
Malware-Aware Processors: A Framework for Efficient Online Malware Detection

Meltem Ozsoy1, Caleb Donovick1, Iakov Gorelik1, Nael Abu-Ghazaleh2, and Dmitry Ponomarev1

1State University of New York at Binghamton
2University of California, Riverside

{mozsoy,cdonovi1,igoreli1,dima}@cs.binghamton.edu, naelag@ucr.edu

Abstract
Security exploits and ensuant malware pose an increasing

challenge to computing systems as the variety and complexity
of attacks continue to increase. In response, software-based
malware detection tools have grown in complexity, thus mak-
ing it computationally difficult to use them to protect systems
in real-time. Therefore, software detectors are applied se-
lectively and at a low frequency, creating opportunities for
malware to remain undetected. In this paper, we propose
Malware-Aware Processors (MAP) - processors augmented
with an online hardware-based detector to serve as the first
line of defense to differentiate malware from legitimate pro-
grams. The output of this detector helps the system prioritize
how to apply more expensive software-based solutions. The
always-on nature of MAP detector helps protect against inter-
mittently operating malware. Our work improves on the state
of the art in the following ways: (1) We define and explore
the use of sub-semantic features for online detection of mal-
ware. (2) We explore hardware implementations and show that
simple classifiers appropriate for such implementations can
effectively classify malware. We also study different classifiers,
develop implementation optimizations, and explore complexity
to performance trade-offs. (3) We propose a two-level detec-
tion framework where the hardware classifier prioritizes the
work of a more accurate but more expensive software defense
mechanism. (4) We integrate the MAP implementation with an
open-source x86-compatible core, synthesizing the resulting
design to run on an FPGA.

1. Introduction
Computing systems are under continuous attacks by increas-
ingly motivated and sophisticated adversaries. These attackers
use vulnerabilities to compromise systems and deploy mal-
ware. Malware is a general term for malicious software en-
compassing several types of programs that vary in their intent
and propagation methods [58, 41]. Malware threat to systems
continues to increase: according to McAfee (fourth quarter
report of 2013 [40]), their malware zoo has nearly 200 million
malware samples, with over 25 million new samples added in
the quarter; this is a rate of over 3 new samples per second!
The same report shows that mobile malware has also arrived
in force — there are 3.7 million Android malware samples,
with over 800 thousand of those added in the quarter.

Although significant effort continues to be directed at
making systems more difficult to attack, the number of ex-
ploitable vulnerabilities is overwhelming. Attackers obtain

privileged access to systems in a variety of ways, such as
drive-by-downloads with websites exploiting browser vulner-
abilities [9], network-accessible vulnerabilities [57] or even
social engineering attacks [5]. Attackers need only to succeed
in exploiting a single vulnerability to compromise a system
completely. Thus, it is essential to invest in approaches to
detect malware so that infections can be stopped and damage
contained.

Because malware is increasing in sophistication, its de-
tection has become more difficult. An increasing challenge
faced by malware detection is resource related — the resource
requirements make it prohibitive to monitor every applica-
tion all the time. Typical techniques proposed for online
malware detection include VM introspection [27], dynamic
binary instrumentation [21], information flow tracking [68],
and software anomaly detection [29]. These solutions each
have coverage limitations and introduce substantial overhead
(e.g., 10x slowdown for information flow tracking is typical in
software [67]). The problem is especially critical for mobile
environments where the energy cost of detection imposes lim-
its on the effort that a system can dedicate to online malware
detection. These difficulties often limit malware detection to
static signature-based virus scanning tools [22] which have
known limitations [44] that allow attackers to bypass them and
remain undetected.

Demme et al. [19] recently showed that machine learning
approaches can successfully classify malware from normal
programs based on features obtained from sampling CPU per-
formance counters. They used off-line analysis based on com-
plex data mining algorithms to show that this classification is
possible after the fact, with the complete trace of the program
behavior available for analysis. Building on this evidence,
we motivate and present MAP (Malware-Aware Processor)
— a hardware-supported sub-semantic detector that can clas-
sify malware from normal programs in real-time. We use the
term sub-semantic to mean architectural information about an
executing program that does not require modeling or detect-
ing program semantics. Sub-semantic information includes
architectural events such as cache miss rates, branch predic-
tion outcomes, dynamic instruction mixes, and data reference
patterns.

MAP builds on the work by Demme et al. in the following
ways:
• Real-time malware detection: real-time detection in-

cludes a new time-series component where successive deci-
sions from the classifier are evaluated to detect anomalous

651978-1-4799-8930-0/15/$31.00 ©2015 IEEE

behavior. We explore simple Exponentially Weighted Mov-
ing Average (EWMA) approach for detecting malware. In
contrast, the offline problem uses after-the-fact analysis
with the benefit of the complete data for the process life-
time. Thus, the online detection results demonstrate (for the
first time) that classification over windows of execution can
also separate malware from normal programs.

• Hardware implementation using simpler classifiers: a
hardware implementation has significant benefits over soft-
ware detection for this problem. First, direct access to hard-
ware features is possible at low cost. Hardware detection
can be always on, for all programs, with low complexity
and power overhead. In contrast, software implementations
require additional resources, are limited by the available per-
formance counters, and incur significant costs. On the other
hand, hardware implementations necessitate simpler clas-
sifiers than those available in software. This paper demon-
strates that such simple classifiers can be effectively used to
detect malware.

• Exploration of complexity/detection tradeoffs: we inves-
tigate both linear classifiers as well as neural network based
classifiers. We explore the tradeoff between complexity
and classification effectiveness. We also study a number of
optimizations to the hardware implementation of both the
base classifier and the time-series detector.

• Two level detection framework: False positives are likely
to occur due to simple classification algorithms and the
low-level features used. Thus, hardware detection is not
sufficient on its own. We propose a two-level detection
framework with MAP being the first line of defense. The
goal of MAP is to prioritize running processes such that
a heavy-weight software solution can be guided to protect
or scan more suspicious processes first, reducing the effort
and time to detection as compared to using the second level
for all processes. To avoid building complex and stateful
semantic models in hardware, the first-level hardware de-
tector is based on the sub-semantic features that are easily
collectable in hardware. In contrast, the slow second-level
software detector can be an IDS that is using full semantic
information.

A major advantage of MAP is that it can react to a malware
quickly, acting as a low-level alert system for further software
protection. The hardware detector of MAP is always on, with-
out affecting the available resources and with minimal energy
consumption. At the same time, it can be built to use archi-
tectural events that are expensive and difficult to obtain at the
software level (e.g., through performance counters).

We develop a fully functional hardware description of MAP
hardware detector using Verilog, and integrated it within an
open source x86-compatible core implementation. Our eval-
uations show that MAP data collection delay fits within a
single cycle of the processor. Moreover, for features related
to instructions, the logic is located at the commit stage of the
processor pipeline, therefore avoiding any negative impact on
the cycle time, instruction throughput and execution time of
the program. At a time where CPU manufacturers are show-

ing increasing willingness to invest in hardware support for
security [35, 62, 66, 56, 26], MAP offers an attractive mixture
of significant impact on security and low complexity.

In this paper, we did not consider how the detector should
evolve to the changing nature of malware: a practical de-
ployment will require a secure channel to update the detector
configuration. Our contribution is to study the use of online
hardware detection of existing malware. In particular, we did
not explore how attackers will react to the presence of such a
detector to attempt to hide the behavior of malware. Adver-
sarial classification is a branch of machine learning that can
assist with the evolution of attackers over time as commonly
occurs in a security context [18]. Techniques from this space
(such as feature randomization [65]) can be integrated into our
design to make it more resilient to attacker evolution.

The remainder of the paper is organized as follows. Sec-
tion 2 and Section 3 overview the malware detection ap-
proaches and examine a number of candidate sub-semantic
features. Section 4 presents the proposed online detectors.
Section 5 presents the implementations of the proposed de-
tectors, and evaluates their timing and complexity. Section 6
presents an evaluation of the real-time detection system based
on MAP. In Section 7 we present the related work. Finally,
Section 8 offers our concluding remarks.

2. Background and preliminaries: sub-semantic
malware detection

Malware detectors typically use high-level information such
as behavior models of programs based on system calls, ac-
cessed/created files and thread creation events [22] to capture
common features of malware. In contrast, MAP uses low-level
information that can be collected during the execution of pro-
grams such as architectural events, instructions and memory
addresses, and the mix of executed instruction types.

In this section, we show that sub-semantic information col-
lected and processed in hardware can effectively distinguish
malware from normal programs using simple classifiers. The
classification in this section is done after-the-fact, similar to
prior work [19], but differs in that the classifiers are simpler
and more suitable for hardware implementation. Moreover,
the section introduces the set of features that we use as rep-
resentatives of the different available classes of sub-semantic
information.

We study two different classification algorithms for MAP:
(1) Logistic Regression (LR), which is a simple linear classi-
fication algorithm. LR attempts to linearly separate malware
from normal programs in the feature space. In general, the pro-
grams are not linearly separable so LR provides a probability
between 0 to 1 for the likelihood of a program being mal-
ware. To convert this likelihood to a binary decision, we pick
a threshold above which programs are considered malware;
and (2) Neural Network (NN) which consist of a network of
perceptrons that when trained, approximates a classification
function that most likely could have generated the training
data. LR is equivalent to a single perceptron in a NN; thus, we
expect NNs to perform better than LR but also to have higher

2652

implementation complexity.
For this experiment, the classifiers are trained based on the

chosen sub-semantic features collected using a PINtool [15].
In a hardware implementation these features would be col-
lected directly from the hardware; for example, opcode fre-
quencies can be collected directly at the commit stage of the
processor pipeline.

2.1. Data Set & Data Collection

We used the University of Mannheim malware dataset for
this study [3]. We downloaded the corresponding samples
of 1,087 malware programs from the Offensive Computing
website [47]. Using the VirusTotal [64] malware classification
interface, we identified different types and families of these
programs. We followed Microsoft’s classification [4] which
identified 9 malware families in total which are shown in
Table 1. For normal program samples, we used a variety of
programs including system programs, browsers, text editing
applications and the SPEC2006 benchmarks. Overall, we
analyzed 467 regular programs in our evaluations.

Family Train Test-1 Val Test-2 Total

Vundo 14 2 5 21 42
Emerleox 10 5 4 33 52
Virut 8 3 7 46 64
Sality 12 2 4 46 64
Ejik 7 6 4 101 118
Looper 10 3 6 145 164
AdRotator 14 1 2 119 136
PornDialer 11 6 4 196 217
Boaxxe 13 6 0 211 230

Table 1: Malware Dataset

In order to collect the data, we used a virtual machine run-
ning a 32-bit Windows 7 operating system. We disabled the
firewall and Windows Security Services on this machine and
connected it to the network to support malware operations.

The collected data was divided into training, testing, and
validation sets as shown in Table 1. For machine learning,
typical ratio of training-test-validation set is 60%-20%-20%
and we followed the same rule for our model selection. We
used a balanced training set (roughly equal number of malware
and normal programs). The table shows two test sets: Test-1
contains 34 randomly selected malware programs and was
used for feature evaluation. Test-2 contains 918 malware
which was used for online detection model evaluation. The
remaining malware are contained in the validation set which
was used for exploring the detection and training settings.

3. Feature Selection
One of the most important decisions in setting up a classifier is
the choice of features used for training and detection. Clearly,
there is a large number of different candidate sub-semantic
features–features that are directly available at the microarchi-
tecture level. We explore this space by evaluating three types

of features: (1) features based on executed instructions; (2)
features based on memory address patterns; (3) features based
on architectural events. We selected candidates from each
category driven by both ease of collection through binary in-
strumentation as well as estimated implementation complexity.
We introduce these selected features in the remainder of this
section. We also evaluate their off-line detection performance
using our candidate classifiers to allow comparison to prior
work [19] which used more complex classifiers and in some
cases different features.

3.1. Features Related to Architectural Events

One group of features is based on microarchitectural events
which are not directly visible to the program. Demme et
al. [19] used performance counters on the ARM chip to capture
architectural features including the number of memory reads,
memory writes, software updates to the program counter,
unaligned memory accesses, immediate branches and taken
branches. We explore these same features for the x86 instruc-
tion set with the exception of software updates to the PC which
are not possible on x86. We call the collection of these features
ARCH.

The value of the architectural features is collected once ev-
ery 10,000 committed instructions [19]. At the end of each
period, the detection algorithm classifies whether this execu-
tion period is representative of malware or of a normal pro-
gram based on the collected feature data. These architectural
features attempt to capture the similarity of the architectural
events between malware.

Feature Description

ARCH
Frequency of memory read/writes, taken & imme-
diate branches and unaligned memory accesses

Table 2: Features based on Architectural Events

3.2. Features Related to Memory Addresses

The typical operations of malware include accessing files and
updating/reading windows registry entries. This type of be-
havior results in similar access patterns to memory addresses
during program execution. In order to capture this behav-
ior, we examined the use of memory addresses as a detection
feature. Specifically, we calculated the distance between the
memory address of the current load/store instruction and the
memory address of the first load/store operation in the group
of 10K instructions (again, the collection is done at the granu-
larity of 10K committed instructions). We used two different
approaches for memory address features: (i) We created a
histogram of read distances and write distances separately
quantized into bins. At every 10K instructions, we store the
frequency of each bin to create the feature vector (MEM1 in
Table 3); and (ii) this feature is similar to MEM1, but in this
case we only use a binary existence vector for the read/write
histogram features. The feature bits are set to one if a distance
that falls into that bin is encountered during the execution

3653

(MEM2). In summary, the memory address features capture
the similarity between the memory access patterns of malware
and regular programs.

Feature Description
MEM1 Frequency of memory address distance histogram
MEM2 Memory address distance histogram mix

Table 3: Features based on Memory Addresses

3.3. Features Related to Instructions

Executed instructions are another sub-semantic indicator of
high level actions during the execution of the program. We
use two different aspects of the instructions, the first one is
instruction opcode and the second one is instruction category.
Instruction opcode is one of the features previously used for
static malware detection [52, 54, 10, 67]. However, it is not
common to use the opcodes for dynamic detection of malware.
We constructed our opcode features in two ways.

First, we created a list of most frequently used opcodes
from malware and regular programs, we combined the top 35
opcodes that showed the largest difference (delta) in frequency
between malware and regular programs (INS2 in Table 4).
The combined top 10 opcodes (mov, cmp, push, add, inc, jnz,
movzx, xor, jz, test) are used in both malware and regular
programs. By using delta opcode features, we added to the
feature vector one extra opcode (f ild) that is mostly used
in regular programs and two extra opcodes (f nclex, f add)
mostly used in malware programs. We also used the same
opcode features in the form of a binary vector, where each
element indicates if an instruction with that opcode has been
executed (INS4).

Feature Description
INS1 Frequency of instruction categories
INS2 Frequency of opcodes with largest difference
INS3 Existence of categories
INS4 Existence of opcodes

Table 4: Features based on Instructions

The instruction category features are based on Intel
XED2[13] instruction category classes. Instead of tracking
individual opcodes, we track frequencies of the instruction
categories. There are 58 different instruction categories and
the feature vector has one entry for each category. For exam-
ple, all arithmetic instructions are in the BINARY category, all
bit manipulation instructions are in LOGICAL category and
data movement instructions are in DATAXFER category. We
use frequency of categories (INS1) and existence of categories
(INS3) as separate feature vectors. Using categories as fea-
tures generalizes the instruction types such that many similar
instructions are counted only with one feature. In contrast,
INS2 tracks frequency of opcodes that are commonly encoun-
tered either in malware or regular programs, while INS4 tracks
the existence of these opcodes in the period.

3.4. Offline detection evaluation

Evaluation of classification performance is based on the sen-
sitivity and specificity of the model. Sensitivity (S) is the
fraction of malware that are classified correctly and Specificity
(C) is the fraction of normal programs classified correctly (1-C
is the fraction of false positives). To evaluate classification
performance and to select the best performing thresholds and
features, Receiver Operating Characteristics (ROC) graphs[6]
are used. We present the ROC graph for each feature in Fig-
ure 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
e
n
s
it

iv
it

y

False Positive

Logistic Regression

ARCH

MEM1

MEM2

INS1

INS2

INS3

INS4

COMB

 0 0.2 0.4 0.6 0.8 1

False Positive

Neural Network

ARCH

MEM1

MEM2

INS1

INS2

INS3

INS4

COMB

Figure 1: Detection Performance of all Features

In order to evaluate the features, we use after-the-fact detec-
tion performance: simply, if the majority of classifier decisions
show malicious behavior then the program is labeled as mal-
ware, otherwise it is labelled as regular. The threshold for each
feature selected at the point where (S+C) sum is maximized.

Figure 1 shows the Receiver-Operating Characteristics
(ROC) graph for the two classifiers across the different fea-
tures we studied. In an ROC graph, S is plotted as a function
of FP rate. FP rate is calculated by dividing the number
of false positives by the number of actual negative instances
(FPrate = FP/(FP+T N), where TN is the number of True
Negatives). The upper left corner of an ROC graph (0,1)
provides the best classification performance with no false pos-
itives and 100% Sensitivity. We discuss the performance of
the different features in more detail below.

Architectural Features ARCH feature can correctly iden-
tify 70% of malware with only 10% false positives with the
basic LR model. For the more complex NN model, the clas-
sification rate increases to 88%; however, the false positives
also increase to 20%. Architectural features have already been
shown to be effective for Android malware[19] using complex
machine learning classifiers; they are also somewhat effective
for detecting malware on x86 using simpler classifiers. Be-
cause of their modest classification performance, we did not
pursue these features further.

4654

Memory Address Features Detection performance of both
MEM1 and MEM2 features significantly outperforms the
ARCH feature. Both the NN and the LR models can detect
90% of malware with the NN model having only 4% false pos-
itives for MEM1. The frequency based feature (MEM1) not
only classifies better than the histogram mix feature (MEM2),
but also achieves the best false positive rate among all features
using the NN. However, the mix features (MEM2) are easier to
collect and are simpler to classify (they do not require multipli-
cation), allowing low complexity hardware implementations.

Instruction Mix Features Instruction traces provide signif-
icant information about program execution. These features
provide the highest accuracy among the set we considered:
Figure 1 shows that most of the instruction based features
achieve nearly 100% sensitivity with around 10% false posi-
tive rate using the NN model. The LR model is less effective
than NN model for all features. Our hardware implementation
is based on the INS2 feature which can detect all malware in
our test set with only 9% and 16% false positive rates for NN
and LR respectively.

Combining Features Finally, we evaluated the use of com-
binations of features to attempt to combine their strengths.
All features can be combined together to create a powerful
detection. This design point is marked as COMB in Figure 1.
As expected, both models perform best when all features are
used together. However, this significantly increases the imple-
mentation complexity of MAP.

4. Online Malware Detection
In this section, we introduce the online detection component
of MAP. Detecting malware execution during runtime is a
time-series analysis problem where the time-series consists of
the successive decisions of the classifier. To be effective, the
detection algorithm must filter out occasional false positives
and quickly detect true malicious behavior.

To make a decision that considers past behavior of pro-
grams, but is not dominated by them, we use Exponentially
Weighted Moving Average (EWMA) [32]. EWMA is a form
of a low-pass filter commonly used to smooth out transients in
a time-series signal, giving more weight to more recent inputs.
EWMA computation requires floating point operations and is
not suitable for efficient hardware implementation. Instead,
we use a fixed-point implementation by first considering bi-
nary decisions from the base classifier (making the time-series
consist of 1’s for malware and 0’s for normal decisions). We
then use a window of these decisions with integer weights that
best correspond to the chosen smoothing factor (α).

In Figure 2 we show the precise EWMA result (for α = 0.2)
and a fixed point hardware implementation for an arbitrary
binary input stream. For the results in Figure 2, the input
stream is assumed to have 20 bits and the window size for
fixed point implementation is 8. As seen from the graph,
the approximate hardware implementation closely tracks the
precise EWMA estimate. The hardware implementation has a
weight for each input in a window: the weight of an input in

kth order (Wk) is calculated by Wk = 2bn/2c+∑
bk/2c
i=1 2i where n

is the window size and 0≤ k < n. There are two accumulators,
one for regular labels and one for malware labels. The last
step performs a subtraction operation and obtains the absolute
difference between the summations.

Hardware EWMA

Figure 2: EWMA vs. Fixed-point Approximation

Figure 3 shows the impact of the window size on the de-
tection performance for the LR-based model with a trained
threshold. While small windows cause around 100% false
positive rate, the number of false positives decreases signifi-
cantly with larger windows. As the window size continues to
increase, false negatives also increase because malware behav-
ior is more likely to be missed with larger windows. We use a
window size of 16 to balance these two effects.

2 6 10 14 18 22 26 30 34 38 42 46

0

0.2

0.4

0.6

0.8

1
S C

Window Size

Figure 3: Effect of Window Size on Detection Performance

5. Implementation

In this section, we describe the design of MAP. We also present
the implementation of the LR and the NN classifiers and evalu-
ate the performance and complexity of the design. In addition,
we introduce some optimizations to simplify the implemen-
tation and evaluate their effect. The MAP logic is located at
the end of the processor pipeline after the instruction commit
stage; for instruction-based features, we only consider com-
mitted instructions. For the NN classifier, we consider the
trade-offs between performance and complexity: increasing
the number of neurons improves detection at the cost of more
complex hardware implementation.

5.1. The MAP Microarchitecture

The general MAP microarchitecture is depicted in Figure 4.
The Feature Collection (FC) component collects and prepares
the feature being used for classification and provides it as an

5655

input to the Prediction Unit (PU). The PU implements the clas-
sifier (the LR or the NN) that provides a binary decision on one
feature vector with 1 indicating malware, and 0 indicating nor-
mal program. The output of the PU is therefore a time-series
consisting of the sequence of the PU decisions over time. This
time-series is the input to the Online Detection (OD) module
that carries out the time-series moving average analysis to pro-
vide a real-time decision on the currently executing program
as explained in Section 4.

Feature
Collection

Prediction Unit

Processor
Pipeline

+

M R

Wi

Theta

+ Sum

>

Online Detection

. . .

M > R

Figure 4: MAP Microarchitecture with LR

For implementation analyzed in this paper, we use the INS2
feature. Thus, the FC unit collects the committed instruction
trace from the commit stage of the core pipeline. Other fea-
tures require collection from the appropriate source of the
feature events, such as the branch prediction unit, the memory
management unit, or the fetch logic.

The MAP logic operates as follows. The FC unit collects
and sends the features to the PU. The PU classifies the col-
lected feature vector every classification period (we used 10K
instruction period as with prior work [19]). The predictions
are sent to the online detection module which applies the time-
series algorithm as described in Section 4 to make a decision
about the process. The counters in the OD module are treated
as part of the process state; they are stored, restored and re-
set along with the process state on a context switch. A more
secure option would be to store these counters in hardware.
Since there are only two 32-bit registers in the OD module, it
can synchronize with running processes without creating extra
complexity.
5.1.1. Logistic Regression Prediction Unit We implemented
the logistic regression prediction unit using INS2 feature. The
feature vector has 50 elements to represent selected opcodes.
The Θ vector represents the weight of each feature as a floating
point number based on the detector training. In the future, we
envision a secure process that allows the update of Θ to allow
the detector to evolve with evolving malware.

In a standard implementation of logistic regression [31], the
features are multiplied with their weights (Θ) and accumulated
to calculate the hypothesis. As a final step, the hypothesis is
translated to a value between 0 and 1 by sigmoid function
and the input is labeled according to the threshold. In theory,
updating the feature vector for every commit and calculating
the result at the checking granularity (10K instructions) is
sufficient. However, in our implementation it is not necessary

to wait for the end of the period. For every new committed
instruction, we set the corresponding element of the feature
vector to 1 and add its weight to the total value. However,
we only send the detection signal to the OD unit when 10K
instructions have committed. Therefore, in our implementa-
tion, the multiplication operation is not required. The feature
weights (Θ), created after training, are all floating point num-
bers, but they are converted to 16-bit fixed point numbers
with 3 integer and 13 fractional bits. The use of fixed-point
arithmetic instead of floating point significantly reduces the
complexity of our design [12]. For our studies, we used scalar
pipeline. For a superscalar pipeline, there will be multiple bits
set for each committed instruction and multiple adders will be
required.

The final step of logistic regression is the sigmoid function
and prediction. Sigmoid is an asymptotic function that cre-
ates values between 0 and 1. We discretize the prediction to
produce a boolean classification using simple thresholding: if
the classification threshold is 0.5, then all hypothesis values
larger than 0 (sigmoid(0) = 0.5) will be classified as class 1
(malicious programs). The implementation of actual sigmoid
function is not necessary since the threshold can be compared
to the sum, instead of the sigmoid of the sum. In the last step
of our LR implementation, we only compare this value with
the predetermined threshold and send the result to the OD
module.

It is important to note that even though MAP is a hardware
detection mechanism, it is possible to design a configurable
version. The configurable detection mechanism can edit the
Theta (Θ) values and the detection threshold through privi-
leged operations such as firmware updates or verified accesses.
This capability makes the online detector effective and flexible
and can accommodate defenses for future malware types.
5.1.2. Neural Network Prediction Unit We implemented the
neural network classifier as a multi-layer perceptron (MLP)
with 50 input features and a single hidden layer with 19 neu-
rons. This configuration provides the best detection perfor-
mance in the feature space we explored. In parallel to our
machine learning model [55], we use tanh as an activation
function. An MLP with a single hidden layer operates by
training a set of weights for each hidden neuron and the out-
put neuron. Each hidden neuron calculates the dot product
of their weights and feature vector, this value is then passed
to a sigmoid function (in our case tanh). The output neuron
operates like the hidden neurons except the output neuron uses
the outputs of the hidden neurons as inputs, instead of using
the feature vector.

We evaluated two designs with the same functionality. Our
base design was implemented with performance constraints so
that the neural network calculations are done in parallel. We
then optimized this design for space constraints by serializ-
ing the operation of the neural network, which significantly
reduced the number of operational units.

Similar to our LR implementation, both NN designs ac-
cumulate feature weights as feature data becomes available.
Next, we calculate ∑

L
i=1 tanh(ai) ·wi where L is the number of

6656

hidden neurons, ai are the accumulated neuron values and wi
are the weights for each neuron in the output layer. Notice
that we could not emit the actual implementation of the tanh
function while implementing the NN logic, because this time
the output neuron requires the actual tanh of the values cal-
culated in the hidden layer. To reduce the complexity of both
designs tanh is approximated by a Look-up Table (LUT) [43].
In particular, the lookup table based implementation of tanh
function has a total absolute error of 0.062425 (error integrated
over all input values of tanh). To further reduce complexity,
we used fixed-point operations instead of floating point ones.
To prevent the loss of precision and to reduce overflows, we
use 16-bit values (3 integer plus 13 fractional bits) prior to
multiplication and 32-bit values (6 integer plus 26 fractional
bits) post multiplication. Finally we do not perform the fi-
nal sigmoid operations, opting instead to simply compare the
resulting sum to a precalculated threshold.

Base Design The base neural network design operates by
calculating tanh(ai) for each ai in parallel. Next, each tanh(ai)
is multiplied by wi (the corresponding weight) to generate the
inputs to the ouput neuron in parallel. Finally, the products
are summed using a reduction tree of adders to compute the
sum in log2(L) cycles. The final sum is compared with the
threshold to produce the prediction. This design allows the
classifier to be activated every cycle and produce a predic-
tion in T (tanh)+ T (mul)+ T (add) · log2(L)+ T (compare)
cycles, where T (x) is the number of cycles needed to perform
x. However, the design requires L 16 bit accumulators, tanh
LUTs and multipliers, along with dL

2 e 32 bit adders.

Optimized Serial Design The serial design operates by
storing the accumulated values in a buffer, then multiplex-
ing the values through a pipeline consisting of tanh, mul-
tiply, and accumulate. The final sum is compared to the
threshold to produce the prediction. This design requires
T (setup) + T (tanh) + T (mul) + T (add) + L + T (compare)
cycles to complete. While this unit is active, the accumulation
of the feature data continues. However, another classification
cannot be initiated until the previous feature set has been fully
processed. Similar to the base parallel design, the serial design
requires L 16-bit accumulators. However, as shown in Fig-
ure 5, the serial design requires only 1 tanh LUT, 1 multiplier
and 1 32 bit accumulator.

5.2. FPGA Implementation and Cycle Time Impact

We implemented MAP on an open source x86 processor
(AO486) [2] using Verilog. The processor is a 32-bit in-order
pipelined implementation of the Intel 80486 ISA. We synthe-
sized the core with the MAP logic at the end of the pipeline
on an Altera DE2-115 FPGA board [1] using Quartus II 13.1
software. We evaluated three different prediction unit options
for MAP and summarized their time, area and power impact
in Table 5. The MAP design with the LR prediction unit is
extremely light-weight in terms of complexity and its impact
on the core power and area is under 1%. The increase of the
cycle time is caused by the exception transfer to the processor

Figure 5: Neural Network Serial Design

pipeline. However, it can be easily eliminated if the MAP
exception transfer is performed over two cycles. For the NN
prediction units, the base design requires substantial area and
consumes significant power; in contrast, the optimized design
uses only 5.67% of the core area. The cycle time impact of
the NN designs could be reduced by deepening their pipelines.
The processor area breakdown is shown in Figure 6 and MAP
takes up 0.28-5% of the logic cells depending on the prediction
unit choice.

LR NN Base NN Serial
Logic Cells +0.28% +13.12% +5.67%
Frequency -1.93% -2.28% -5.53%
Power Usage +0.08% +5.23% +1.66%

Table 5: MAP’s effect on core

Our goal of implementing MAP on an FPGA was to show
that it has minimal impact on the processor cycle time, power
and area for a realistic system implemented within an x86
processor.

6. Effectiveness of MAP in Online Detection
In this section, we present the online detection results showing
both conventional detection effectiveness (such as the ROC
graph), as well as the translation from prediction unit outputs
to online detection signals at runtime.

Our hardware implementation of online detection is based
on INS2 feature, as it showed the best performance during
offline analysis. In Figure 7, we show the detection success
using the ROC graphs. The first graph shows the sensitivity
of the detector that is based on an LR prediction unit. As
seen from the results, it can detect almost 90% of the malware

7657

AO486 Processor Core
Execute : 20.02 %
Writeback : 16.26 %
I-cache + D-cache : 12.61 %
TLB : 11.88 %
Register read : 8.94 %
Memory read : 7.09 %
Decode : 6.01 %
Uop decode : 3.83 %
Fetch : 0.7 %
MAP : 0.2-5 %
*Other : 12.66 %

*exception handling, register file,
module interconnections, prefecthing

unit, ...

M
A
P

TLB

D
e
co
d
e

uop

I-cache
+

D-Cache

Fe
tc
h

Writeback

Execute
Memory
read

Register
read

Figure 6: MAP integrated into AO486 processor core

with 6% false positive rate at its most optimal configuration.
The same feature can detect 93% of malware with the same
false positive rate, if after-the-fact detection was possible. The
second ROC graph in Figure 7 shows detection performance
of the detector with an NN-based prediction unit. While the
INS2 feature can detect all malware with 7% false positive rate
with after-the-fact detection, it can still detect 94% of malware
at runtime with the same false positive rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
e
n
s
it

iv
it

y

False Positive

Logistic Regression

S=0.89, C=0.94
S=0.94, C=0.93

online

offline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

False Positive

Neural Network

S=0.89, C=0.94
S=0.94, C=0.93

online

offline

Figure 7: Online Detection Performance

Next, we show how periodic signals from Prediction Unit
(PU) are translated into a detection signal at runtime by the
Online Detection (OD) counters. In Figures 8 and 9, we show
the first 200 instances of 10K instruction periods for a malware
sample from Virut family and one of the Spec2K6 benchmarks
(mcf). In Figure 8, the prediction unit is implemented using
the LR model. For Virut sample, the PU output shows that the
executed program is a malware in the beginning. However,
after some period of time the output becomes indicative of
a regular program, causing PU to output zeros. The online
detection logic smooths these infrequent signals and correctly
predicts that the executed program is a malware. Similarly, for
mcf, the "malicious program" output signals are smoothened
by the OD unit.

In Figure 9, we show the generation of the detection sig-
nal by the OD unit from the periodic outputs of the PU that
implements the NN model. As seen from the figure, the NN
prediction is more sensitive to the behavior of the program
compared to the LR. For Virut, NN generates some "regu-
lar program" outputs even in the first phase of Virut. Again,
smoothing these discrete signals from the PU output success-
fully creates a continuous correct detection result at runtime.
For mcf, the NN model generates less ones than LR, because
of the sensitivity of the model is higher.

The optimal design for MAP is dependent on the hardware
budget. With a neural network, it is possible to get better
sensitivity than with logistic regression; however, the hardware
requirements for the LR implementation are almost negligible.
Therefore, manufacturers are likely to consider LR a more
attractive candidate for production unless further optimizations
to the NN design can be found.

7. Related Work

The related work section is organized into two parts. More
related to this paper, we first overview research in malware
detection. The second part of this section reviews protection
approaches, including those with architectural support.

Malware Detection Malware detection is an area that has
attracted extensive research and commercial interest over the
past decade. In general, malware detection techniques are
either static (focusing on the structure of a program or system)
or dynamic (analyzing the behavior during execution) [33].
Detection approaches are also classified as signature-based
(looking for signatures of known malware) or anomaly-based
(modeling the normal structure/behavior of programs or sys-
tems and detecting deviations from this model).

Static approaches including virus and spyware scanners
are the first line of defense in malware detection. Originally,
these scanners are operated using pattern matching to look
for signatures of known malware. However, these approaches
can be easily evaded using program obfuscation or simple
code transformations that preserve the function of the malware
but make it not match the patterns known to the scanner [45].
More advanced detectors based on semantic signatures have
been proposed, and significantly improved the performance of
static scanners [14]. Static approaches are limited and can be
bypassed by sophisticated attackers [44]. In particular, code
obfuscation techniques (polymorphic malware), and malware
encryption (packing or metamorphic malware) are both suffi-
cient to hide even from these more advanced detectors [44].

Dynamic detection observes the behavior of the program
(or the system) as it runs and interacts with the environment.
Dynamic behavior-based detection attempts to detect devia-
tions from normal behavior of a program as it operates. It
detects anomalies in the observed behavior compared to its
model of normal behavior, which is often program-specific,
to identify malware. A large number of software malware
detectors have been investigated that vary in terms of the mon-
itored events, the normal behavior model, and the detection

8658

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

Figure 8: Translation of Prediction Unit Output to Online Detection Signal at Runtime with LR-Based Detector

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

 Time

PU output OD output Threshold

Virut Malware Sample Virut Malware Sample

Spec2K6-mcf Benchmark Spec2K6-mcf Benchmark

Figure 9: Translation of Prediction Unit Output to Online Detection Signal at Runtime with NN-Based Detector

algorithm [30, 51, 34, 33, 38]. The advantage of dynamic
detection is that it is resilient to metamorphic and polymor-
phic malware [44, 39]; it can even detect previously unknown
malware. However, disadvantages include a typically high
false positive rate, and the high cost of monitoring during
run-time. Moreover, since detection is a one time (or periodic)
process, malware can evade detection either probabilistically
or by recognizing that it is being observed and acting normally
for that period.

Most similar to our work, RiskRanker uses a rule-based
lightweight detection pass to rank the risk posed by different
Android based Apps [28]. The analysis requires around 4
days of processing time, to identify a high risk set (comprising
about 3% of the scanned 118,000 Apps). About one fourth
of this set was found to actually have malware, including 322
zero-day exploits. MAP uses the same premise of a two-level
monitoring; however, we do so in real-time for live systems.

Use of Subsemantic Features A number of earlier works
explored sub-semantic features for malware detection. Bilar
et al [10] examine the frequency of opcode use in malware.
Santos et al and Yan et al evaluate opcode sequence signa-
tures [54, 67], while in particular, opcode sequence signatures
were found to effectively classify metamorphic malware. Run-
wal et al [52] study opcode sequence similarity graphs. These
techniques obtain this information from running programs and
malware inside heavyweight profiling tools such as Pin [15].

Moreover, all of these works consider offline analysis, rather
than online detection.

Demme et al [19] collect performance counter statistics
for programs and malware under execution. They show that
offline machine learning tools can effectively classify mal-
ware. They conjecture that an online detector can therefore
be built but do not explore this idea further. Our work builds
on this evidence to develop a lightweight online hardware-
supported malware detector. Tang et al [60] demonstrated that
unsupervised learning on sub-semantic feature can also suc-
cessfully classify malware offline; unsupervised learning may
be more amenable to detecting novel malware and attacker
evolution. However, unsupervised learning also requires more
sophisticated analysis implying more complex hardware im-
plementations.

Protection Approaches In this part of the related work, we
overview protection approaches that make it more difficult
to attack systems to install malware. We first discuss buffer
overflows (as an example important vulnerability type) and
defenses that have attempted to address it. We follow with a
description of more comprehensive solutions that attempt to
more generally protect the system.

Malware requires a vulnerability to be exploited to provide
the attackers with access to the victim machine. In particular,
buffer overflows are a major attack vector exploited by attack-
ers [7]. There are several approaches for protecting against

9659

buffer overflows[61, 16, 24, 63, 53, 46]. ASLR (Address
Space Layout Randomization)[61], implemented on current
operating systems, adds a random offset to the starting address
of the different segments in the process address space, to make
it more difficult for attackers to initiate their attack. However,
the unchanged library addresses, format string vulnerabilities
and other data disclosure attacks make it possible to bypass
ASLR or even deeper randomization[17, 50, 69]. C compiler
extensions that promote correct memory allocations have also
been proposed[16, 24, 63]. For example, StackGuard[16]
is a compiler extension that places a canary value on top
of the stack and checks this value to detect buffer overflow.
CRED[53] and CCured[46] are other extensions to GNU C
compiler that dynamically check bounds of allocated memory
objects.

Comprehensive solutions for protecting against buffer over-
flows include dynamic information flow tracking [59, 49], and
dynamic bounds checking [20]. However, these techniques
involve significant hardware modifications (if implemented
with hardware support), or incur performance losses (if im-
plemented in software) which complicates their adoption in
commercial systems. Indeed, despite these efforts, attacks
based on exploiting buffer overflows continue to occur.

In the past few years, all major CPU manufacturers intro-
duced the W ⊕ X memory permission bit which marks a mem-
ory page to be either writable or executable but not both [8].
This bit prevents conventional code injection attacks such as
those described above since the attack code on the stack is
not executable. In response, attackers have evolved to use the
so-called code-reuse attacks (CRAs). CRAs, including both
return-oriented [57] and jump-oriented [11] variations remain
open vulnerabilities and active research topics, despite some
promising solutions [48, 70, 36, 37]. An orthogonal line of
research pursues protection of application secrets even in the
presence of compromised system software layers and malware
[23, 25, 42].

8. Concluding Remarks
This paper contributes an always-on hardware malware detec-
tion engine called MAP. MAP is integrated at the commit stage
of a conventional processor, which enables it to collect sub-
semantic features with low power consumption, and without
software interference. MAP builds on recent important work
that showed that hardware counters can be used to classify
malware from normal programs off-line [19]. We explore the
use of different sub-semantic features for online detection, and
show that these features using logistic regression can achieve
excellent sensitivity and reasonable false positive rates.

Because of the false positives which are common in
anomaly-based malware detection approaches, we propose
to use MAP in combination with a heavier-weight software-
based detector. In particular, MAP prioritizes the scanning
order of processes such that those processes that are most
anomalous are scanned first. Moreover, the always-on nature
of MAP makes it difficult for malware to avoid detection. We
developed the hardware design for MAP and showed that its

delay, complexity and energy consumption are small.

9. Acknowledgement
We would like to thank the anonymous reviewers and our shep-
herd John Demme for their insightful comments. This material
is based on research sponsored by the National Science Foun-
dation grant CNS-1018496. Caleb Donovick was partially
supported through the REU supplement award CNS-1338672.
Iakov Gorelik was partially supported by the REU Site Award
CCF-1005153.

References
[1] “De2-115 development and education board,” 2010,

http://www.altera.com/education/univ/materials/boards/de2-115/
unv-de2-115-board.html.

[2] “The ao486 project,” 2014, accessed May 2014 at http://opencores.org/
project,ao486.

[3] “Laboratory for dependable distributed systems university of
mannheim,” 2014, accessed Feb. 2014 at http://pi1.informatik.
uni-mannheim.de/malheur/.

[4] “Malware protection center,” 2014, accessed May 2014 at http://www.
microsoft.com/security/portal/mmpc/shared/malwarenaming.aspx.

[5] S. Abraham and I. Chengalur-Smith, “An overview of social engineer-
ing malware: Trends, tactics, and implications,” Technology in Society,
vol. 32, no. 3, pp. 183–196, 2010.

[6] Y. Abu-Mostafa, M. Magdon-Ismail, and H. Lin, Learning from Data:
A short course. AMLBook, 2012.

[7] Aleph One, “Smashing the stack for fun and profit,” Nov. 1996.
[8] S. Andersen, “Part 3: Memory protection technologies,” in

Changes to Functionality in Microsoft Windows XP Service Pack
2. Microsoft Corp., 2004, http://technet.microsoft.com/en-
us/library/bb457155.aspx.

[9] S. Bandhakavi, S. King, P. Madhusudan, and M. Winslett, “Vex: Vet-
ting browser extensions for security vulnerabilities.” in Proc. USENIX
Security Symposium, 2010.

[10] D. Bilar, “Opcode as predictor for malware,” 2007.
[11] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented

programming: a new class of code-reuse attack,” in Proceedings
of ASIACCS. ACM, 2011, pp. 30–40. [Online]. Available:
http://doi.acm.org/10.1145/1966913.1966919

[12] J. Cavanagh, Computer Arithmetic and Verilog HDL Fundamentals.
CRC Press, 2009.

[13] M. Charney, “Xed2 user guide,” 2011, http://software.intel.com/sites/
landingpage/pintool/docs/56759/Xed/html/main.html.

[14] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant,
“Semantics-aware malware detection,” in Proc. IEEE Symposium on
Security and Privacy, 2005, pp. 32–46.

[15] C.Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Proc. PLDI, 2005.

[16] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
USENIX Security, vol. 7, 1998.

[17] F. Crew, “Aslr bypassing method on 2.6.17/20 linux kernel,” 2008,
available online at http://www.exploit-db.com/papers/13030/.

[18] N. Dalvi, P. Domingos, M. Sumit Sanghai, and D. Verma, “Adversarial
classification,” in Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, 2004, pp. 99–
108.

[19] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, “On the feasibility of online malware
detection with performance counters,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ser. ISCA
’13. New York, NY, USA: ACM, 2013, pp. 559–570. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485970

[20] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic,
“Hardbound: architectural support for spatial safety of the c
programming language,” in Proceedings of the ASPLOS. New
York, NY, USA: ACM, 2008, pp. 103–114. [Online]. Available:
http://doi.acm.org/10.1145/1346281.1346295

10660

[21] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis
via hardware virtualization extensions,” in Proceedings of the 15th
ACM conference on Computer and communications security (CCS),
2008, pp. 51–62.

[22] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Computing
Surveys (CSUR), vol. 44, no. 2, 2012.

[23] J. Elwell, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev, “A non-
inclusive memory permissions architecture for protecting against cross-
layer attacks,” in Proc. International Symposium on High Performamce
Computer Architecture (HPCA), Feb. 2014.

[24] H. Etoh and K. Yoda, “Propolice: Improved stack-smashing attack
detection,” IPSJ SIG notes on computer security, Oct 2001.

[25] D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh,
and R. Riley, “Iso-x: A flexible architecture for hardware-managed
isolated execution,” in Proc. International Symposium on Microarchi-
tecture (MICRO), Dec. 2014.

[26] “Intel architecture instruction set extensions programming reference,”
2014, accessed Feb. 2014 at http://download-software.intel.com/sites/
default/files/319433-015.pdf.

[27] T. Garfinkel and M. Rosenblum, “A virtual machine introspection
based architecture for intrusion detection,” in Proc. Usenix Symposium
on Network and Distributed System Security (NDSS), 2003.

[28] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scal-
able and accurate zero-day android malware detection,” in Proceedings
of the 10th international conference on Mobile systems, applications,
and services (MobiSys), 2012, pp. 281–294.

[29] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, “Bothunter:
Detecting malware infection through ids-driven dialog correlation,” in
Proceedings of 16th USENIX Security Symposium on USENIX Security
Symposium, 2007.

[30] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” Journal of computer security, vol. 6, no. 3,
pp. 151–180, 1998.

[31] D. W. Hosmer Jr. and S. Lemeshow, Applied Logistic Regression. John
Wiley & Sons, 2004.

[32] R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecasting
with exponential smoothing. Springer, 2008.

[33] N. Idika and A. Mathur, “A survey of malware detection techniques,”
technical Report, Departemnt of Computer Science, Purdue University.
Accessed Feb. 2014 at: http://cyberunited.com/wp-content/uploads/
2013/03/A-Survey-of-Malware-Detection-Techniques.pdf.

[34] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware:
from a survey towards an established taxonomy,” Journal in computer
Virology, vol. 4, no. 3, pp. 251–266, 2008.

[35] V. G. Jim Guilford, Kirk Yap, “Fast SHA-256 Implementations on Intel
Architecture Processors,” Intel Corporation, Tech. Rep., May 2012.

[36] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev, “Branch
regulation: Low overhead mitigation of code reuse attacks,” in Pro-
ceedings of ISCA, 2012.

[37] M. Kayaalp, T. Schmitt, J. Nomani, D. Ponomarev, and N. Abu-
Ghazaleh, “Scrap: Architecture for signature-based protection from
code reuse attacks,” 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA), vol. 0, pp. 258–269,
2013.

[38] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and
X. Wang, “Effective and efficient malware detection at the end host.”
in USENIX Security Symposium, 2009, pp. 351–366.

[39] L. Martignoni, M. Christodorescu, and S. Jha, “Omniunpack: Fast,
generic, and safe unpacking of malware,” in IEEE Annual Computer
Security Applications Conference (ACSAC), 2007, pp. 431–441.

[40] “McAfee labs threats report, q4, 2013,” 2014, accessed May 2014 from
http://mcaf.ee/qw7fe.

[41] G. McGraw and G. Morrisett, “Attacking malicious code: Report to
the infosec research council,” IEEE Software, vol. 17, no. 5, pp. 33–41,
Sep. 2000.

[42] F. McKeen, I. Alexandrovich, A. Berenzon, C.Rozas, H. Shafi,
V. Shanbhogue, and U. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Wkshp. on Hardware and
Architectural Support for Security and Privacy, with ISCA’13, 2013.

[43] P. Meher, “An optimized lookup-table for the evaluation of sigmoid
function for artificial neural networks,” in VLSI System on Chip Con-
ference (VLSI-SoC), 2010 18th IEEE/IFIP, Sept 2010, pp. 91–95.

[44] A. Moser, c. Kruegel, and E. Kirda, “Limits of static analysis of mal-
ware detection,” in IEEE Annual Computer Security Applications Con-
ference (ACSAC), 2007, pp. 421–430.

[45] C. Nachenberg, “Computer virus-antivirus coevolution,” Communica-
tions of the ACM, vol. 40, no. 1, pp. 46–51, Jan. 1997.

[46] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: type-safe
retrofitting of legacy code,” in Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ser.
POPL ’02. New York, NY, USA: ACM, 2002, pp. 128–139. [Online].
Available: http://doi.acm.org/10.1145/503272.503286

[47] “Open Malware,” accessed Feb. 2014 at: http://www.
offensivecomputing.net/.

[48] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “Gfree:
Defeating return-oriented programming through gadget-less binaries,”
in Proc. of Annual Computer Security Applications Conference (AC-
SAC), 2010, pp. 49–58.

[49] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri, “SIFT: A
low-overhead dynamic information flow tracking architecture for smt
processors,” in Proceedings of the ACM International Conference on
Computing Frontiers, May 2011.

[50] V. Pappas, M. Polychronakis, and A. Keromytis, “Smashing the gad-
gets: Hindering return-oriented programming using in-place code ran-
domization,” in Proceedings of the 2012 IEEE Symposium on Security
and Privacy, 2012, pp. 601–615.

[51] M. Roesch, “Snort: Lightweight intrusion detection for networks.”
in Proc. Usenix System Adminsitration Conference (LISA), 1999, pp.
229–238.

[52] N. Runwal, R. M. Low, and M. Stamp, “Opcode graph
similarity and metamorphic detection,” J. Comput. Virol., vol. 8,
no. 1-2, pp. 37–52, May 2012. [Online]. Available: http:
//dx.doi.org/10.1007/s11416-012-0160-5

[53] O. Ruwase and M. S. Lam, “A practical dynamic buffer overflow
detector,” in NDSS, 2004.

[54] I. Santos, F. Brezo, J. Nieves, Y. K. Penya, B. Sanz, C. Laorden, and
P. G. Bringas, “Idea: Opcode-sequence-based malware detection,” in
Engineering Secure Software and Systems. Springer, 2010, pp. 35–43.

[55] M. Schmid, “A feed forward multi-layer neural network,” 2010.
[56] “Software Guard Extensions Programming Reference,” 2014, ac-

cessed Feb. 2014 at http://download-software.intel.com/sites/default/
files/319433-015.pdf.

[57] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of CCS.
ACM Press, Oct. 2007, pp. 552–61.

[58] E. Skoudis, Malware: Fighting Malicious Code. Prentice Hall, 2003.
[59] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure

program execution via dynamic information flow tracking,” in
Proceedings of ASPLOS. ACM, 2004, pp. 85–96. [Online]. Available:
http://doi.acm.org/10.1145/1024393.1024404

[60] A. Tang, S. Sethumadhavan, and S. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in Research in
Attacks, Intrusions and Defenses, ser. Lecture Notes in Computer
Science, 2014, vol. 8688, pp. 109–129.

[61] P. Team, “Pax address space layout randomization (aslr),”
http://pax.grsecurity.net/docs/aslr.txt.

[62] ——, “Pax non-executable pages design & implementation,”
http://pax.grsecurity.net/docs/noexec.txt.

[63] Vendicator, “Stack shield technical info file v0.7,” January 2001,
http://www.angelfire.com/sk/stackshield/.

[64] “VirusTotal,” accessed Feb. 2014 at: https://www.virustotal.com/en/.
[65] Y. Vorobeychik and B. Li, “Optimal randomized classification in ad-

versarial settings,” in Proceedings of the 13th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2014), 2014.

[66] “Crimeware protection: 3rd generation intel core vpro pro-
cessors,” 2014, accessed Feb. 2014 at http://www.intel.
com/content/dam/www/public/us/en/documents/white-papers/
3rd-gen-core-vpro-security-paper.pdf.

[67] G. Yan, N. Brown, and D. Kong, “Exploring discriminatory features
for automated malware classification,” in Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2013, pp. 41–61.

[68] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
capturing system-wide information flow for malware detection and
analysis,” in Proceedings of the 14th ACM conference on Computer
and communications security (CCS), 2007, pp. 116–127.

[69] Y. Yu, “Dep/aslr bypass without rop/jit.”
[70] M. Zhang and R. Sekar, “Control flow integrity for cots binaries,” in

Proc. 22nd Usenix Security Symposium, 2013.

11661

