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Abstract 

Graphics processing units (GPUs) have specialized 

throughput-oriented memory systems optimized for stream-

ing writes with scratchpad memories to capture locality 

explicitly. Expanding the utility of GPUs beyond graphics 

encourages designs that simplify programming (e.g., using 

caches instead of scratchpads) and better support irregular 

applications with finer-grain synchronization. Our hypothe-

sis is that, like CPUs, GPUs will benefit from caches and 

coherence, but that CPU-style “read for ownership” (RFO) 

coherence is inappropriate to maintain support for regular 

streaming workloads. 

This paper proposes QuickRelease (QR), which improves on 

conventional GPU memory systems in two ways. First, QR 

uses a FIFO to enforce the partial order of writes so that 

synchronization operations can complete without frequent 

cache flushes. Thus, non-synchronizing threads in QR can 

re-use cached data even when other threads are performing 

synchronization. Second, QR partitions the resources re-

quired by reads and writes to reduce the penalty of writes 

on read performance. 

Simulation results across a wide variety of general-purpose 

GPU workloads show that QR achieves a 7% average per-

formance improvement compared to a conventional GPU 

memory system. Furthermore, for emerging workloads with 

finer-grain synchronization, QR achieves up to 42% per-

formance improvement compared to a conventional GPU 

memory system without the scalability challenges of RFO 

coherence. To this end, QR provides a throughput-oriented 

solution to provide fine-grain synchronization on GPUs. 

1. Introduction 

Graphics processing units (GPUs) provide tremendous 

throughput with outstanding performance-to-power ratios on 

graphics and graphics-like workloads by specializing the 

GPU architecture for the characteristics of these workloads. 

In particular, GPU memory systems are optimized to stream 

through large data structures with coarse-grain and relative-

ly infrequent synchronization. Because synchronization is 

rare, current systems implement memory fences with slow 

and inefficient mechanisms. However, in an effort to expand 

the reach of their products, vendors are pushing to make 

GPUs more general-purpose and accessible to programmers 

who are not experts in the graphics domain. A key compo-

nent of that push is to simplify graphics memory with sup-

port for flat addressing, fine-grain synchronization, and co-

herence between CPU and GPU threads [1]. 

However, designers must be careful when altering graphics 

architectures to support new features. While more generality 

can help expand the reach of GPUs, that generality cannot 

be at the expense of throughput. Notably, this means that 

borrowing solutions from CPU designs, such as “read for 

ownership” (RFO) coherence, that optimize for latency and 

cache re-use likely will not lead to viable solutions [2]. Sim-

ilarly, brute-force solutions, such as making all shared data 

non-cacheable, also are not likely to be viable because they 

severely limit throughput and efficiency. 

Meanwhile, write-through (WT) GPU memory systems can 

provide higher throughput for streaming workloads, but 

those memory systems will not perform as well for general-

purpose GPU (GPGPU) workloads that exhibit temporal 

locality [3]. An alternative design is to use a write-back or 

write-combining cache that keeps dirty blocks in cache for a 

longer period of time (e.g., until evicted by an LRU re-

placement policy). Write-combining caches are a hybrid 

between WT and write-back caches in which multiple writes 

can be combined before reaching memory. While these 

caches may accelerate workloads with temporal locality 

within a single wavefront (warp, 64 threads), they require 

significant overhead to manage synchronization among 

wavefronts simultaneously executing on the same compute 

unit (CU) and incur a penalty for performing synchroniza-

tion. In particular, write-combining caches require finding 

and evicting all dirty data written by a given wavefront, 

presumably by performing a heavy-weight iteration over all 

cache blocks. This overhead discourages fine-grain syn-

chronization that we predict will be necessary for broader 

978-1-4799-3097-5/14/$31.00 ©2014 IEEE978-1-4799-3097-5/14/$31.00 ©2014 IEEE



 

 

 

success of GPGPU compute. To this end, no current GPUs 

use write-combining caches for globally shared data (how-

ever, GPUs do use write-combining caches for graphic spe-

cific operations such as image, texture, and private writes). 

In this paper, we propose a GPU cache architecture called 

QuickRelease (QR) that is designed for throughput-oriented, 

fine-grain synchronization without degrading GPU memory-

streaming performance. In QR, we “wrap” conventional 

GPU write-combining caches with a write-tracking compo-

nent called the synchronization FIFO (S-FIFO). The S-FIFO 

is a simple hardware FIFO that tracks writes that have not 

completed ahead of an ordered set of releases. With the S-

FIFO, QR caches can maintain the correct partial order be-

tween writes and synchronization operations while avoiding 

unnecessary inter-wavefront interference cause by cache 

flushes. 

When a store is written into a cache, the address also is 

enqueued onto the S-FIFO. When the address reaches the 

head of the S-FIFO, the cache is forced to evict the cache 

block if that address is still present in the write cache. With 

this organization, the system can implement a release syn-

chronization operation by simply enqueueing a release 

marker onto the S-FIFO. When the marker reaches the head 

of the queue, the system can be sure that all prior stores 

have reached the next level of memory. Because the S-FIFO 

and cache are decoupled, the memory system can utilize 

aggressive write-combining caches that work well for 

graphics workloads. 

Figure 1 shows an example of QR. In the example, we show 

two threads from different CUs (a.k.a. NVIDIA streaming 

multi-processors) communicating a value in a simple GPU 

system that contains one level of write-combining cache. 

When a thread performs a write, it writes the value into the 

write-combining cache and enqueues the address at the tail 

of the S-FIFO (time ). The cache block then is kept in the 

L1 until it is selected for eviction by the cache replacement 

policy or its corresponding entry in the FIFO is dequeued. 

The controller will dequeue an S-FIFO entry when the S-

FIFO fills up or a synchronization event triggers an S-FIFO 

flush. In the example, the release semantic of a store/release 

operation causes the S-FIFO to flush. The system enqueues 

a special release marker into the S-FIFO (), starts generat-

ing cache evictions for addresses ahead of the marker (), 

and waits for that marker to reach the head of the queue 

(). Then the system can perform the store part of the 

store/release (), which, once it reaches memory, signals 

completion of the release to other threads (). Finally, an-

other thread can perform a load/acquire to complete the syn-

chronization () and then load the updated value of X (). 

An important feature of the QR design is that it can be ex-

tended easily to systems with multiple levels of write-

combining cache by giving each level its own S-FIFO. In 

that case, a write is guaranteed to be ordered whenever it 

has been dequeued from the S-FIFO at the last level of 

write-combining memory. We discuss the details of such a 

multi-level system in Section 3. 

Write-combining caches in general, including QR caches, 

typically incur a significant overhead for tracking the specif-

ic bytes that are dirty in a cache line. This tracking is re-

quired to merge simultaneous writes from different writers 

to different bytes of the same cache line. Most implementa-

tions use a dirty-byte bitmask for every cache line (12.5% 

overhead for 64-byte cache lines) and write out only the 

dirty portions of a block on evictions. 

 

Figure 1. Example of QuickRelease in a simple one-level graphics memory system. 

 

 



 

 

 

To reduce the overhead of byte-level write tracking, QR 

separates the read and write data paths and splits a cache 

into read-only and (smaller) write-only sub-caches. This 

separation is not required, but allows an implementation to 

reduce the overhead of writes by providing dirty bitmasks 

only on the write-only cache. The separation also encour-

ages data path optimizations like independent and lazy man-

agement of write bandwidth while minimizing implementa-

tion complexity. We show that because GPU threads, unlike 

CPU threads, rarely perform read-after-write operations, the 

potential penalty of the separation is low [4]. In fact, this 

separation leads to less cache pollution with write-only data. 

Experimental comparisons to a traditional GPGPU through-

put-oriented WT memory system and to an RFO memory 

system demonstrate that QR achieves the best qualities of 

each design. Compared to the traditional GPGPU memory 

system, bandwidth to the memory controller was reduced by 

an average of 52% and the same applications ran 7% faster 

on average. Further, we show that future applications with 

frequent synchronization can run integer factors faster than 

a traditional GPGPU memory system. In addition, QR does 

not harm the performance of current streaming applications 

while reducing the memory traffic by 3% compared to a WT 

memory system. Compared to the RFO memory system, QR 

performs 20% faster. In fact, the RFO memory system gen-

erally performs worse than a system with the L1 cache disa-

bled. 

In summary, this paper makes the following contributions: 

 We augment an aggressive, high-throughput, write-

combining cache design with precise write tracking to 

make synchronization faster and cheaper without the 

need for L1 miss status handling registers (MSHRs). 

 We implement write tracking efficiently using S-FIFOs 

that do not require expensive CAMs or cache walks, 

which prevent inter-wavefront synchronization interfer-

ence due to cache walks. 

 Because writes require an additional byte mask in a 

write-combining cache, we optionally separate the read 

and write data paths to decrease state storage. 

In this paper, Section 2 describes current GPGPU memory 

systems and prior work in the area of GPGPU synchroniza-

tion. Section 3 describes QR by describing its design choic-

es and how it performs memory operations and synchroniza-

tion. Section 4 describes the simulation environment for our 

experiments and the workloads we used. Section 5 evaluates 

the merits of QR compared to both a traditional GPU 

memory system and a theoretical MOESI coherence proto-

col implemented on a GPGPU. 

2. Background and Related Work 

This section introduces the GPU system terminology used 

throughout the paper and describes how current GPU 

memory systems support global synchronization. Then we 

introduce release consistency (RC), the basis for the 

memory model assumed in the next sub-section and the 

model being adopted by the Heterogeneous System Archi-

tecture (HSA) specification, which will govern designs from 

AMD, ARM, Samsung, and Qualcomm, among others. We 

also describe the memory systems of two accelerated pro-

cessing units (APUs—devices containing a CPU, GPU, and 

potentially other accelerators) that obey the HSA memory 

model for comparison to QR: a baseline WT memory sys-

tem representing today’s GPUs, and an RFO cache-coherent 

memory system, as typically used by CPUs, extended to a 

GPU. Finally, in Section 2.5, we discuss how QR compares 

to prior art. 
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Figure 2: Baseline accelerated processing unit system. QR-specific parts are all S-FIFOs, wL1s, wL2, and wL3 (all smaller 

than rL1, rL2 and L3). 



 

 

 

2.1. GPU Terminology 

The paper uses AMD and OpenCL™ terminology [5] to 

describe GPU hardware and GPGPU software components. 

The NVIDIA terminology [6] is in parentheses. 

 Work-item (thread): a single lane of GPU execution. 

 Wavefront (warp): 64 work-items executing a single 

instruction in lock-step over four cycles on a 16-wide 

SIMD unit with the ability to mask execution based on 

divergent control flow. This now is known as a sub-

group in OpenCL 2.0. 

 Compute unit (streaming multi-processor): a cluster of 

four SIMD units that share a L1 cache and multiplexes 

execution among 40 total wavefronts. 

 Work-group (thread block): a group of work-items that 

must be scheduled to a single CU. 

 NDRange (grid): a set of work-groups. 

 Kernel: a launched task including all work-items in an 

NDRange. 

 Barrier: an instruction that ensures all work-items in a 

work-group have executed it and that all prior memory 

operations are visible globally before it completes. 

 LdAcq: Load acquire, a synchronizing load instruction 

that acts as downward memory fence such that later op-

erations (in program order) cannot become visible be-

fore this operation. 

 StRel: Store release, a synchronizing store instruction 

that acts like an upward memory fence such that all pri-

or memory operations (in program order) are visible be-

fore this store. 

2.2. Current GPU Global Synchronization 

Global synchronization support in today’s GPUs is relative-

ly simple compared to CPUs to minimize microarchitecture 

complexity and because synchronization primitives current-

ly are invoked infrequently. Figure 2 illustrates a GPU 

memory system loosely based on current architectures, such 

as NVIDIA’s Kepler [7] or AMD’s Southern Islands [8], 

[9]. Each CU has a WT L1 cache and all CUs share a single 

L2 cache. Current GPU memory models only require stores 

to be visible globally after memory fence operations (barri-

er, kernel begin, and kernel end) [5]. In the Kepler parts, the 

L1 cache is disabled for all globally visible writes. There-

fore, to implement a memory fence, that architecture only 

needs to wait for all outstanding writes (e.g., in a write buff-

er) to complete. The Southern Islands parts use the L1 cache 

for globally visible writes; therefore, the AMD parts imple-

ment a memory fence by invalidating all data in the L1 

cache and flushing all written data to the shared L2 (via a 

cache walk) [8]. 

2.3. Release Consistency on GPUs 

RC [10] has been adopted at least partially by ARM [11], 

Alpha [12], and Itanium [13] architectures and seems like a 

reasonable candidate for GPUs because it is adequately 

weak for many hardware designs, but strong enough to rea-

son easily about data races. In addition, future AMD and 

ARM GPUs and APUs will be compliant with the HSA 

memory model, which is defined to be RC [1]. The rest of 

this paper will assume that the memory system implementa-

tion must obey RC [14]. 

The HSA memory model [15] adds explicit LdAcq and 

StRel instructions. They will be sequentially consistent. In 

addition, they will enforce a downward and upward fence, 

respectively. Unlike a CPU consistency model, enforcing 

the HSA memory model is not strictly the job of the hard-

ware; it is possible to use a finalizer (an intermediate as-

sembly language compiler) to help enforce consistency with 

low-level instructions. In this paper, we consider hardware 

solutions to enforcing RC. 

2.4. Supporting Release Consistency 

In this section, two possible baseline APU implementations 

of RC are described. The first is a slight modification to the 

system described in Section 2.2. The second is a naïve im-

plementation of a traditional CPU RFO cache-coherence 

protocol applied to an APU. Both support RC as specified. 

2.4.1. Realistic Write-through GPU Memory System 

The current GPU memory system described in Section 2.2 

can adhere to the RC model between the CPU and GPU 

requests by writing through to memory via the APU directo-

ry. This means that a release operation (kernel end, barrier, 

or StRel) will need to wait for all prior writes to be visible 

globally before executing more memory operations. In addi-

tion, an acquiring memory fence (kernel begin or LdAcq) 

will invalidate all clean and potentially stale L1 cache data. 

2.4.2. “Read for Ownership” GPU Memory System 

Current multi-core CPU processors implement shared 

memory with write-back cache coherence [16]. As the RFO 

name implies, these systems will perform a read to gain 

ownership of a cache block before performing a write. In 

doing so, RFO protocols maintain the invariant that at any 

point in time only a single writer or multiple readers exist 

for a given cache block. 

To understand the benefit an RFO protocol can provide 

GPUs, we added a directory to our baseline GPU cache hi-

erarchy. It is illustrated in Figure 2, where the wL2 and wL3 

are replaced by a fully mapped directory with full sharer 

state [17]. The directory’s contents are inclusive of the L1s 

and L2, and the directory maintains coherence by allowing a 

single writer or multiple readers to cache a block at any 

time. Because there is finite state storage, the directory can 

recall data from the L1 or L2 to free directory space. The 



 

 

 

protocol here closely resembles the coherence protocol in 

recent AMD CPU architectures [18]. 

2.5. Related Work 

Recent work by Singh et al. in cache coherence on GPUs 

has shown that a naïve CPU-like RFO protocol will incur 

significant overheads [2]. This work does not include inte-

gration with CPUs. 

Recent work by Hechtman and Sorin also explored memory 

consistency implementations on GPU-like architectures and 

showed that strong consistency is viable for massively 

threaded architectures that implement RFO cache coherence 

[4]. QR relies on a similar insight: read-after-write depend-

encies through memory are rare on GPU workloads. 

Similar to the evaluated WT protocol for a GPU, the VIPS-

m protocol for a CPU lazily writes through shared data by 

the time synchronization events are complete [25]. Howev-

er, VIPS-m relies on tracking individual lazy writes using 

MSHRs, while the WT design does not require MSHRs and 

instead relies on in-order memory responses to maintain the 

proper synchronization order. 

Conceptually, QR caches act like store queues (also called 

load/store queues, store buffers, or write buffers) that are 

found in CPUs that implement weak consistency models 

[19]. They have a logical FIFO organization that easily en-

forces ordering constraints at memory fences, thus leading 

to fast fine-grain synchronization. Also like a store queue, 

QR caches allow bypassing from the FIFO organization for 

high performance. This FIFO organization is only a logical 

wrapping, though. Under the hood, QR separates the read 

and write data paths and uses high-throughput, unordered 

write-combining caches. 

Store-wait-free systems also implement a logical FIFO in 

parallel with the L1 cache to enforce atomic sequence order 

[20]. Similarly, implementations of transactional coherence 

and consistency (TCC) [21] use an address FIFO in parallel 

with the L1.  However, TCC’s address FIFO is used for 

transaction conflict detection while QR’s address FIFO is 

used to ensure proper synchronization order. 

3. QuickRelease Operation 

In this section, we describe in detail how a QR cache hierar-

chy operates in a state-of-the-art SoC architecture that re-

sembles an AMD APU. Figure 2 shows a diagram of the 

system, which features a GPU component with two levels of 

write-combining cache and a memory-side L3 cache shared 

by the CPU and GPU. For QR, we split the GPU caches into 

separate read and write caches to reduce implementation 

cost (more detail below). At each level, the write cache is 

approximately a quarter to an eighth the size of the read 

cache. Additionally, we add an S-FIFO structure in parallel 

with each write cache. 

A goal of QR is to maintain performance for graphics work-

loads. At a high level, a QR design behaves like a conven-

tional throughput-optimized write-combining cache: writes 

complete immediately without having to read the block first, 

and blocks stay in the cache until selected for eviction by a 

replacement policy. Because blocks are written without ac-

quiring either permission or data, both write-combining and 

QR caches maintain a bitmask to track which bytes in a 

block are dirty, and use that mask to prevent loads from 

reading bytes that have not been read or written. 

The QR design improves on conventional write-combining 

caches in two ways that increase synchronization perfor-

mance and reduce implementation cost. First, QR caches 

use the S-FIFO to track which blocks in a cache might con-

tain dirty data. A QR cache uses this structure to eliminate 

the need to perform a cache walk at synchronization events, 

as is done in conventional write-combining designs. Second, 

the QR design partitions the resources devoted to reads and 

writes by using read-only and write-only caches. Because 

writes are more expensive than reads (e.g., they require a 

bitmask), this reduces the overall cost of a QR design. We 

discuss the benefits of this separation in more detail in Sec-

tion 3.2, and for now focus on the operation and benefits of 

the S-FIFO structures. 

When a conventional write-combining design encounters a 

release, it initiates a cache walk to find and flush all dirty 

blocks in the cache. This relatively long-latency operation 

consumes cache ports and discourages the use of fine-grain 

synchronization. This operation is heavy-weight because 

many threads share the same L1 cache, and one thread syn-

chronizing can prevent other threads from re-using data. QR 

overcomes this problem by using the S-FIFO. At any time, 

the S-FIFO contains a superset of addresses that may be 

dirty in the cache. The S-FIFO contains at least the address-

es present in the write cache, but may contain more address-

es that already have been evicted from the write cache. It is 

easy to iterate the S-FIFO on a release to find and flush the 

necessary write-cache data blocks. Conceptually the S-FIFO 

can be split into multiple FIFOs for each wavefront, thread, 

or work-group, but we found such a split provides minimal 

performance benefit and breaks the transitivity property on 

which some programs may rely [22]. Furthermore, a strict 

FIFO is not required to maintain a partial order of writes 

with respect to release operations, but we chose it because it 

is easy to implement. 

In the following sub-sections, we describe in detail how QR 

performs different memory operations. First, we document 

the lifetime of a write operation, describing how the writes 

propagate through the write-only memory hierarchy and 

interact with S-FIFOs. Second, we document the lifetime of 

a basic read operation, particularly how this operation can 

be satisfied entirely by the separate read-optimized data 

path. Third, we describe how the system uses S-FIFOs to 



 

 

 

synchronize between release and acquire events. Fourth, we 

discuss how reads and writes interact when the same address 

is found in both the read and write paths, and show how QR 

ensures correct single-threaded read-after-write semantics. 

3.1. Detailed Operation 

3.1.1. Normal Write Operation 

To complete a normal store operation, a CU inserts the write 

into the wL1, enqueues the address at the tail of the L1 

S-FIFO, and, if the block is found in the rL1, sets a written 

bit in the tag to mark that updated data is in the wL1. The 

updated data will stay in the wL1 until the block is selected 

for eviction by the wL1 replacement policy or the address 

reaches the head of the S-FIFO. In either case, when evict-

ed, the controller also will invalidate the block in the rL1, if 

it is present. This invalidation step is necessary to ensure 

correct synchronization and read-after-write operations 

(more details in Section 3.1.3). Writes never receive an ack. 

The operation of a wL2 is similar, though with the addition 

of an L1 invalidation step. When a wL2 evicts a block, it 

invalidates the local rL2 and broadcasts an invalidation 

message to all the rL1s. Broadcasting to eight or 16 CUs is 

not a huge burden and can be alleviated with coarse-grain 

sharer tracking because writing to temporally shared data is 

unlikely without synchronization. This ensures that when 

using the S-FIFOs to implement synchronization, the system 

does not inadvertently allow a core to perform a stale read. 

For similar reasons, when a line is evicted from the wL3, the 

controller sends invalidations to the CPU cluster, the group 

of CPUs connected to the directory, before the line is writ-

ten to the L3 cache or main memory. 

Completing an atomic operation also inserts a write marker 

into the S-FIFO, but instead of lazily writing through to 

memory, the atomic is forwarded immediately to the point 

of system coherence, which is the directory. 

CPUs perform stores as normal with coherent write-back 

caches. The APU directory will invalidate the rL2, which in 

turn will invalidate the rL1 caches to ensure consistency 

with respect to CPU writes at each CU. Because read caches 

never contain dirty data, they never need to respond with 

data to invalidation messages even if there is a write out-

standing in the wL1/wL2/wL3. This means that CPU invali-

dations can be applied lazily. 

3.1.2. Normal Read Operation 

To perform a load at any level of the QR hierarchy, the 

read-cache tags simply are checked to see if the address is 

present. If the load hits valid data and the written bit is clear, 

the load will complete without touching the write-cache 

tags. On a read-tag miss or when the written bit is set, the 

write cache is checked to see if the load can be satisfied 

fully by dirty bytes present in the write cache. If so, the load 

is completed with the data from the write cache; otherwise, 

if the read request at least partially misses in the write 

cache, the dirty bytes are written through from the write-

only cache and the read request is sent to the next level of 

the hierarchy. 

While the write caches and their associated synchronization 

FIFOs ensure that data values are written to memory before 

release operations are completed, stale data values in the 

read caches also must be invalidated to achieve RC. QR 

invalidates these stale data copies by broadcasting invalida-

tion messages to all rL1s when there is an eviction from the 

wL2. Though this may be a large amount of traffic, invali-

dations are much less frequent than individual stores be-

cause of significant coalescing in the wL1 and wL2. By 

avoiding cache flushes, valid data can persist in the rL1 

across release operations, and the consequential reduction of 

data traffic between the rL2 and rL1 may compensate entire-

ly for the invalidation bandwidth. 

Furthermore, these invalidations are not critical to perfor-

mance, unlike a traditional cache-coherence protocol in 

which stores depend on the acks to complete. In QR, the 

invalidations only delay synchronization completion. This 

delay is bounded based on the number of entries in the syn-
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Figure 3: L1 read-after-write re-use (L1 read hits in M for RFO memory system). 



 

 

 

chronization FIFO when a synchronization operation ar-

rives. Meanwhile, write evictions and read requests do not 

stall waiting for invalidations because the system does not 

support strong consistency. As a result, QR incurs minimal 

performance overhead compared to a WT memory system 

when synchronization is rare. 

QR’s impact on CPU coherence is minimal and the CPUs 

perform loads as normal. For instance, a CPU read never 

will be forwarded to the GPU memory hierarchy because 

main memory already contains all globally visible data writ-

ten by the GPU.  A CPU write requires only invalidation 

messages to be issued to the GPU caches. 

3.1.3. Synchronization 

While loads and stores can proceed in write-combining 

caches without coherence actions, outstanding writes must 

complete to main memory and stale read-only data must be 

invalidated at synchronization events. QR caches implement 

these operations efficiently with the help of the S-FIFOs. 

To start a release operation (e.g., a StRel or kernel end), a 

wavefront enqueues a special release marker onto the L1 

S-FIFO. When inserted, the marker will cause the cache 

controller to begin dequeuing the S-FIFO (and performing 

the associated cache evictions) until the release marker 

reaches the head of the queue. The StRel does not require 

that the writes be flushed immediately; the StRel requires 

only that all stores in the S-FIFO hierarchy be ordered be-

fore the store of the StRel. The marker then will propagate 

through the cache hierarchy just like a normal write. 

When the marker finally reaches the head of the wL3, the 

system can be sure that all prior writes from the wavefront 

have reached an ordering point (i.e., main memory). An 

acknowledgement is sent to the wavefront to signal that the 

release is complete. 

When the release operation has an associated store operation 

(i.e., a StRel), the store can proceed as a normal store in the 

write path after the release completes. However, for perfor-

mance, the store associated with the StRel should complete 

as soon as possible in case another thread is waiting for that 

synchronization to complete. Therefore, a store from a StRel 

will also trigger S-FIFO flushes, but it will not send an 

acknowledgement message back to the requesting wave-

front. 

Because QR broadcasts invalidations on dirty evictions, 

ensuring all stale data is invalidated before a release opera-

tion completes, acquire operations can be implemented as 

simple, light-weight loads; the acquire itself is a no-op. If a 

LdAcq receives the value from a previous StRel, the system 

can be sure that any value written by the releasing thread 

will have been written back to main memory and any corre-

sponding value in a read-only cache has been invalidated. 

3.2. Read/Write Partitioning Trade-offs 

In the QR design, we chose to partition the cache resources 

for reads and writes. While this choice reduces implementa-

tion complexity, it adds some overhead to read-after-write 

sequences. For example, in QR a load that hits in the write 

cache requires two tag look-ups and a data look-up: first 

check the read-cache tags, then check the write-cache tags, 

then read from the write-cache data array. We can justify 

this overhead by observing that GPGPU applications rarely 

demonstrate read-after-write locality. 

Figure 3 shows the percentage of read requests that hit an 

L1 cache block that has been written previously (i.e., is in a 

modified state under RFO). For several evaluated applica-

tions, written L1 cache blocks are never re-accessed. This 

occurs due to a common GPU application design pattern in 

which a kernel streams through data, reading one data set 

and writing another. Subsequently, another kernel will be 

launched to read the written data, but by this time all that 

data will have been evicted from the cache. 

The partitioned design has several implementation benefits. 

First, it reduces the state overhead needed to support writes 

in a write-combining cache because the dirty bitmasks are 

required only in the write caches. Second, it is easier to 

build two separate caches than a single multi-ported 
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Figure 4: L1 cache read re-use (read hits per read access in RFO memory system). 



 

 

 

read/write cache with equivalent throughput. Third, the read 

cache can be integrated closely with the register file to im-

prove L1 read hit latency. Meanwhile the write cache can be 

moved closer to the L2 bus interface and optimized exclu-

sively as a bandwidth buffer. 

Table 1:  Memory System Parameters 

 

4. Simulation Methodology and Workloads 

4.1. The APU Simulator 

Our simulation methodology extends the gem5 simulator 

[23] with a microarchitectural timing model of a GPU that 

directly executes the HSA Intermediate Language (HSAIL) 

[1]. To run OpenCL applications, we first generate an x86 

binary that links an OpenCL library compatible with gem5’s 

syscall emulation environment. Meanwhile, the OpenCL 

kernels are compiled directly into HSAIL using a proprie-

tary industrial compiler. 

Because the simulation of our OpenCL environment is 

HSA-compliant, the CPU and GPU share virtual memory 

and all memory accesses from both the CPU and GPU are 

assumed to be coherent. As a result, data copies between the 

CPU and GPU are unnecessary. 

In this work, we simulate an APU-like system [24] in which 

the CPU and the GPU share a single directory and DRAM 

controller.  The GPU consists of CUs. Each CU has a pri-

vate L1 data cache and all the CUs share an L2 cache. The 

L2 further is connected to a stateless (a.k.a. null) directory 

[25] with a memory-side 4-MB L3 cache, which is writeable 

only in the RFO system. The configurations of WT, RFO, 

and QR are listed in Table 1. 

As previously noted, the storage overhead of QR compared 

to WT is similar to dirty bits for all WT caches. Figure 2 

summarizes this design with a block diagram. Overall, QR 

uses 80 kB of additional storage that is not present in the 

WT baseline. To ensure that the comparison with WT is 

fair, we tested whether doubling the L1 capacity could bene-

fit the WT design. Further, the RFO design requires nearly 

double the storage of the baseline WT memory system. We 

found that the extra capacity provided little benefit because 

of the lack of temporal locality in the evaluated benchmarks.  

The benefit is reduced further because WT’s caches must be 

flushed on kernel launches. 

4.2. Benchmarks 

We evaluate QR against a conventional GPU design that 

uses WT caches and an idealized GPU memory system that 

uses RFO coherence. We run our evaluation on a set of 

benchmarks with diverse compute and sharing characteris-

tics. The benchmarks represent the current state-of-the-art 

for GPU benchmarks. The applications and compute kernels 

come from the AMD APP SDK [26], OpenDwarfs [27], 

Rodinia [3], and two microbenchmarks that were designed 

to have increased data re-use and synchronization. Our mi-

crobenchmarks attempt to approximate the behavior of fu-

ture workloads, which we expect will have more frequent 

synchronization and data re-use. Here is a brief description 

of the microbenchmarks: 

 APSP: Performs a single-source shortest path until 

converging on an all-pairs shortest path. This applica-

tion uses LdAcq and StRel to view updates as soon as 

they are available, to speed convergence, and uses mul-

tiple kernel launches to perform frequent communica-

tion with the host. 

 sort: Performs a 4-byte radix sort byte by byte. For 

each byte, the first step counts the number of elements 

of each byte; the second step traverses the list to find 

the value at the thread ID position; and, the final step 

moves the correct value to the correct location and 

swaps the input and output arrays. 

4.3. Re-use of the L1 Data Cache 

Figure 4 shows the measured L1 read hits as a fraction of 

read requests (i.e., re-use rate) in the RFO memory system. 

RFO allows for a longer re-use window than either the QR 

or WT memory systems because cache blocks are written 

only locally and synchronization does not force dirty data to 

a common coherency point. In contrast, the WT and QR 

memory systems must ensure all writes are performed to 

memory before synchronization completes. In addition, WT 

will invalidate its L1 cache on each kernel launch. 

The workloads from Section 4.2 exhibit a huge range of re-

use rates, capturing the diverse range of traffic patterns ex-

hibited by GPGPU applications. In either of the extremes of 

re-use, we expect that all of the memory systems should 

Baseline 

Frequency 1 GHz 

Wavefronts 64 wide, 4 cycle 

Compute units 8, 40 wavefronts each 

Memory DDR3, 4 Channels, 400 MHz 

 banks tag lat. data lat. size 

L1  16 1 4 16 kB 

L2  16 4 16 256 kB 

QR 

wL1 16 1 4 4 kB 

wL2 16 4 16 16 kB 

wL3 16 4 16 32 kB 

S-FIFO1 64 entries 

S-FIFO2 128 entries 

S-FIFO3 256 entries 

total 80 kB 

RFO 

directory 256 kB 

MSHRs 1,024 

total 384 kB 



 

 

 

perform equivalently. In applications with a high re-use rate, 

L1 cache hits will dominate the run-time. In applications 

with a low re-use rate, the performance will be bound by the 

memory bandwidth and latency. Because L1 cache and 

memory controller designs are effectively equivalent in QR, 

RFO, and WT, the expected performance is also equivalent. 

5.  Results 

5.1. Performance 

Figure 5 plots the relative run-times of WT, RFO, and QR 

relative to a system that disables the L1 cache for coherent 

traffic, similar to NVIDIA’s Kepler architecture. The appli-

cations are ordered across the x-axis by their L1 re-use rate 

(Figure 4). The final set of bars shows the geometric mean 

of the normalized run-times. Overall, QR gains 7% perfor-

mance compared to WT, which gains only 5% performance 

compared to not using an L1 cache. On the other hand, the 

RFO memory system loses 6% performance relative to a 

memory system with no L1 cache. The RFO performance 

drop comes from the additional latency imposed to write 

operations because they first must acquire exclusive coher-

ence permissions. 

Figure 5 supports the insight that a QR memory system 

would outperform a WT memory system significantly when 

there is an intermediate amount of L1 re-use. In particular, 

QR outperforms WT by 6-42% across six of the seven 

workloads (dotted-line box in Figure 5) because there is 

significant L1 re-use across kernel boundaries and LdAcqs. 

In these applications, the WT memory system cannot re-use 

any data due to the frequency of full cache invalidations. 

The lone exception is backprop, which is dominated by pull-

ing data from the CPU caches; thus, QR and WT see similar 

performance. 

Across the seven highlighted workloads, APSP is particular-

ly noticeable because of the impressive performance im-

provement achieved by QR and the even more impressive 

performance improvement achieved by RFO. APSP is the 

only benchmark that frequently uses LdAcq and StRel in-

structions within its kernels. While the QR memory system 

efficiently performs the LdAcq and StRel operations in a 

write-combining memory system, the RFO memory system 

performs the operations much faster at its local L1 cache. 

The resulting memory access timings for the RFO memory 

system lead to far less branch divergence and fewer kernel 

launches compared to the other memory systems because 

the algorithm launches kernels until there is convergence. 

The applications bfs, matrixmul, and dct are on the border 

between intermediate and high or low re-use. As a result, 

the performance advantage of QR relative to WT is muted. 

Similar to backprop, kmeans and histogram invoke many 

kernel launches and frequently share data between the CPU 

and GPU. Their performance also is dominated by pulling 

data in from the CPU, resulting in QR and WT achieving 

similar performance. 

The one application on which QR encounters noticeable 

performance degradation is lud. As shown in Figure 3, lud 

exhibits the highest rate of temporal read-after-writes; thus, 

the extra latency of moving data between QR’s separate 

read and write caches is exposed. Furthermore, lud has a 

high degree of false sharing between CUs, which lowers the 

effectiveness of QR’s L1 cache compared to WT due to its 

cache block granular invalidations. Overall, due to its 

unique behavior, lud is the only benchmark on which simply 

disabling the L1 cache achieves a noticeable performance 

improvement relative to the other designs. 

The rest of the applications (sort, srad, spmv, and nw) ex-

hibit either very high or very low L1 re-use, which means 

we would expect a small performance difference due to the 

on-chip memory system. The results confirm this intuition 

because all non-RFO memory systems perform similarly. 
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Figure 5: Relative run-times of WT, RFO, and QR memory systems compared to not using an L1 cache. 



 

 

 

5.2. Directory Traffic 

Figure 6 shows the bandwidth between the GPU cache hier-

archy and the APU directory for WT, RFO, and QR relative 

to the system without an L1 cache. Due to aggressive write-

combining, QR generates less total write traffic than WT for 

the same or better performance. 

To explore the directory write traffic, Figure 7 shows the 

effectiveness of the write-combining performed by a QR 

memory system. The RFO memory system includes a 

memory-side L3 cache, which filters many DRAM writes, 

so only the no-L1-memory, WT, and QR designs are shown 

in Figure 7. Most applications see significantly fewer write 

requests at the DRAM in QR compared to a WT or no-L1-

memory system due to the write-combining performed at 

the wL1, wL2, and wL3. As Figure 7 shows, applications 

with the greatest reduction generally achieve the greatest 

performance gains, indicating that good write-combining is 

critical to performance. In nn and nw, WT and QR have 

similar DRAM traffic. In these applications, there is no op-

portunity to perform additional write-combining in QR be-

cause all of the writes are full-cache-line operations and 

each address is written only once. 

5.3. L1 Invalidation Overhead 

Figure 8 shows both the cost and benefit of broadcasting 

precise invalidations in QR. Bars represent the normalized 

number of bytes that arrive at the L1 cache in QR compared 

to WT. Within each bar, segments correspond to the number 

of bytes that arrived due to an invalidation probe request or 

a data response, respectively. 

Almost all benchmarks receive equal or fewer L1 data mes-

sages in a QR memory system compared to a WT memory 

system. The only exception is backprop, in which false shar-

ing created additional cache misses for QR due to invalida-

tions after wL2 evictions. 

When invalidation traffic is added, the total bytes arriving at 

the L1 in a QR memory system can be up to three times the 

number of bytes arriving in a WT system, though on aver-

age the number is comparable (103%). Some workloads 

even experience a reduction in L1 traffic. APSP saw a sig-

nificant reduction in overall traffic because frequent LdAcqs 

and the subsequent cache invalidations result in a 0% hit 

rate at the WT L1. In most workloads, QR and WT have 

comparable traffic at the L1. QR achieves this comparable 

traffic despite extra invalidations because it is able to re-use 

data across kernel boundaries, whereas WT’s full L1 cache 

invalidation cause data to be refetched. 
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Figure 6: L2 to directory bandwidth relative to no L1. 
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Finally, other workloads see a doubling or more of L1 traf-

fic in QR. This is because they have a significant number of 

independent writes without re-use between kernels to amor-

tize the cost of invalidations. In the future, we predict that 

reducing the data required from off-chip likely will trump 

the cost of additional on-chip invalidation messages, making 

QR a reasonable design despite this increased L1 traffic. 

5.4. Total Memory Bandwidth 

Figure 9 shows the combined number of read and write 

memory accesses for each benchmark relative to the 

memory accesses performed by the memory system with no 

L1. The RFO has fewer memory reads because dirty data is 

cached across kernel bounds, which is not possible in the 

QR or WT memory systems because data responses to CPU 

probes are not supported. This is especially effective be-

cause kernels often switch the input and output pointers 

such that previously written data in the last kernel is re-used 

in the next kernel invocation. 

5.5. Power 

Combining the results from Figure 8 and Figure 9, we can 

estimate the network and memory power of QR and WT. 

Because GPUWattch showed that memory consumed 30% 

of power on modern GPUs and network consumed 10% of 

power [28], we can infer that QR should save 5% of 

memory power and increase network power by 3%. As a 

result, it follows that QR should save a marginal amount of 

power that may be used by the additional write caches. Fur-

ther, the improved performance of QR relative to WT im-

plies less total energy consumption. 

5.6. Scalability of RFO 

To support the claim of increased bandwidth scalability 

compared to an RFO memory system, nn and reduction are 

evaluated with smaller inputs to see how well a latency-

oriented RFO memory system could perform compared to a 

throughput-oriented WT or QR memory system. Figure 10 

shows the performance of nn and reduction for various 

problem sizes. For small input sets, all memory systems 

have similar performance. As the input size increases, the 

demand on the memory system increases and QR’s reduced 

write overhead improves the performance relative to RFO 

and WT. 

6. Conclusion 

This paper demonstrates that QuickRelease can expand the 

applicability of GPUs by efficiently executing the fine-grain 

synchronization required by many irregular parallel work-

loads while maintaining good performance on traditional, 

regular general-purpose GPU workloads. The QR design 
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improves on conventional write-combining caches in ways 

that improve synchronization performance and reduce the 

cost of supporting writes. First, QR improves performance 

by using efficient synchronization FIFOs to track outstand-

ing writes, obviating the need for high-overhead cache 

walks. Second, QR reduces the cost of write support by par-

titioning the read- and write-cache resources, exploiting the 

observation that writes are more costly than reads. 

The evaluation compares QR to a GPU memory system that 

simply disables private L1 caches for coherent data and a 

traditional throughput-oriented write-through memory sys-

tem. To illustrate the intuitive analysis of QR, it also is 

compared to an idealized RFO memory system. The results 

demonstrate that QR achieves the best qualities of each 

baseline design. 
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Figure 10: Scalability comparison for increasing problem sizes. 

 

 

 

 


