ported (1-read and 
1-write ports) SRF to provide the sufficient bandwidth for 
scalar instructions.  Threads in a kernel have common 
logical register values, but each thread’s registers are 
mapped to different physical registers in the MRF banks. 
The SRF registers are addressed using the logical register 
value of a thread. More specifically, the SRF is indexed by 
warp ID × kernel register count + logical register ID. Since 
the value of kernel register count is known at compile time, 
the first indexing term (i.e., warp ID × kernel register count) 
can be preloaded into an SM during the kernel launch phase. 
During warp scheduling, the scalar bits for all source 
operands are checked in parallel by the score-boarding logic 
to determine which pipeline (SIMT or scalar) the instruction 
should be issued to. If all the source operands of an 
instruction reside in the SRF, it is issued to the scalar unit; 
otherwise it is issued to the SIMT pipeline. 

The comparison stage added to the SIMT pipeline is 
illustrated in Figure 6. A single stage of XOR gates is used to 
compare write-back values from adjacent SIMT lanes. Since 
a 32-thread warp is scheduled in four SIMT groups, each of 
which consists of eight threads, one XOR block is employed 
to compare the current write-back value with one of the 
write-back values from the previous cycle; the write-back 
value of the previous cycle is read from the pipeline latches. 
The results from the XOR gates are applied to the all-zero 
detection circuit, which can have a delay equivalent to one 
or two gates using a dynamic circuit [11]. The all-zero 
detector sets the scalar bit to zero if there is any binary one 
present among its input bits, indicating that the write-back 
values are not the same; otherwise, the scalar bit is set to 
one. The registers for threads in a warp are replaced with a 
single scalar register if the scalar bit is set for all four SIMT 
groups of a warp. 

The scalar unit provides three advantages. First, a 
considerable percentage of high energy MRF accesses are 
replaced with low energy SRF accesses; the SRF (one 32-bit 
512-entry bank) consumes much less energy per access than 
the MRF (eight 128-bit 512-entry banks) because the SRF is 
considerably smaller than the MRF. Second, the computation 
is carried out only for a thread instead of 32 threads in the 
warp, reducing execution energy as well. Third, a significant 
performance improvement can be obtained though issuing 

two instructions to both the SIMT and scalar pipelines 
together. The baseline SM can already issue up to two 
instructions per warp (one non-transcendental instruction to 
the FMA units and one transcendental instruction to the 
SFUs) [8]. With our technique, we utilize the same dual-
issue logic to issue one (scalar) instruction to the scalar unit 
and one (SIMT) instruction to the SIMT units. 

5. Sliced Datapath 

5.1 Motivation and Approach 
The MRF can consume up to 15% of the SM dynamic power 
[12]. On the other hand, we observe that 16 or fewer bits are 
sufficient for accurate representations of operands and 
results of many instructions. Figure 1 shows that as many as 
80-90% of values read from and written to the MRF require 
only 16 or fewer bits for accurate representations of the 
values for some INT applications; the 16 MSBs of such 
values contain only the sign-extended bits. Consequently, the 
16 MSBs of registers storing such values do not impact the 
accuracy of computations, wasting energy for each access. 
This can be exploited by spliting the 32-bit datapath into two 
16-bit datapath slices, allowing accesses of only the 16 least 
significant bits (LSBs) of registers to decrease MRF access 
energy or issues of two (16-bit precision) instructions, each 
of which is sufficient with the 16-bit datapath for accurate 
computations  to increase GPU performance.   

5.2 Implementation 
We split the 128-bit wide MRF bank illustrated in Figure 
7(a) into two 64-bit wide bank slices as shown in Figure 
7(b); the 16 MSBs and 16 LSBs of each 32-bit register are 

Figure 6: Comparison stage added to the execution pipeline.
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stored across these two bank slices. Consequently, energy  
consumption for read and write accesses that require only 
the 16 LSBs can be reduced by nearly 50%. However, in 
order to determine whether or not operands requires only 16-
bit accesses, two additional bits are added to every warp 
register (i.e., 32 32-bit physical registers). A half bit-width 
(HB) bit indicates that only the 16 LSBs are needed to be 
read from the 32-bit registers and a sign-extension (SE) bit   
specifies that the sign of values stored in the 32-bit registers. 
These bits are stored in the warp scheduler, similar to the 
scalar bits introduced in Section 4. When an instruction is 
scheduled, the HB and SE bits are checked to determine 
whether or not both MSB and LSB bank slices are required 
to be accessed.  

The all zero/one detection (ZOD) unit in the comparison 
stage checks the 16 MSBs of each write-back value to see 
whether or not they are sign-extended bits. At the same time, 
the logic that computes the scalar bit introduced in Section 4 
also determines the MSB scalar bit, which is set when the 16 
MSBs are the same across all the write-back values from a 
warp. If the MSB scalar bit is set, the HB bit is set along 
with an appropriate SE bit value based on the sign of the 
values.  

The sliced datapath can also be utilized to increase the 
GPU performance. Note that the baseline architecture can 
provide the bandwidth of three 32-bit reads and one 32-bit 
write [12]. On the other hand, (16-bit precision) instructions 
that are sufficient with the 16-bit datapath utilize only a half 
of the read and write bandwidth of the baseline architecture. 
Therefore, the GPU can dual-issue such instructions from 
two different warps using the sliced FMA units that can 
support two 16-bit precision computations in parallel [13, 
14]. The two 16-bit datapath slices can be combined to form 
a single 32-bit datapath. 

Although 16-bit precision instructions only utilize a half 
of the read and write bandwidth of the baseline architecture, 
issuing two such instructions from two different warps can 
be challenging the sliced MRF organization depicted in 
Figure 7(b). This is because all the 16 LSBs reside in the 
same MRF bank, likely leading to MRF bank conflicts. In 
order to reduce such bank conflicts, we can swap the 
placement of 16 LSBs with that of the 16 MSBs for every 
other warp. This is achieved by adding multiplexers in the 
comparison stage. The modified data placements in the 
sliced MRF are illustrated in Figure 7(c). Such placements 
enable the GPU to issue two 16-bit precision instructions 
from odd and even warps in the same cycle. Instead of using 
a unified warp scheduler, we also split the warp scheduler 
into two smaller warp schedulers, each of which is half as 
complex as the warp scheduler in the baseline GPU 
architecture; one schedules instructions from odd warps and 
the other from even warps. If both schedulers have 16-bit 
precision instructions that are ready to be issued to the 16-bit 
datapath in a given cycle, they are issued simultaneously. An 

additional instruction decoder is also needed to issue two 
such instructions from the two warp schedulers.  

When the result of an instruction with 16-bit operands 
requires the complete 32-bit precision and thus 32-bit write 
bandwidth, the pipeline is stalled for a cycle. In practice, 
however, such stalls are rare; our experiment shows only 
0.1% of EU accesses cause stalls on average. Note that these 
stalls do not reduce the performance of the GPU below that 
of the baseline GPU since each SM can still execute 8 
instructions per cycle even if all the instructions with 16-bit 
operands incur stalls. In the absence of stalls, the 
performance of instructions untilizing the 16-bit datapath 
can be increased to 16 instructions per cycle per SM.  

Although the large register file banks in the baseline 
GPU can lead to congestion in the RF layout, our sliced 
MRF banks do not increase this layout congestion. This is 
because the layout congestion is caused by the large number 
of bit-lines in the SRAM arrays of the register file while we 
do not increase the number of bit-lines or their routing. We 
add 2:1 multiplexers for 16-bit MSBs in operand buffers of 
EUs to select a bank slice for either the 16-bit LSBs (for 16-
bit precision instructions with 16-bit precision) or the 16-bit 
MSBs (for 32-bit precision instructions). 

6. Evaluation 
We use GPGPU-Sim [15] to evaluate the performance 
impact of our proposed techniques. The simulator is 
configured to model a GPU similar to the NVIDIA® Quadro 
FX5800. The simulator configuration is summarized in 
Table 2. GPGPU-Sim is enhanced to maintain access rates 
for different architectural components. These access rates, 
which are used in the GPU power model proposed by Hong 
et al. [3], help to estimate the impact of our techniques on 
power consumption. The benchmarks used in this study and 
their acronyms are tabulated in Table 3. 

6.1 Performance Impact 
Figure 9 shows the percentage of total dynamic instructions 
that benefit from each of our proposed techniques. For the 
FP-intensive benchmarks, the percentage of composite 

Table 2: Simulator configuration (see [15] for details). 

# of SMs 30 

SM Freq 1.30GHz 

On-chip Interconnect Freq 0.65GHz 

Warp Size 32 

SIMD Width 8 

# of Threads per SM 1024 

# of CTAs per SM 8 

# of Registers per SM 16384 

L1$ Memory per SM 16 KB 

# of Memory Channels 8 

Warp Scheduling Round Robin 



Figure 9: Percentage of total instructions that benefit from each of our proposed techniques. 

Figure 8: Performance impact of proposed techniques.

instructions (cf. "Composite" bars in Figure 9) is less than 
that for the INT-intensive benchmarks. This is because 
composite instructions can only be formed for INT 
instructions and the FP-intenisve benchmarks exhbit a low 
percentage of INT instructions. For encryption benchmarks, 
up to 35% of instructions can be combined to form 
composite instructions. These benchmarks perform 
numerous shift and add operations that can be easily mapped 
into composite instructions. 

Image processing, machine learning and control-
processing intensive kernels such as NLM, NLM2, KNN, 
SRAD2, DJPG, BP, DWT and MM perform a large 
percentage of scalar operations (cf. "Scalar" bars in Figure 
9). The reasons for their high computational redundancy 
have been described in Section 4. Encryption algorithms 
(SHA and AES) exhibit the least amount of computational 

redundancy. This is because these algorithms perform many 
bit-level manipulations that are different for each thread. The 
number of scalar instructions depends upon the control and 
data redundancy within warp instructions. The percentage of 
control and data redundancy is application-dependent. For 
MM, BSC, BOP, BLS more than 90% of the computational 
redundancy is due to control or memory-address calculations 
whereas for NL, NL2, KNN, RGS, HSP data duplication is 
the main reason for computational redundancy. 

Although the percentage of 16-bit operands read from 
and written to the MRF is fairly high (cf. Figure 1), the 
percentage of 16-bit precision instructions is less (cf. 
"Sliced" bars in Figure 9). This is because instructions can 
be dual-issued to the 16-bit datapath slices only if two 16-bit 
precision instructions from odd and even warps are ready 
simultaneously in the same scheduling cycle. 

Benchmark Acronym Benchmark Acronym

Texture-based convolution [9] CT Ray tracing [25] RAY 
Discrete cosine transform [9] DCT Simple CUDA BLAS [9] BLS 
Binomial options pricing [9] BOP Discrete wavelet transform  DWT 
Image denoising [25] NL Image histogram  [9] HST 
Image denoising [25] NL2 Sum-of-absolute-differences [25] SAD 
Image denoising [25] KNN Back-propagation [26] BP 
Recursive Gaussian filter [9] RGS Needleman-Wunsch [26] NW 
Black-Scholes options pricing [9] BLK SRAD computation 2 [26] SR1 
SRAD computation 1 [26] SR2 Matrix multiplication  [9] MM 
n-body simulations [9] NB AES encryption [25] AES 
JPEG encoding [25] CJP SHA encryption [25] SHA 
JPEG decoding [25] DJP Hot-spot [26] HSP 

Table 3: Benchmarks and their acronyms. 



Figure 8 shows the performance impact of our 
approaches for FP and INT benchmarks. Overall, the INT 
benchmarks exhibit higher speedups than the FP 
benchmarks. The speedup obtained generally correlates with 
the percentage of instructions that benefited from our 
techniques. In some cases (e.g. SHA), however, the 
memory-intensive nature of the application reduces the 
overall performance benefit. NW has a high percentage of 
16-bit precision instructions, but it also has a considerable 
percentage of branch divergence. Its performance 
improvement is thus limited by branch divergence 
serialization.  

Moreover, as we apply our techniques successively, the 
performance improvement of some benchmarks starts to 
saturate because memory latencies and arithmetic latencies 
start to become more dominant. Consequently, for many 
benchmarks (e.g. RGS, CJPG, DJPG, SRAD2, RAY, BLAS 
and SRAD1), the relative performance improvement using 
scalar units and 16-bit datapath slices are less than the 
percentage of instructions that can benefit from them. 
Overall, our techniques provide a geometric mean speedup 
of 25% and 12% for INT and FP benchmarks, respectively. 

6.2 SM Dynamic Energy Consumption 
Figure 10 shows the breakdown of SM dynamic energy 
consumption of the baseline, composite, scalar, and sliced 
architectures denoted by "Base," "Comp," "Scalar," and 
"Sliced." "Comp" supports only composite instructions. 
"Scalar" adopts scalar units along with the support of 
composite instructions. "Sliced" employs all three of our 
techniques: composite instructions, scalar units, and sliced 
datapath. The constant energy shown in the breakdown 

models several components of an SM (e.g. frame buffers) 
that consume a relatively constant amount of power as long 
as the SM remains active [3]. Overall, all three proposed 
techniques collectively offer a geometric mean SM energy 
reduction of 21%.  The energy reduction is higher for INT 
benchmarks (28%) than FP benchmarks (16%) since our 
techniques benefit the INT benchmarks more than FP 
benchmarks. 

FDS energy: Composite instructions can reduce the 
number of fetched/executed instructions and thus the energy 
consumption of FDS logic. The percentage reduction of 
fetched/executed instructions is equal to the percentage of 
executed composite instructions (cf. Figure 9). Overall, 
composite instructions reduce the FDS energy by 17%. The 
INT benchmarks have a higher percentage of composite 
instructions than FP benchmarks, leading to more FDS 
energy reduction. 

MRF energy: The dynamic and leakage energy 
consumption of MRF, CRF, SRF and sliced MRF is obtained 
using CACTI [16]. A similar approach to estimating MRF 
power consumption was taken by Gebhart et al. [12]. The 
leakage power and dynamic energy per access of CRF and 
SRF are included in the power model to estimate the 
overheads of our approaches. However, these structures do 
not contribute significantly to the overall SM power 
consumption. 

Table 4 tabulates the energy cost of the MRF, CRF and 
SRF as obtained using CACTI.  The read and write energy 
cost per 32-bit register of CRF is nearly ten times less than 
that of the MRF due to its smaller size. Similarly, the SRF 
reduces the energy per access by nearly 20 times. Finally, 
utilizing the sliced datapath for operands with 16 or less bits 

Figure 10: Dynamic energy consumption per SM: FP (top) and INT (bottom). 
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reduces the access energy by nearly 50%. 
All of our proposed techniques reduce MRF energy 

consumption. Composite instructions reduce MRF accesses 
by accessing the CRF for intermediate results. The scalar 
instructions utilize the SRF for redundant computations 
instead of the MRF, and the sliced instructions reduce MRF 
energy consumption by reducing the bank widths and 
accessing half bit-width banks for a large percentage of op-
erands. Overall, our proposed techniques reduce the MRF 
energy consumption by nearly 50%. 

EU energy: We enhance the FMA units to include input 
multiplexers for operands read from the CRF and swapping 
the 16-bit LSBs and MSBs of operands read from the sliced 
MRF for odd warps. We also implement bidirectional 
shifters for ASFT and NSFT. The estimated energy overhead 
of these enhancements over the baseline FMA units is 2%. 
We obtain this estimate after synthesizing Verilog HDL 
descriptions of the baseline FMA unit and a modified FMA 
unit using a TSMC 45nm standard cell library. 

For the architecture with a scalar unit and sliced 
datapath, we also include a comparison stage before the 
write-back stage in the SIMT pipeline. The overhead of this 
additional logic including the additional pipeline flip-flops is 
estimated by synthesizing its Verilog HDL descriptions using 
a TSMC 45nm standard cell library. The energy overhead of 
additional logic is summarized in Table 5 along with the 
energy consumption of the execution units [17]. The 

comparison stage has a dynamic energy overhead of 4.3% 
over the execution stage (8 FMA units). 

All three proposed techniques collectively reduce the 
EU energy consumption. Composite instructions reduce the 
number of instructions issued to the EUs. The scalar unit 
reduces the dynamic energy consumption of SIMT EUs 
nearly a factor of 32 for redundant computations. The sliced 
architecture also reduces the dynamic energy of instructions 
with HB operands by nearly 50%. Overall, we reduce the 
EU energy by 41% on average. 

6.3 GPU Power Consumption 
Figure 11 shows the impact of our techniques on the total 
GPU power. The total GPU power consumption includes the 
dynamic power consumption of SMs, global memory power 
consumption, and the GPU leakage power. The leakage 
overhead of additional RFs and logic is also included in 
GPU power consumption. At the GPU level, we only 
increase the power consumption by less than 1% on average. 
However, this power increase comes with a significant 
performance improvement, resulting in much higher power 
efficiency than the baseline GPU. Our proposed techniques 
offer greater optimization opportunities (and thus higher 
performance) for INT benchmarks than for FP benchmarks, 
leading to more GPU power consumption (~1% and ~0.5% 
for INT and FP benchmarks, respectively). 

6.4 GPU Power Efficiency 
The primary goal of this paper is to improve the power 
efficiency of GPU architectures for GPGPU applications. 
The impact of our proposed techniques on power efficiency 
is shown in Figure 12. Power efficiency is determined by 
instruction per cycle (IPC) of the GPU divided by the total 
GPU power consumption (IPC/Watt).   With small power 
overhead of our techniques, the performance improvements 
achieved improve the power efficiency of the GPU 
significantly. For INT and FP benchmarks, our techniques 
collectively improve power efficiency by 27% and 15%, 
respectively, on average; our techniques achieve 20% 
improvement in power efficiency across both INT and FP 
benchmarks. 

 

Figure 11: GPU power consumption. 

 MRF CRF SRF Sliced MRF

Organization 
8 banks  
128 bits  
512-entry 

32 banks 
32 bits  
32-entry 

1 bank  
32 bits  
512 entries 

16 banks  
64 bits  
512 entries 

Read energy 2.8x10-2nJ 7.1x10-4 nJ 1.4x10-3 nJ 1.4x10-2 nJ 

Write energy 2.8x10-2 nJ 7.4x10-4 nJ 1.4x10-3 nJ 1.4x10-2 nJ 

Lkg. power 56.48mW 8.96 mW 1.68 mW 56.64 mW 

Table 4: Energy per access and leakage power of RFs. 

Table 5: Energy overhead of additional logic. 

 Dynamic energy Leakage energy

Execution stage 28.48pJ 9.76pJ

Additional logic 0.72pJ 0.01pJ 

Overhead 4.3% 0.3% 



7. Discussion 
Although our proposed techniques are evaluated using a 
GPU architecture similar to the NVIDIA FX5800 (GT200 
architecture), they can be also employed with more recent 
GPU architectures such as Fermi and Kepler. Due to the lack 
of publically available performance simulators and power 
models for these newer architectures, we limit our evaluation 
to the GT200 architecture. However, any GPU architecture 
can adopt and benefit from our techniques with some 
modifications, because all of our techniques exploit common 
characteristics of GPGPU applications. Finally, all of our 
techniques utilize the dual-issue capability of the baseline 
GPU [8] to issue up to two instructions per cycle. 
Consequently, the evaluated GPU does not issue more than 
two instructions per cycle even if it has more than two 
instructions that can be issued at any given cycle with one or 
more of our techniques.  

7.1 Application to Future GPU Architecture 
In this section, we describe how our proposed approaches 
can benefit other GPU architectures such as Fermi and 
Kepler [18, 19]. 

Composite instructions: The primary motivation for 
employing composite instructions is to exploit common 
instruction patterns to reduce the number of 
fetched/executed instructions. We use the FMA pipeline to 
combine pairs of dependent INT instructions into composite 
instructions that can easily be mapped to the existing FMA 
resources at a negligible power overhead. Note that we do 
not proposed to implement a new datapath that is suitable for 
one or a few kernels evaluated in this paper. Instead, we 
exploit the existing FMA datapath to cover a large 
percentage of INT instruction patterns existing in many 
kernels.  

The main benefit of composite instructions comes from 
the fact that the GPU can effectively execute two 
instructions whenever it issues a composite instruction. This 
allows the GPU to execute another instruction (which can be 
another composite instruction) in the next issue cycle and 
increase  its effective IPC. 

Since FMA units are implemented in most GPUs, 
composite instructions can be easily adopted by these GPUs. 

Supporting composite instructions for these GPUs requires a 
simple compiler pass that identifies appropriate dependent 
instruction pairs and replaces them with composite 
instructions. The replacement can either be done in the 
compiled code or by the GPU driver that converts the 
immediate representation in the compiled code to GPU’s 
architecture-specific ISA. 

Both Fermi and Kepler include separate INT and FP 
execution pipelines. For both architectures, the performance 
improvement with composite instructions is likely to be even 
higher compared to the GT200 architecture used for our 
evaluation. This is because normal INT instructions and 
composite instructions can be issued to the INT and FP 
pipelines in parallel. 

Scalar unit: We employ a scalar unit to exploit the 
computational redundancy in kernels to improve 
performance. Computational redundancy is an architecture-
independent characteristic and will exist in any GPU 
architecture. The extent of computational redundancy 
depends upon the application domains, the particular 
kernels, and the particular input data set. In order to take 
advantage of computational redundancy, we maintain a 
scalar bit with each SIMT register. If the scalar bits of all the 
operands of an SIMT instruction are set, the instruction is 
executed in the scalar pipeline. Otherwise, it is executed in 
the SIMT pipeline. 

The performance improvement with the scalar unit is 
achieved by utilizing the dual-issue capability of the GPU to 
issue instructions to the SIMT and scalar pipelines 
simultaneously. The baseline GPU architecture schedules a 
warp over four cycles (i.e., 8-wide SIMT). A 
computationally redundant instruction, which is executed in 
the scalar pipeline, only requires a single cycle instead of 
four. Nonetheless, we do not exploit this to issue more scalar 
instructions in the remaining three cycles. This is done for 
two reasons. First, for the GT200 architecture, this increases 
the complexity of FDS logic. This is because, instead of 
scheduling warps every four cycles, the FDS logic should 
also be able to schedule new warps every cycle if they 
execute in the scalar pipeline. Second, we employ a single 
write-port SRF to store the results of computationally 
redundant instructions. For cases where both the SIMT and 
scalar pipelines need to write the result to the SRF, a single 

Figure 12: GPU IPC/Watt. 



write port can be shared; the scalar and SIMT pipelines can 
use the write port in the first and fourth cycles, respectively, 
after the comparison stage detects the same result across all 
the SIMT lanes. 

The Kepler architecture schedules a complete warp (32 
threads) in a single cycle. The comparison stage (cf. Figure 6) 
can easily be extended to compare results across all 32 SIMT 
lanes. Since our technique only performs comparisons 
between adjacent lanes (using XOR gates), an increase in the 
SIMT width does not increase any critical paths for that 
stage; the all zero detection logic is made using dynamic 
gates and its delay does not increase with the increased 
SIMT width. 

However, since the Kepler architecture issues the 
complete warp in a single cycle, for cases where both the 
SIMT and scalar pipelines need to write the result to the SRF 
an additional write port will be required in the SRF. 
However, the SRF has a very lower power impact and will 
not drastically change the power efficiency of the approach 
in Kepler. 

Lastly, the performance advantage with the scalar 
pipeline is likely to be higher with Kepler. This is because 
the Kepler scheduler can schedule warps every cycle. This 
will allow the scalar pipeline to be utilized more efficiently, 
as new scalar instructions can be issued every cycle 
compared to the baseline GPU which can only schedule 
scalar instructions every four cycles. Assuming one issue per 
instruction, the Kepler architecture can issue 2 instructions 
per cycle (one scalar and one SIMT instruction per cycle) 
instead of 2 instructions per 4 cycles in the QuadroFX5600 
GPU. This can allow the performance improvement of our 
proposed approach to increase by 4X. 

Sliced datapath: Sliced datapath is motivated by the 
fact that many operands have sign-extended bits that do not 
efficiently utilize the register file bandwidth and execution 
resources of GPUs. We partition the 32-bit datapath into two 
16-bit datapath slices. The dual-issue capability of the GPU 
is exploited to issue up to two 16-bit precision instructions to 
the 16-bit datapath slices. This approach requires the GPU to 
maintain to a MSB scalar bit per a warp register. The MSB 
scalar bit is computed  during the computation of the scalar 
bit to exploiting computational redundancy.  Thus, the 
increased SIMT width of Kepler does not impact the 
implementation complexity of this technique. 

7.2 Impact on Critical Paths 
The timing impact of all hardware requirements for the three 
techniques is evaluated after Verilog HDL descriptions are 
synthesized. A warp scheduler typically consists of 
scoreboarding flip-flops and round-robin schedulers and its  
compexity increases linearly with the number of warps. The 
total number of warps scheduled by the two warp schedulers 
in the sliced datapath approach is the same as the warp 
scheduler in the baseline GPU. Therefore, our techniques 
does not increase the complexity (i.e., critical path delay).  

8. Related Work 
Gebhart et al. propose to reduce the MRF accesses using 
register file caches and smaller and low power register file 
structures managed at compile time [12, 20]. Although we 
also include smaller register files (i.e., CRF and SRF) in our 
techniques, their purpose is not limited to reducing MRF 
accesses. They also allow us to considerably improve the 
performance of the GPU and also help reduce the energy 
consumption of the EUs and FDS logic. 

Kim et al. propose a macro-op scheduling technique for 
out-of-order (OOO) processors to reduce the cycle time 
constraints from the scheduling logic [21]. Dependent INT 
instructions are dynamically detected and scheduled as a 
group. Each instruction within the macro-op is still issued 
separately. In contrast, our technique identifies pairs of 
dependent instructions to form composite instructions (and 
thus reduce the number of instructions at compile time. 
Moreover, these composite instructions are issued to the 
FMA units as a single instruction, reducing energy 
consumption of EUs and improving performance.  

Brooks et al. propose an operation packing technique 
for OOO processors. They employ a sub-word parallel 
approach for improving the performance of reduced bit-
width operands in OOO processors [22]. In contrast, our 
approach provides a sliced datapath architecture that can 
execute two sliced instructions from different threads 
simultaneously. The absence of data dependencies between 
different threads allows more opportunities for performance 
improvements. Moreover, the scheduling logic in an OOO 
processor is often timing critical [21]. Efficiently finding 
instructions that can be executed in a sub-word parallel form 
is likely to increase the critical path of the processor. On the 
other hand, GPUs schedule instructions at a much lower 
clock rate. A single scheduled warp issues over four cycles 
before the next warp is scheduled. This additional 
scheduling time allows GPUs to potentially make more 
complex scheduling decisions without impacting 
performance. Moreover, in our technique, we split the warp 
scheduler and MRF banks in our sliced datapath architecutre. 
This provides the opportunity to find independent 
instructions across threads instead only from the same thread 
(as done in  [21]). Also, due to the much lower complexity 
of a GPU decoder (e.g., compared to x86 decoders), we can 
easily replicate it to issue two different instructions within 
the same scheduling cycle. Finally, the sliced datapath 
architecture can more efficiently utilize RF bandwidth, 
which is a critical resource in GPUs. 

Hameed et al. utilize customizable processors to 
implement application-specific functional units to improve 
performance [23]. Our techniques focus on improving 
performance on general-purpose applications. Moreover, 
instead of adding customized functional units, we utilize the 
existing resources of the EUs to efficiently map common 
INT instructions. Ergin et al., utilize the reduced bit-width 



operations to reduce register file pressure in OOO 
processors. Our techniques, however, strive to improve 
instruction throughput [24]. 

9. Conclusion 
GPUs have traditionally improved their peak compute 
performance by integrating more compute resources and 
operating them at higher frequency. However, modern high 
performance GPUs are power-constrained and it is becoming 
more challenging to increase their compute resources or 
frequencies within their power budgets. Consequently, 
power efficient approaches need to be developed to improve 
performance for future power-constrained GPUs. Facing 
such a challenge, in this paper, we proposed three techniques 
that improved both power efficiency and performance of 
GPUs. We exploit the resources of the execution pipeline to 
execute composite instructions, reducing the power 
consumption of critical resources (FDS, MRF, and EUs) and 
significantly improving performance. We also exploit 
computational redundancy with a scalar unit, which provides 
additional power efficiency and performance improvements. 
Finally, a sliced datapath architecture is employed to take 
advantage of 16-bit precision operands common in many 
GPGPU applications. Individually, composite instructions, 
scalar units, and sliced datapaths provide geometric mean 
performance improvements of 9%, 7%, and 4%, 
respectively. Overall, our techniques offers geometric mean 
power efficiency and performance improvements by 20% 
and 15%, respectively. 
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