
Power-efficient Computing for Compute-intensive GPGPU Applications
Syed Zohaib Gilani†, Nam Sung Kim†, Michael J. Schulte‡

†The University of Wisconsin-Madison, WI, U.S.A. ‡Advanced Micro Devices, TX, U.S.A.

gilani@wisc.edu, nskim@engr.wisc.edu, michael.schulte@amd.com

Abstract
The peak compute performance of GPUs has been increased
by integrating more compute resources and operating them
at higher frequency. However, such approaches significantly
increase power consumption of GPUs, limiting further
performance increase due to the power constraint. Facing
such a challenge, we propose three techniques to improve
power efficiency and performance of GPUs in this paper.
First, we observe that many GPGPU applications are
integer-intensive. For such applications, we combine a pair
of dependent integer instructions into a composite
instruction that can be executed by an enhanced fused
multiply-add unit. Second, we observe that computations for
many instructions are duplicated across multiple threads.
We dynamically detect such instructions and execute them in
a separate scalar unit. Finally, we observe that 16 or fewer
bits are sufficient for accurate representation of operands
and results of many instructions. Thus, we split the 32-bit
datapath into two 16-bit datapath slices that can
concurrently issue and execute up to two such instructions
per cycle. All three proposed techniques can considerably
increase utilization of compute resources, improving power
efficiency and performance by 20% and 15%, respectively.

1. Introduction
GPUs are massively parallel processors with a large number
of execution units and high-bandwidth memory channels to
concurrently run thousands of hardware threads. Although
GPUs are originally designed for graphics applications, they
are also used to accelerate GPGPU applications that can
efficiently utilize the rich compute resources of GPUs.

As applications demand higher GPU performance, the
manufacturers have integrated more compute resources and
operated them at higher frequency, which has been mainly
driven by technology scaling. However, such an approach
significantly increases power consumption and thus it is not
scalable under a power constraint. Note that the power
reduction through technology scaling has been diminishing
[1] while the power constraint that has not scaled [2]. Thus,
we must considerably improve the power efficiency of GPUs
to further increase the performance.

The compute resources of GPUs are organized into
groups, such as streaming multiprocessors (SMs) in
NVIDIA® GPUs. Each SM supports a single-instruction
multiple-thread (SIMT) pipeline (i.e., execution pipeline)
that consists of execution units (EUs), main register file
(MRF), fetch/decode/scheduling (FDS) logic, and on-chip
shared memory. For compute-intensive applications, SMs
can consume more than 85% of the total GPU dynamic

power and the FDS logic, MRF and EUs can dissipate more
than 45% of the total SM dynamic power [3]. In this paper,
therefore, we focus on these power-hungry components in
SMs to improve power efficiency and performance of GPUs
executing GPGPU applications.

Composite instructions: GPUs are typically optimized
for floating-point-intensive applications. Thus, the execution
pipeline of GPUs is usually comprised of a larger number
floating-point (FP) fused multiply-add (FMA) units [4, 5, 6,
7]. However, the GPUs are also employed for accelerating
integer-intensive applications, such as data compression,
data encryption, and medical image processing.
Consequently, the FP FMA units are often enhanced to
perform integer (INT) arithmetic, bitwise, and logical
operations, allowing the GPUs to utilize the same execution
pipeline for INT instructions. Exploiting such FP FMA units,
we can fuse a pair dependent INT instructions into a
composite instruction that can be efficiently executed by an
enhanced FMA unit. The composite instructions, which are
formed by the compiler, reduce the total number of
fetched/executed instructions, thereby improving both power
efficiency and performance of GPUs.

Scalar unit: Many GPGPU applications exhibit
considerable computational redundancy, which arises when
all the threads in SIMT groups (i.e., a warp) produce the
same result. Figure 1 shows that redundant computations
constitute from 10% to 50% of the total fetched/executed
instructions for the evaluated benchmarks (cf. the
"Redundant" bars in Figure 1); refer to Section 6 for the
detailed experimental methodology. The sources of this
computational redundancy are (i) duplicated control
instructions across threads in SIMT groups, (ii) operations
with constants, (iii) memory address calculations, and (iv)
inherent redundancy in pixel data in image and video
processing applications. To exploit such computational
redundancy within a warp, we dynamically detect an
instruction that produces the same result across all the
threads in a warp at runtime. Then we issue such an
instruction to a separate scalar pipeline where its source and
destination registers are kept in a separate scalar register file
(SRF); a scalar unit is comprised of a scalar pipeline and a
SRF. The scalar unit can improve both power efficiency and
performance of GPUs by eliminating redundant
computations and allowing the SIMT pipeline to
concurrently execute another instruction. The baseline GPU
assumed in this study (i.e., NVIDIA® Quadro FX5800) can
issue up to two instructions (one non-transcendental to the
FMA units and one transcendental to the special function
units (SFUs)) per thread every cycle [8]. Note that we can
utilize the same dual-issue capability for our technique to

978-1-4673-5587-2/13/$31.00 ©2013 IEEE

issue computationally redundant instructions to the scalar
pipeline for power efficiency and performance improvement.

Sliced datapath: GPUs typically employ the 32-bit
datapath. However, we observe that 16 or fewer bits are
sufficient for accurate representations of operands and
results of many instructions. Figure 1 shows that a large
percentage of values read from and written to the MRF
require 16 or fewer bits for their accurate representations (cf.
the "RF16 reads" and "RF16 writes" bars in Figure 1). Since
the most significant bits (MSBs) of these values only contain
the sign-extended bits, the accesses of the complete 32-bit
registers are not necessary. This can be exploited to reduce
MRF access energy or improve GPU performance by
spliting the 32-bit datapath into two 16-bit datapath slices;
using only one 16-bit datapath slice reduces MRF access
energy while issuing two (16-bit precision) instructions, each
of which is sufficient with the 16-bit datapath for accurate
computations improves GPU performance. While 16-bit data
types are supported by some GPUs, they are used only to
reduce memory bandwidth pressure [9]. Moreover, the use
of such data types must be explicitly specified by the
programmer. In contrast, our technique dynamically detects
such instructions and schedules them to the 16-bit datapath
slice(s) to reduce MRF access energy or improve GPU
performance.

The reminder of this paper is organized as follows.
Section 2 depicts the baseline GPU architecture. Sections 2,
4, and 5 present our techniques proposed to improve the
power efficiency and performance of GPUs. Section 6
evaluates the performance and power impact of the proposed
techniques. Section 7 discusses the impact of the proposed
techniques on future GPUs. Section 8 describes related
work. Section 9 concludes this study.

2. Baseline GPU Architecture
In this study, we assume a baseline GPU architecture similar
to the NVIDIA® Quadro FX5800 [8]. The baseline GPU,
which is illustrated in Figure 2(a), consists of 30 SMs. Each
SM contains an MRF (16384 32-bit registers), a warp
scheduler, 8 EUs, 2 SFUs, and on-chip shared memory. The
compute resources of an SM are organized into two SIMT
clusters, as shown in Figure 2(b). Each SIMT cluster has 4

EUs and 4 MRF banks. Each MRF bank is dual-ported (1-
read and 1-write ports) and has 512 128-bit entries. The
multi-banked MRF architecture allows each SM to sustain
the bandwidth of 24 32-bit reads and 8 32-bit writes every
cycle per SM without employing multi-ported register file
that can consume considerably more area and power. This
bandwidth ensures that 8 single-precision FP FMA
instructions, each of which needs to read 3 32-bit source
operands and write 1 32-bit result, can be issued every cycle
per SM. All the registers for a thread reside in the same bank
and each thread performs multiple MRF accesses to read all
of its source operands [8].

Each SM schedules warps (i.e., threads in groups of 32
threads). Each warp is issued over 4 cycles with 8 EUs. The
EUs are typically comprised of FP FMA units enhanced to
also execute INT instructions [4, 5, 6, 7]. We assume that the
pipeline latency of the FMA units is 8 cycles. Consequently,
most instructions (excluding double-precision and
transcendental instructions) have 8-cycle read-after-write
(RAW) latency [4, 5, 6]. Finally, the warp scheduler can
issue up to two instructions to the FMA units and the SFUs
per cycle [8].

3. Composite Instructions

3.1 Enhanced FMA Unit
An FMA unit with INT execution enhancements is
illustrated in Figure 3(a). For FP FMA operations, the FMA
unit multiplies the significands of the FP operands using the
signifand multiplier (SMUL) and aligns the product to the
addend using the alignment shifter (ASFT). The alignment

Figure 1: Percentage of total instructions that performed redundant computations and the percentage of RF accesses that utilize
16 bits or less.

Figure 2: Baseline GPU architecture: (a) streaming
multiprocessor (SM) and (b) SIMT cluster.

 (a) (b)

MRF
(8 banks)

Warp scheduler

MEM/
SFUs

Shared memory

Execution units

MRF
(4 128-bit banks)

Operand buffering

Execution
units

MEM
/SFU

shifter ensures that both the product and the addend have the
same exponent. The shifted product is added to the addend
using the ALU and the result is left-shifted using the
normalization shifter (NSFT) until all the leading zeros are
shifted out. The leading zero counter (LZC) is used to
determine the amount of the normalization shift. The
normalized result is rounded using the rounding adder
(RADD) and is re-normalized if required (in case of the
overflow during rounding).

The ALU can be also used to perform INT arithmetic,
logical, and bit-wise operations. The ASFT and NSFT can be
also used to perform right and left shifts on INT operands,
respectively. The LZC, NSFT, and RADD are also used to
convert FP to INT data types and vice versa. Finally, 32-bit
INT multiplications can be performed using the SMUL.
These INT execution enhancements are already supported by
the baseline GPU to utilize the same FMA unit (and
execution pipeline) for both INT and FP operations [4, 5, 6,
7].

3.2 Motivation and Approach
We propose to combine pairs of dependent INT instructions
into composite instructions to reduce the number of
fetched/executed instructions and increase the utilization of
the FMA units. The main motivation behind this approach is
that the energy-per-instruction (EPI) in GPUs is not
dominated by the EUs; considerable energy is consumed by
the instruction cache/buffer, decoder, warp/instruction
schedulers, register file, pipeline flip-flops and clock tree.
We measure the energy consumption of the NVIDIA®
FX5600 GPU using INT and FP micro-benchmarks. Our
measurement indicates that executing two INT ALU
instructions consumes about 74% more energy than a single
FMA instruction on average. Thus, the energy reduction due
to the reduced number of fetched/executed instructions
offsets the energy overhead of using the FMA units
enhanced to execute composite instructions.

Dependent instructions to form a composite instruction
are chosen such that they can easily be mapped to the

compute resources within the FMA unit. The composite
instructions are added to the instruction set architecture
(ISA) of the GPU. Adding such instructions to a GPU ISA is
simpler than adding them to a CPU ISA. This is because the
GPUs typically employ an intermediate language (e.g.,
NVIDIA’s PTX) and the code based on it is converted to the
a platform-specific ISA by the compiler in the GPU driver at
runtime. The identification of dependent instruction pairs
and the formation of composite instructions are performed
statically at compile time. The motivation is to increase the
amount of completed work per instruction (i.e., to reduce the
number of fetched/executed instructions per work) while
utilizing the same execution pipeline as much as possible.

The MRF bandwidth is optimized to read three 32-bit
operands every cycle per FMA unit and most INT operations
require only two or fewer operands per instruction. As a
result, we can combine two dependent INT operations such
that they fully utilize the MRF read bandwidth. A composite
register file (CRF) is added to each FMA unit to hold the
intermediate results of composite instructions (i.e., the
results of predecessor instructions in the combined pairs).
Dependent operations in composite instructions read the
source operands from the CRF. Figure 3(b) shows a CRF
providing 32 32-bit registers and integrated with the FMA
pipeline. The CRF is also dual-ported (1-read and 1-write
ports) like MRF banks and it has a dedicated slot, which is
indexed by the warp identification number (warp ID), for
storing one intermediate result per thread. The 32-entry CRF
ensures that one intermediate result can be stored for each
active warp; the maximum number of active warp is 32 in
the baseline GPU architecture. The use of the CRF also
reduces the number of MRF accesses; the MRF consumes
far more energy per access than the CRF because it has
16384 32-bit registers per SM.

3.3 Implementation Details
The composite instructions, which can be supported by the
FMA unit, are tabulated in Table 1, along with the FMA
resources that are used for each composite instruction. We
enhance the FMA unit to implement bidirectional shifters for
both ASFT and NSFT. This increases the number of
supported composite instructions by allowing both the
producer and consumer instructions to be either left or right

Table 1: Composite instructions and the corresponding FMA
resources utilized.

Composite instruction Resource utilized

Multiply-shift SMUL-ALU

Add/logic-shift ALU-NSFT

Add/logic-add ALU-RADD

Shift-add/logic ASFT-ALU

Muliply-cvt SMUL-LZC-NSFT-RADD

d/logic-cvt ALU-LZC-NSFT-RADD

Shift-shift ASFT-NSFT

Figure 3: SM execution unit: (a) baseline FMA unit and (b)
composite register file (CRF) integrated with an FMA unit.

 (a) (b)

Significand multiplier
(SMUL)

Alignment
shifter
(ASFT)

Arithmetic & logic unit (ALU)

Leading zero counter (LZC)

Normalization shifter (NSFT)

Rounding adder (RADD)

output
latch

Operand A Operand B Operand C

$crf0
CRF

32-bits

Read
port

FMA

Write
port

CBA

From MRF

…

$crf31

$crf1

$crf2

…

shifts. In order to form composite instructions, the compiler
can perform a pass over the code based on an intermediate
language such as NVIDIA® PTX. The compiler pass
identifies the pairs of INT operation listed in Table 1. If the
intermediate results are required by other instructions, the
compiler ensures that they are read from the CRF.

During the formation of composite instructions, the
compiler ensures that only one of instructions in a composite
instruction performs a memory access to avoid pipeline
stalls due to bank conflicts of the shared memory. Moreover,
branch boundaries are never crossed during the search for
instructions that can be combined. Finally, the compiler pass
also ensures that the CRF entry is no longer needed by any
dependent instruction before allowing another composite
instruction to overwrite it.

Figure 4(a) shows a code snippet from the DCT bench-
mark. The compiler is able to detect two composite instruc-
tions from the given code sequence (highlighted in the fig-
ure). Each pair of combined instructions is transformed into
a single composite instruction as illustrated in Figure 4(b).
The two composite instructions utilize the FMA resources
ALU-NSFT and ALU-RADD, respectively. For the second
composite instruction (i.e., PC: 0x228 in Figure 4 (b)), the
intermediate result is stored in the CRF entry indexed by the
corresponding warp ID. The instruction at PC 0x230 thus
reads its operand from the CRF.

4. Scalar Unit Exploiting Computational Re-
dundancy

4.1 Motivation and Approach
Many applications execute a significant percentage of
instructions in which all the threads in a warp produce the
same result. There are several reasons for this computational
redundancy. First, each thread typically consists of two types
of computations: control and data. While the data
computations can be different across threads in a warp, the
control computations (e.g. loop increments, memory address
calculations) are often the same across all the threads in a
wrap. Second, even for data processing, some applications
exhibit data redundancy. For example, in image and video
processing applications, the values of pixels in an image
region processed by a warp may not not change if the region
exhibits the same color. Moreover, computations involving

constants also increase the probability of redundant
computations since one of the operands is fixed across all
the threads. Consequently, several image processing
benchmarks that utilize many constant values have a high
percentage of redundant computations (e.g. knn in Figure 1).

We can exploit the computational redundancy to
increase instruction throughput by adding a separate scalar
unit to an SM. The scalar unit, which consists of an SRF and
an FMA unit, is highlighted in Figure 5(a). If each input
operand of an instruction is the same for all threads in a
warp, the instruction is issued to the scalar unit; otherwise it
utilizes the SIMT pipeline. Although our baseline GPU does
not have a scalar unit, Intel’s Larrabee and AMD’s recently
announced GPUs also include scalar units [10, 7], which can
be independently power-gated for applications that do not
exhibit significant computational redundancy. Therefore, the
area and power overhead of our approach is negligible for
such GPUs.

4.2 Implementation
In order to detect redundant operations, we keep track of a
set of warp registers (i.e., 32 32-bit physical registers) that
store the same value for all 32 physical registers. This is
achieved by adding a comparison stage before the write-
back stage in the SIMT pipeline. The comparison stage
checks whether or not the register write-back values across
all the threads in a warp are the same. If all the values are the
same, the scalar bit is set for the corresponding register in
the warp scheduler (cf. Figure 5(c)) and a single 32-bit result
is written to the SRF.

The SRF has a single bank with 512 32-bit entries as
illustrated in Figure 5(b). Operands for a scalar instruction

Figure 4: Formation of composite instruction: (a) original
instruction sequence and (b) new sequence with composite
instructions.

 (a) (b)

PC Instruction
0x218 xor_shr $r0<=$r2,$r0,0x1f
0x220 sub $r5 <= $r5,$r4
0x228 xor_add $r0<= $r4,$r5,$r0
0x230 neg $r6 <= $crf[warp_id]

PC Instruction
0x218 xor $r0 <= $r2,$r0
0x220 shr $r0 <= $r0,0x1f
0x228 sub $r5 <= $r5,$r4
0x230 xor $r4 <= $r4,$r5
0x238 neg $r6 <= $r4
0x240 add $r0 <= $r0,$r4

Figure 5: SM modifications for scalar instructions: (a)
modified SM, (b) scalar register file (SRF), and (c) scheduler
modifications.

MRF
(8 128-bit banks)

Operand buffering

Execution
units

SFU

SRF

F
M
A

WARP scheduler

Warp 0
Warp 1
Warp 2

…
Warp 31

Insn. buffer

…

S
co

re
bo

ar
d

…

S
ca

la
r

bi
ts

 (a) (b)

srf0
srf1
srf2
…

srf511

SRF

32-bits

Write
port

Read
port

(c)

are read over multiple cycles, similar to the SIMT pipeline.
This keeps both the SIMT and scalar pipelines in
synchronization and also allows the dual-ported (1-read and
1-write ports) SRF to provide the sufficient bandwidth for
scalar instructions. Threads in a kernel have common
logical register values, but each thread’s registers are
mapped to different physical registers in the MRF banks.
The SRF registers are addressed using the logical register
value of a thread. More specifically, the SRF is indexed by
warp ID × kernel register count + logical register ID. Since
the value of kernel register count is known at compile time,
the first indexing term (i.e., warp ID × kernel register count)
can be preloaded into an SM during the kernel launch phase.
During warp scheduling, the scalar bits for all source
operands are checked in parallel by the score-boarding logic
to determine which pipeline (SIMT or scalar) the instruction
should be issued to. If all the source operands of an
instruction reside in the SRF, it is issued to the scalar unit;
otherwise it is issued to the SIMT pipeline.

The comparison stage added to the SIMT pipeline is
illustrated in Figure 6. A single stage of XOR gates is used to
compare write-back values from adjacent SIMT lanes. Since
a 32-thread warp is scheduled in four SIMT groups, each of
which consists of eight threads, one XOR block is employed
to compare the current write-back value with one of the
write-back values from the previous cycle; the write-back
value of the previous cycle is read from the pipeline latches.
The results from the XOR gates are applied to the all-zero
detection circuit, which can have a delay equivalent to one
or two gates using a dynamic circuit [11]. The all-zero
detector sets the scalar bit to zero if there is any binary one
present among its input bits, indicating that the write-back
values are not the same; otherwise, the scalar bit is set to
one. The registers for threads in a warp are replaced with a
single scalar register if the scalar bit is set for all four SIMT
groups of a warp.

The scalar unit provides three advantages. First, a
considerable percentage of high energy MRF accesses are
replaced with low energy SRF accesses; the SRF (one 32-bit
512-entry bank) consumes much less energy per access than
the MRF (eight 128-bit 512-entry banks) because the SRF is
considerably smaller than the MRF. Second, the computation
is carried out only for a thread instead of 32 threads in the
warp, reducing execution energy as well. Third, a significant
performance improvement can be obtained though issuing

two instructions to both the SIMT and scalar pipelines
together. The baseline SM can already issue up to two
instructions per warp (one non-transcendental instruction to
the FMA units and one transcendental instruction to the
SFUs) [8]. With our technique, we utilize the same dual-
issue logic to issue one (scalar) instruction to the scalar unit
and one (SIMT) instruction to the SIMT units.

5. Sliced Datapath

5.1 Motivation and Approach
The MRF can consume up to 15% of the SM dynamic power
[12]. On the other hand, we observe that 16 or fewer bits are
sufficient for accurate representations of operands and
results of many instructions. Figure 1 shows that as many as
80-90% of values read from and written to the MRF require
only 16 or fewer bits for accurate representations of the
values for some INT applications; the 16 MSBs of such
values contain only the sign-extended bits. Consequently, the
16 MSBs of registers storing such values do not impact the
accuracy of computations, wasting energy for each access.
This can be exploited by spliting the 32-bit datapath into two
16-bit datapath slices, allowing accesses of only the 16 least
significant bits (LSBs) of registers to decrease MRF access
energy or issues of two (16-bit precision) instructions, each
of which is sufficient with the 16-bit datapath for accurate
computations to increase GPU performance.

5.2 Implementation
We split the 128-bit wide MRF bank illustrated in Figure
7(a) into two 64-bit wide bank slices as shown in Figure
7(b); the 16 MSBs and 16 LSBs of each 32-bit register are

Figure 6: Comparison stage added to the execution pipeline.

XOR XOR XOR XOR XOR XOR XOR

All zero detection

Scalar bit

All
zero/one
detection

(ZOD)
HBSE

2:1
MUX

FMA
0

FMA
1

FMA
2

FMA
3

FMA
4

FMA
5

FMA
6

FMA
7

XOR

MSB scalar bit

Execute
stage

Comparison
stage

Comparison stage latches

Figure 7: MRF bank sub-division to improve GPU
performance: (a) baseline MRF bank (b) sliced MRF bank (c)
sliced MRF bank with modified data placements.

 (a) (b)

 (c)

MRF bank

Warp 0

Warp 1

Warp 2

Warp 3

128 bits

Read port Write port

LSBsMSBs

MRF bank
64 bits

Warp 0

Warp 1

Warp 0

Warp 1

Warp 2

Warp 3

Warp 2

Warp 3

64 bits

Read
port

Write
port

Read
port

Write
port

MRF bank
64 bits

Warp 0

Warp 1

Warp 0

Warp 1

Warp 2

Warp 3

Warp 2

Warp 3

64 bits

Read
port

Write
port

Read
port

Write
port

stored across these two bank slices. Consequently, energy
consumption for read and write accesses that require only
the 16 LSBs can be reduced by nearly 50%. However, in
order to determine whether or not operands requires only 16-
bit accesses, two additional bits are added to every warp
register (i.e., 32 32-bit physical registers). A half bit-width
(HB) bit indicates that only the 16 LSBs are needed to be
read from the 32-bit registers and a sign-extension (SE) bit
specifies that the sign of values stored in the 32-bit registers.
These bits are stored in the warp scheduler, similar to the
scalar bits introduced in Section 4. When an instruction is
scheduled, the HB and SE bits are checked to determine
whether or not both MSB and LSB bank slices are required
to be accessed.

The all zero/one detection (ZOD) unit in the comparison
stage checks the 16 MSBs of each write-back value to see
whether or not they are sign-extended bits. At the same time,
the logic that computes the scalar bit introduced in Section 4
also determines the MSB scalar bit, which is set when the 16
MSBs are the same across all the write-back values from a
warp. If the MSB scalar bit is set, the HB bit is set along
with an appropriate SE bit value based on the sign of the
values.

The sliced datapath can also be utilized to increase the
GPU performance. Note that the baseline architecture can
provide the bandwidth of three 32-bit reads and one 32-bit
write [12]. On the other hand, (16-bit precision) instructions
that are sufficient with the 16-bit datapath utilize only a half
of the read and write bandwidth of the baseline architecture.
Therefore, the GPU can dual-issue such instructions from
two different warps using the sliced FMA units that can
support two 16-bit precision computations in parallel [13,
14]. The two 16-bit datapath slices can be combined to form
a single 32-bit datapath.

Although 16-bit precision instructions only utilize a half
of the read and write bandwidth of the baseline architecture,
issuing two such instructions from two different warps can
be challenging the sliced MRF organization depicted in
Figure 7(b). This is because all the 16 LSBs reside in the
same MRF bank, likely leading to MRF bank conflicts. In
order to reduce such bank conflicts, we can swap the
placement of 16 LSBs with that of the 16 MSBs for every
other warp. This is achieved by adding multiplexers in the
comparison stage. The modified data placements in the
sliced MRF are illustrated in Figure 7(c). Such placements
enable the GPU to issue two 16-bit precision instructions
from odd and even warps in the same cycle. Instead of using
a unified warp scheduler, we also split the warp scheduler
into two smaller warp schedulers, each of which is half as
complex as the warp scheduler in the baseline GPU
architecture; one schedules instructions from odd warps and
the other from even warps. If both schedulers have 16-bit
precision instructions that are ready to be issued to the 16-bit
datapath in a given cycle, they are issued simultaneously. An

additional instruction decoder is also needed to issue two
such instructions from the two warp schedulers.

When the result of an instruction with 16-bit operands
requires the complete 32-bit precision and thus 32-bit write
bandwidth, the pipeline is stalled for a cycle. In practice,
however, such stalls are rare; our experiment shows only
0.1% of EU accesses cause stalls on average. Note that these
stalls do not reduce the performance of the GPU below that
of the baseline GPU since each SM can still execute 8
instructions per cycle even if all the instructions with 16-bit
operands incur stalls. In the absence of stalls, the
performance of instructions untilizing the 16-bit datapath
can be increased to 16 instructions per cycle per SM.

Although the large register file banks in the baseline
GPU can lead to congestion in the RF layout, our sliced
MRF banks do not increase this layout congestion. This is
because the layout congestion is caused by the large number
of bit-lines in the SRAM arrays of the register file while we
do not increase the number of bit-lines or their routing. We
add 2:1 multiplexers for 16-bit MSBs in operand buffers of
EUs to select a bank slice for either the 16-bit LSBs (for 16-
bit precision instructions with 16-bit precision) or the 16-bit
MSBs (for 32-bit precision instructions).

6. Evaluation
We use GPGPU-Sim [15] to evaluate the performance
impact of our proposed techniques. The simulator is
configured to model a GPU similar to the NVIDIA® Quadro
FX5800. The simulator configuration is summarized in
Table 2. GPGPU-Sim is enhanced to maintain access rates
for different architectural components. These access rates,
which are used in the GPU power model proposed by Hong
et al. [3], help to estimate the impact of our techniques on
power consumption. The benchmarks used in this study and
their acronyms are tabulated in Table 3.

6.1 Performance Impact
Figure 9 shows the percentage of total dynamic instructions
that benefit from each of our proposed techniques. For the
FP-intensive benchmarks, the percentage of composite

Table 2: Simulator configuration (see [15] for details).

of SMs 30

SM Freq 1.30GHz

On-chip Interconnect Freq 0.65GHz

Warp Size 32

SIMD Width 8

of Threads per SM 1024

of CTAs per SM 8

of Registers per SM 16384

L1$ Memory per SM 16 KB

of Memory Channels 8

Warp Scheduling Round Robin

Figure 9: Percentage of total instructions that benefit from each of our proposed techniques.

Figure 8: Performance impact of proposed techniques.

instructions (cf. "Composite" bars in Figure 9) is less than
that for the INT-intensive benchmarks. This is because
composite instructions can only be formed for INT
instructions and the FP-intenisve benchmarks exhbit a low
percentage of INT instructions. For encryption benchmarks,
up to 35% of instructions can be combined to form
composite instructions. These benchmarks perform
numerous shift and add operations that can be easily mapped
into composite instructions.

Image processing, machine learning and control-
processing intensive kernels such as NLM, NLM2, KNN,
SRAD2, DJPG, BP, DWT and MM perform a large
percentage of scalar operations (cf. "Scalar" bars in Figure
9). The reasons for their high computational redundancy
have been described in Section 4. Encryption algorithms
(SHA and AES) exhibit the least amount of computational

redundancy. This is because these algorithms perform many
bit-level manipulations that are different for each thread. The
number of scalar instructions depends upon the control and
data redundancy within warp instructions. The percentage of
control and data redundancy is application-dependent. For
MM, BSC, BOP, BLS more than 90% of the computational
redundancy is due to control or memory-address calculations
whereas for NL, NL2, KNN, RGS, HSP data duplication is
the main reason for computational redundancy.

Although the percentage of 16-bit operands read from
and written to the MRF is fairly high (cf. Figure 1), the
percentage of 16-bit precision instructions is less (cf.
"Sliced" bars in Figure 9). This is because instructions can
be dual-issued to the 16-bit datapath slices only if two 16-bit
precision instructions from odd and even warps are ready
simultaneously in the same scheduling cycle.

Benchmark Acronym Benchmark Acronym

Texture-based convolution [9] CT Ray tracing [25] RAY
Discrete cosine transform [9] DCT Simple CUDA BLAS [9] BLS
Binomial options pricing [9] BOP Discrete wavelet transform DWT
Image denoising [25] NL Image histogram [9] HST
Image denoising [25] NL2 Sum-of-absolute-differences [25] SAD
Image denoising [25] KNN Back-propagation [26] BP
Recursive Gaussian filter [9] RGS Needleman-Wunsch [26] NW
Black-Scholes options pricing [9] BLK SRAD computation 2 [26] SR1
SRAD computation 1 [26] SR2 Matrix multiplication [9] MM
n-body simulations [9] NB AES encryption [25] AES
JPEG encoding [25] CJP SHA encryption [25] SHA
JPEG decoding [25] DJP Hot-spot [26] HSP

Table 3: Benchmarks and their acronyms.

Figure 8 shows the performance impact of our
approaches for FP and INT benchmarks. Overall, the INT
benchmarks exhibit higher speedups than the FP
benchmarks. The speedup obtained generally correlates with
the percentage of instructions that benefited from our
techniques. In some cases (e.g. SHA), however, the
memory-intensive nature of the application reduces the
overall performance benefit. NW has a high percentage of
16-bit precision instructions, but it also has a considerable
percentage of branch divergence. Its performance
improvement is thus limited by branch divergence
serialization.

Moreover, as we apply our techniques successively, the
performance improvement of some benchmarks starts to
saturate because memory latencies and arithmetic latencies
start to become more dominant. Consequently, for many
benchmarks (e.g. RGS, CJPG, DJPG, SRAD2, RAY, BLAS
and SRAD1), the relative performance improvement using
scalar units and 16-bit datapath slices are less than the
percentage of instructions that can benefit from them.
Overall, our techniques provide a geometric mean speedup
of 25% and 12% for INT and FP benchmarks, respectively.

6.2 SM Dynamic Energy Consumption
Figure 10 shows the breakdown of SM dynamic energy
consumption of the baseline, composite, scalar, and sliced
architectures denoted by "Base," "Comp," "Scalar," and
"Sliced." "Comp" supports only composite instructions.
"Scalar" adopts scalar units along with the support of
composite instructions. "Sliced" employs all three of our
techniques: composite instructions, scalar units, and sliced
datapath. The constant energy shown in the breakdown

models several components of an SM (e.g. frame buffers)
that consume a relatively constant amount of power as long
as the SM remains active [3]. Overall, all three proposed
techniques collectively offer a geometric mean SM energy
reduction of 21%. The energy reduction is higher for INT
benchmarks (28%) than FP benchmarks (16%) since our
techniques benefit the INT benchmarks more than FP
benchmarks.

FDS energy: Composite instructions can reduce the
number of fetched/executed instructions and thus the energy
consumption of FDS logic. The percentage reduction of
fetched/executed instructions is equal to the percentage of
executed composite instructions (cf. Figure 9). Overall,
composite instructions reduce the FDS energy by 17%. The
INT benchmarks have a higher percentage of composite
instructions than FP benchmarks, leading to more FDS
energy reduction.

MRF energy: The dynamic and leakage energy
consumption of MRF, CRF, SRF and sliced MRF is obtained
using CACTI [16]. A similar approach to estimating MRF
power consumption was taken by Gebhart et al. [12]. The
leakage power and dynamic energy per access of CRF and
SRF are included in the power model to estimate the
overheads of our approaches. However, these structures do
not contribute significantly to the overall SM power
consumption.

Table 4 tabulates the energy cost of the MRF, CRF and
SRF as obtained using CACTI. The read and write energy
cost per 32-bit register of CRF is nearly ten times less than
that of the MRF due to its smaller size. Similarly, the SRF
reduces the energy per access by nearly 20 times. Finally,
utilizing the sliced datapath for operands with 16 or less bits

Figure 10: Dynamic energy consumption per SM: FP (top) and INT (bottom).

 DWT HST SAD BP NW SR1 MM AES SHA HSP

 CT DCT BOP NL NL2 KNN RGS BSC SR2 NB CJP DJP RAY BLS

reduces the access energy by nearly 50%.
All of our proposed techniques reduce MRF energy

consumption. Composite instructions reduce MRF accesses
by accessing the CRF for intermediate results. The scalar
instructions utilize the SRF for redundant computations
instead of the MRF, and the sliced instructions reduce MRF
energy consumption by reducing the bank widths and
accessing half bit-width banks for a large percentage of op-
erands. Overall, our proposed techniques reduce the MRF
energy consumption by nearly 50%.

EU energy: We enhance the FMA units to include input
multiplexers for operands read from the CRF and swapping
the 16-bit LSBs and MSBs of operands read from the sliced
MRF for odd warps. We also implement bidirectional
shifters for ASFT and NSFT. The estimated energy overhead
of these enhancements over the baseline FMA units is 2%.
We obtain this estimate after synthesizing Verilog HDL
descriptions of the baseline FMA unit and a modified FMA
unit using a TSMC 45nm standard cell library.

For the architecture with a scalar unit and sliced
datapath, we also include a comparison stage before the
write-back stage in the SIMT pipeline. The overhead of this
additional logic including the additional pipeline flip-flops is
estimated by synthesizing its Verilog HDL descriptions using
a TSMC 45nm standard cell library. The energy overhead of
additional logic is summarized in Table 5 along with the
energy consumption of the execution units [17]. The

comparison stage has a dynamic energy overhead of 4.3%
over the execution stage (8 FMA units).

All three proposed techniques collectively reduce the
EU energy consumption. Composite instructions reduce the
number of instructions issued to the EUs. The scalar unit
reduces the dynamic energy consumption of SIMT EUs
nearly a factor of 32 for redundant computations. The sliced
architecture also reduces the dynamic energy of instructions
with HB operands by nearly 50%. Overall, we reduce the
EU energy by 41% on average.

6.3 GPU Power Consumption
Figure 11 shows the impact of our techniques on the total
GPU power. The total GPU power consumption includes the
dynamic power consumption of SMs, global memory power
consumption, and the GPU leakage power. The leakage
overhead of additional RFs and logic is also included in
GPU power consumption. At the GPU level, we only
increase the power consumption by less than 1% on average.
However, this power increase comes with a significant
performance improvement, resulting in much higher power
efficiency than the baseline GPU. Our proposed techniques
offer greater optimization opportunities (and thus higher
performance) for INT benchmarks than for FP benchmarks,
leading to more GPU power consumption (~1% and ~0.5%
for INT and FP benchmarks, respectively).

6.4 GPU Power Efficiency
The primary goal of this paper is to improve the power
efficiency of GPU architectures for GPGPU applications.
The impact of our proposed techniques on power efficiency
is shown in Figure 12. Power efficiency is determined by
instruction per cycle (IPC) of the GPU divided by the total
GPU power consumption (IPC/Watt). With small power
overhead of our techniques, the performance improvements
achieved improve the power efficiency of the GPU
significantly. For INT and FP benchmarks, our techniques
collectively improve power efficiency by 27% and 15%,
respectively, on average; our techniques achieve 20%
improvement in power efficiency across both INT and FP
benchmarks.

Figure 11: GPU power consumption.

 MRF CRF SRF Sliced MRF

Organization
8 banks
128 bits
512-entry

32 banks
32 bits
32-entry

1 bank
32 bits
512 entries

16 banks
64 bits
512 entries

Read energy 2.8x10-2nJ 7.1x10-4 nJ 1.4x10-3 nJ 1.4x10-2 nJ

Write energy 2.8x10-2 nJ 7.4x10-4 nJ 1.4x10-3 nJ 1.4x10-2 nJ

Lkg. power 56.48mW 8.96 mW 1.68 mW 56.64 mW

Table 4: Energy per access and leakage power of RFs.

Table 5: Energy overhead of additional logic.

 Dynamic energy Leakage energy

Execution stage 28.48pJ 9.76pJ

Additional logic 0.72pJ 0.01pJ

Overhead 4.3% 0.3%

7. Discussion
Although our proposed techniques are evaluated using a
GPU architecture similar to the NVIDIA FX5800 (GT200
architecture), they can be also employed with more recent
GPU architectures such as Fermi and Kepler. Due to the lack
of publically available performance simulators and power
models for these newer architectures, we limit our evaluation
to the GT200 architecture. However, any GPU architecture
can adopt and benefit from our techniques with some
modifications, because all of our techniques exploit common
characteristics of GPGPU applications. Finally, all of our
techniques utilize the dual-issue capability of the baseline
GPU [8] to issue up to two instructions per cycle.
Consequently, the evaluated GPU does not issue more than
two instructions per cycle even if it has more than two
instructions that can be issued at any given cycle with one or
more of our techniques.

7.1 Application to Future GPU Architecture
In this section, we describe how our proposed approaches
can benefit other GPU architectures such as Fermi and
Kepler [18, 19].

Composite instructions: The primary motivation for
employing composite instructions is to exploit common
instruction patterns to reduce the number of
fetched/executed instructions. We use the FMA pipeline to
combine pairs of dependent INT instructions into composite
instructions that can easily be mapped to the existing FMA
resources at a negligible power overhead. Note that we do
not proposed to implement a new datapath that is suitable for
one or a few kernels evaluated in this paper. Instead, we
exploit the existing FMA datapath to cover a large
percentage of INT instruction patterns existing in many
kernels.

The main benefit of composite instructions comes from
the fact that the GPU can effectively execute two
instructions whenever it issues a composite instruction. This
allows the GPU to execute another instruction (which can be
another composite instruction) in the next issue cycle and
increase its effective IPC.

Since FMA units are implemented in most GPUs,
composite instructions can be easily adopted by these GPUs.

Supporting composite instructions for these GPUs requires a
simple compiler pass that identifies appropriate dependent
instruction pairs and replaces them with composite
instructions. The replacement can either be done in the
compiled code or by the GPU driver that converts the
immediate representation in the compiled code to GPU’s
architecture-specific ISA.

Both Fermi and Kepler include separate INT and FP
execution pipelines. For both architectures, the performance
improvement with composite instructions is likely to be even
higher compared to the GT200 architecture used for our
evaluation. This is because normal INT instructions and
composite instructions can be issued to the INT and FP
pipelines in parallel.

Scalar unit: We employ a scalar unit to exploit the
computational redundancy in kernels to improve
performance. Computational redundancy is an architecture-
independent characteristic and will exist in any GPU
architecture. The extent of computational redundancy
depends upon the application domains, the particular
kernels, and the particular input data set. In order to take
advantage of computational redundancy, we maintain a
scalar bit with each SIMT register. If the scalar bits of all the
operands of an SIMT instruction are set, the instruction is
executed in the scalar pipeline. Otherwise, it is executed in
the SIMT pipeline.

The performance improvement with the scalar unit is
achieved by utilizing the dual-issue capability of the GPU to
issue instructions to the SIMT and scalar pipelines
simultaneously. The baseline GPU architecture schedules a
warp over four cycles (i.e., 8-wide SIMT). A
computationally redundant instruction, which is executed in
the scalar pipeline, only requires a single cycle instead of
four. Nonetheless, we do not exploit this to issue more scalar
instructions in the remaining three cycles. This is done for
two reasons. First, for the GT200 architecture, this increases
the complexity of FDS logic. This is because, instead of
scheduling warps every four cycles, the FDS logic should
also be able to schedule new warps every cycle if they
execute in the scalar pipeline. Second, we employ a single
write-port SRF to store the results of computationally
redundant instructions. For cases where both the SIMT and
scalar pipelines need to write the result to the SRF, a single

Figure 12: GPU IPC/Watt.

write port can be shared; the scalar and SIMT pipelines can
use the write port in the first and fourth cycles, respectively,
after the comparison stage detects the same result across all
the SIMT lanes.

The Kepler architecture schedules a complete warp (32
threads) in a single cycle. The comparison stage (cf. Figure 6)
can easily be extended to compare results across all 32 SIMT
lanes. Since our technique only performs comparisons
between adjacent lanes (using XOR gates), an increase in the
SIMT width does not increase any critical paths for that
stage; the all zero detection logic is made using dynamic
gates and its delay does not increase with the increased
SIMT width.

However, since the Kepler architecture issues the
complete warp in a single cycle, for cases where both the
SIMT and scalar pipelines need to write the result to the SRF
an additional write port will be required in the SRF.
However, the SRF has a very lower power impact and will
not drastically change the power efficiency of the approach
in Kepler.

Lastly, the performance advantage with the scalar
pipeline is likely to be higher with Kepler. This is because
the Kepler scheduler can schedule warps every cycle. This
will allow the scalar pipeline to be utilized more efficiently,
as new scalar instructions can be issued every cycle
compared to the baseline GPU which can only schedule
scalar instructions every four cycles. Assuming one issue per
instruction, the Kepler architecture can issue 2 instructions
per cycle (one scalar and one SIMT instruction per cycle)
instead of 2 instructions per 4 cycles in the QuadroFX5600
GPU. This can allow the performance improvement of our
proposed approach to increase by 4X.

Sliced datapath: Sliced datapath is motivated by the
fact that many operands have sign-extended bits that do not
efficiently utilize the register file bandwidth and execution
resources of GPUs. We partition the 32-bit datapath into two
16-bit datapath slices. The dual-issue capability of the GPU
is exploited to issue up to two 16-bit precision instructions to
the 16-bit datapath slices. This approach requires the GPU to
maintain to a MSB scalar bit per a warp register. The MSB
scalar bit is computed during the computation of the scalar
bit to exploiting computational redundancy. Thus, the
increased SIMT width of Kepler does not impact the
implementation complexity of this technique.

7.2 Impact on Critical Paths
The timing impact of all hardware requirements for the three
techniques is evaluated after Verilog HDL descriptions are
synthesized. A warp scheduler typically consists of
scoreboarding flip-flops and round-robin schedulers and its
compexity increases linearly with the number of warps. The
total number of warps scheduled by the two warp schedulers
in the sliced datapath approach is the same as the warp
scheduler in the baseline GPU. Therefore, our techniques
does not increase the complexity (i.e., critical path delay).

8. Related Work
Gebhart et al. propose to reduce the MRF accesses using
register file caches and smaller and low power register file
structures managed at compile time [12, 20]. Although we
also include smaller register files (i.e., CRF and SRF) in our
techniques, their purpose is not limited to reducing MRF
accesses. They also allow us to considerably improve the
performance of the GPU and also help reduce the energy
consumption of the EUs and FDS logic.

Kim et al. propose a macro-op scheduling technique for
out-of-order (OOO) processors to reduce the cycle time
constraints from the scheduling logic [21]. Dependent INT
instructions are dynamically detected and scheduled as a
group. Each instruction within the macro-op is still issued
separately. In contrast, our technique identifies pairs of
dependent instructions to form composite instructions (and
thus reduce the number of instructions at compile time.
Moreover, these composite instructions are issued to the
FMA units as a single instruction, reducing energy
consumption of EUs and improving performance.

Brooks et al. propose an operation packing technique
for OOO processors. They employ a sub-word parallel
approach for improving the performance of reduced bit-
width operands in OOO processors [22]. In contrast, our
approach provides a sliced datapath architecture that can
execute two sliced instructions from different threads
simultaneously. The absence of data dependencies between
different threads allows more opportunities for performance
improvements. Moreover, the scheduling logic in an OOO
processor is often timing critical [21]. Efficiently finding
instructions that can be executed in a sub-word parallel form
is likely to increase the critical path of the processor. On the
other hand, GPUs schedule instructions at a much lower
clock rate. A single scheduled warp issues over four cycles
before the next warp is scheduled. This additional
scheduling time allows GPUs to potentially make more
complex scheduling decisions without impacting
performance. Moreover, in our technique, we split the warp
scheduler and MRF banks in our sliced datapath architecutre.
This provides the opportunity to find independent
instructions across threads instead only from the same thread
(as done in [21]). Also, due to the much lower complexity
of a GPU decoder (e.g., compared to x86 decoders), we can
easily replicate it to issue two different instructions within
the same scheduling cycle. Finally, the sliced datapath
architecture can more efficiently utilize RF bandwidth,
which is a critical resource in GPUs.

Hameed et al. utilize customizable processors to
implement application-specific functional units to improve
performance [23]. Our techniques focus on improving
performance on general-purpose applications. Moreover,
instead of adding customized functional units, we utilize the
existing resources of the EUs to efficiently map common
INT instructions. Ergin et al., utilize the reduced bit-width

operations to reduce register file pressure in OOO
processors. Our techniques, however, strive to improve
instruction throughput [24].

9. Conclusion
GPUs have traditionally improved their peak compute
performance by integrating more compute resources and
operating them at higher frequency. However, modern high
performance GPUs are power-constrained and it is becoming
more challenging to increase their compute resources or
frequencies within their power budgets. Consequently,
power efficient approaches need to be developed to improve
performance for future power-constrained GPUs. Facing
such a challenge, in this paper, we proposed three techniques
that improved both power efficiency and performance of
GPUs. We exploit the resources of the execution pipeline to
execute composite instructions, reducing the power
consumption of critical resources (FDS, MRF, and EUs) and
significantly improving performance. We also exploit
computational redundancy with a scalar unit, which provides
additional power efficiency and performance improvements.
Finally, a sliced datapath architecture is employed to take
advantage of 16-bit precision operands common in many
GPGPU applications. Individually, composite instructions,
scalar units, and sliced datapaths provide geometric mean
performance improvements of 9%, 7%, and 4%,
respectively. Overall, our techniques offers geometric mean
power efficiency and performance improvements by 20%
and 15%, respectively.

Acknowledgement
This work is supported in part by NSF grants (CCF-095360,
CCF-1016262, CNS-1217102), an SRC grant (Task ID:
2080.001), and generous gift grants from AMD.

References

[1] ITRS, 2011. [Online]. Available: http://www.itrs.net

[2] J. Lee, et al., “Improving Throughput of Power-Constrained
GPUs Using Dynamic Voltage/Frequency and Core Scaling,”
in ACM PACT, 2011.

[3] S. Hong and H. Kim, “An integrated GPU power and
performance model,” in IEEE/ACM ISCA, 2010.

[4] E. Lindholm, et al., "NVIDIA Tesla: A Unified Graphics and
Computing Architecture," IEEE Micro, vol. 28, no. 2, pp. 39-
55, 2008.

[5] Advanced Micro Devices, "Heterogeneous Computing --
OpenCL and the ATI Radeon ("Evergreen") architecture,"
[Online]. Available: http://developer.amd.com

[6] Advanced Micro Devices, 2008. [Online]. Available:
http://developer.amd.com

[7] L. Seiler, et al., “Larrabee: a many-core x86 architecture for
visual computing,” ACM Transactions on Graphics, vol. 27,
no. 3, pp. 18:1-18:15, 2008.

[8] H. Wong, et al., "Demystifying GPU microarchitecture

through microbenchmarking," in IEEE ISPASS, 2010.

[9] NVIDIA, "NVIDIA® CUDA SDK v2.3," [Online]. Available:
http://developer.nvidia.com

[10] M. Mantor and M. Houston, "AMD Graphics Core Next,"
AMD Fusion Developers Summit, 2012.

[11] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, Addison Wesley, 2010.

[12] M. Gebhart, et al., "Energy-efficient mechanisms for
managing thread context in throughput processors," in
IEEE/ACM ISCA, 2011.

[13] A. Akkaş and M. Schulte, "Dual-mode floating-point
multiplier architectures with parallel operations," Journal of
Systems Architecture, vol. 52, no. 10, pp. 549-562, 2006.

[14] L. Huang, et al., “A New Architecture For Multiple-Precision
Floating-Point Multiply-Add Fused Unit Design,” in IEEE
ARITH, 2007.

[15] A. Bakhoda, et al., "Analyzing CUDA workloads using a
detailed GPU simulator," in IEEE ISPASS, 2009.

[16] HP®, [Online]. Available: http://quid.hpl.hp.com:9081/cacti.

[17] S. Galal and M. Horowitz, "Energy-Efficient Floating-Point
Unit Design," IEEE Transactions on Computers, vol. 60, no.
7, pp. 913-922, 2011.

[18] NVIDIA, NVIDIA's Next Generation CUDA(TM) compute
Architecture: Fermi, 2009.

[19] NVIDIA, Whitepaper: NVIDIA® GeForce GTX 680, 2012.

[20] M. Gebhart, S. Keckler and W. Dally, “A compile-time
managed multi-level register file hierarchy,” in IEEE/ACM
MICRO, 2011.

[21] I. Kim and M. Lipasti, "Macro-op scheduling: relaxing
scheduling loop constraints," in IEEE/ACM MICRO, 2003.

[22] D. Brooks and M. Martonosi, "Value-based clock gating and
operation packing: dynamic strategies for improving processor
power and performance," ACM Transactions on Computer
Systems, vol. 18, no. 2, pp. 89-126, 2000.

[23] R. Hameed, et al., “Understanding sources of inefficiency in
general-purpose chips,” in IEEE/ACM ISCA, 2010.

[24] O. Ergin, et al., "Register Packing: Exploiting Narrow-Width
Operands for Reducing Register File Pressure," in IEEE/ACM
MICRO, 2004.

[25] D. Chang, et al. "ERCBench: An Open-Source Benchmark
Suite for Embedded and Reconfigurable Computing," in IEEE
FPLA, 2010.

[26] S. Che, et al., "Rodinia: A Benchmark Suite for
Heterogeneous Computing," in IEEE IISWC, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /Cmb10
 /CMBSY10
 /Cmbsy10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /Cmbx10
 /CMBX12
 /Cmbx12
 /CMBX5
 /Cmbx5
 /CMBX6
 /Cmbx6
 /CMBX7
 /Cmbx7
 /CMBX8
 /Cmbx8
 /CMBX9
 /Cmbx9
 /CMBXSL10
 /Cmbxsl10
 /CMBXTI10
 /Cmbxti10
 /CMCSC10
 /Cmcsc10
 /CMCSC8
 /Cmcsc8
 /CMCSC9
 /Cmcsc9
 /CMDUNH10
 /Cmdunh10
 /CMEX10
 /Cmex10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /Cmff10
 /CMFI10
 /Cmfi10
 /CMFIB8
 /Cmfib8
 /CMINCH
 /Cminch
 /CMITT10
 /Cmitt10
 /CMMI10
 /Cmmi10
 /CMMI12
 /Cmmi12
 /CMMI5
 /Cmmi5
 /CMMI6
 /Cmmi6
 /CMMI7
 /Cmmi7
 /CMMI8
 /Cmmi8
 /CMMI9
 /Cmmi9
 /CMMIB10
 /Cmmib10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /Cmr10
 /CMR12
 /Cmr12
 /CMR17
 /Cmr17
 /CMR5
 /Cmr5
 /CMR6
 /Cmr6
 /CMR7
 /Cmr7
 /CMR8
 /Cmr8
 /CMR9
 /Cmr9
 /CMSL10
 /Cmsl10
 /CMSL12
 /Cmsl12
 /CMSL8
 /Cmsl8
 /CMSL9
 /Cmsl9
 /CMSLTT10
 /Cmsltt10
 /CMSS10
 /Cmss10
 /CMSS12
 /Cmss12
 /CMSS17
 /Cmss17
 /CMSS8
 /Cmss8
 /CMSS9
 /Cmss9
 /CMSSBX10
 /Cmssbx10
 /CMSSDC10
 /Cmssdc10
 /CMSSI10
 /Cmssi10
 /CMSSI12
 /Cmssi12
 /CMSSI17
 /Cmssi17
 /CMSSI8
 /Cmssi8
 /CMSSI9
 /Cmssi9
 /CMSSQ8
 /Cmssq8
 /CMSSQI8
 /Cmssqi8
 /CMSY10
 /Cmsy10
 /CMSY5
 /Cmsy5
 /CMSY6
 /Cmsy6
 /CMSY7
 /Cmsy7
 /CMSY8
 /Cmsy8
 /CMSY9
 /Cmsy9
 /CMTCSC10
 /Cmtcsc10
 /CMTEX10
 /Cmtex10
 /CMTEX8
 /Cmtex8
 /CMTEX9
 /Cmtex9
 /CMTI10
 /Cmti10
 /CMTI12
 /Cmti12
 /CMTI7
 /Cmti7
 /CMTI8
 /Cmti8
 /CMTI9
 /Cmti9
 /CMTT10
 /Cmtt10
 /CMTT12
 /Cmtt12
 /CMTT8
 /Cmtt8
 /CMTT9
 /Cmtt9
 /CMU10
 /Cmu10
 /CMVTT10
 /Cmvtt10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

